forked from art049/odmantic
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
974 lines (868 loc) · 36.5 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
import datetime
import decimal
import enum
import pathlib
import uuid
import warnings
from abc import ABCMeta
from collections.abc import Callable as abcCallable
from types import FunctionType
from typing import (
TYPE_CHECKING,
Any,
Callable,
ClassVar,
Dict,
FrozenSet,
Iterable,
List,
Optional,
Set,
Tuple,
Type,
TypeVar,
Union,
cast,
no_type_check,
)
import bson
import pydantic
import pymongo
from pydantic.error_wrappers import ErrorWrapper, ValidationError
from pydantic.fields import Field as PDField
from pydantic.fields import FieldInfo as PDFieldInfo
from pydantic.fields import Undefined
from pydantic.main import BaseModel
from pydantic.tools import parse_obj_as
from pydantic.typing import is_classvar, resolve_annotations
from odmantic.bson import (
_BSON_SUBSTITUTED_FIELDS,
BaseBSONModel,
ObjectId,
_decimalDecimal,
)
from odmantic.config import BaseODMConfig, validate_config
from odmantic.exceptions import (
DocumentParsingError,
ErrorList,
IncorrectGenericEmbeddedModelValue,
KeyNotFoundInDocumentError,
ReferencedDocumentNotFoundError,
)
from odmantic.field import (
Field,
FieldProxy,
ODMBaseField,
ODMBaseIndexableField,
ODMEmbedded,
ODMEmbeddedGeneric,
ODMField,
ODMFieldInfo,
ODMReference,
)
from odmantic.index import Index, ODMBaseIndex, ODMSingleFieldIndex
from odmantic.reference import ODMReferenceInfo
from odmantic.typing import (
GenericAlias,
Literal,
dataclass_transform,
get_args,
get_first_type_argument_subclassing,
get_origin,
is_type_argument_subclass,
lenient_issubclass,
)
from odmantic.utils import (
is_dunder,
raise_on_invalid_collection_name,
raise_on_invalid_key_name,
to_snake_case,
)
if TYPE_CHECKING:
from pydantic.typing import (
AbstractSetIntStr,
DictStrAny,
MappingIntStrAny,
ReprArgs,
)
UNTOUCHED_TYPES = FunctionType, property, classmethod, staticmethod, type
def should_touch_field(value: Any = None, type_: Optional[Type] = None) -> bool:
return not (
lenient_issubclass(type_, UNTOUCHED_TYPES)
or isinstance(value, UNTOUCHED_TYPES)
or (type_ is not None and is_classvar(type_))
)
def find_duplicate_key(fields: Iterable[ODMBaseField]) -> Optional[str]:
seen: Set[str] = set()
for f in fields:
if f.key_name in seen:
return f.key_name
seen.add(f.key_name)
return None
_IMMUTABLE_TYPES = (
type(None),
bool,
int,
float,
str,
bytes,
tuple,
frozenset,
datetime.date,
datetime.time,
datetime.datetime,
datetime.timedelta,
enum.Enum,
decimal.Decimal,
pathlib.Path,
uuid.UUID,
pydantic.BaseModel,
bson.ObjectId,
bson.Decimal128,
_decimalDecimal,
)
def is_type_mutable(type_: Type) -> bool:
type_origin: Optional[Type] = getattr(type_, "__origin__", None)
if type_origin is not None:
type_args: Tuple[Type, ...] = getattr(type_, "__args__", ())
for type_arg in type_args:
if type_arg is ...: # Handle tuple definition
continue
if lenient_issubclass(type_origin, Iterable) and lenient_issubclass(
type_arg, EmbeddedModel
): # Handle nested embedded models
return True
if is_type_mutable(type_arg):
return True
if type_origin is Union:
return False
return not lenient_issubclass(type_origin, _IMMUTABLE_TYPES)
else:
return not (
type_ is None
or (
lenient_issubclass(type_, _IMMUTABLE_TYPES)
and not lenient_issubclass(type_, EmbeddedModel)
)
)
def is_type_forbidden(t: Type) -> bool:
if t is Callable or t is abcCallable:
# Callable type require a special treatment since typing.Callable is not a class
return True
return False
def validate_type(type_: Type) -> Type:
if not should_touch_field(type_=type_) or lenient_issubclass(
type_, (Model, EmbeddedModel)
):
return type_
if is_type_forbidden(type_):
raise TypeError(f"{type_} fields are not supported")
subst_type = _BSON_SUBSTITUTED_FIELDS.get(type_)
if subst_type is not None:
return subst_type
type_origin: Optional[Type] = get_origin(type_)
if type_origin is not None and type_origin is not Literal:
type_args: Tuple[Type, ...] = get_args(type_)
new_arg_types = tuple(validate_type(subtype) for subtype in type_args)
type_ = GenericAlias(type_origin, new_arg_types)
return type_
class BaseModelMetaclass(pydantic.main.ModelMetaclass):
@staticmethod
def __validate_cls_namespace__(name: str, namespace: Dict) -> None: # noqa C901
"""Validate the class name space in place"""
annotations = resolve_annotations(
namespace.get("__annotations__", {}), namespace.get("__module__")
)
config = validate_config(namespace.get("Config", BaseODMConfig), name)
odm_fields: Dict[str, ODMBaseField] = {}
references: List[str] = []
bson_serialized_fields: Set[str] = set()
mutable_fields: Set[str] = set()
# Make sure all fields are defined with type annotation
for field_name, value in namespace.items():
if (
should_touch_field(value=value)
and not is_dunder(field_name)
and field_name not in annotations
):
raise TypeError(
f"field {field_name} is defined without type annotation"
)
# Validate fields types and substitute bson fields
for (field_name, field_type) in annotations.items():
if not is_dunder(field_name) and should_touch_field(type_=field_type):
substituted_type = validate_type(field_type)
# Handle BSON serialized fields after substitution to allow some
# builtin substitution
bson_serialization_method = getattr(substituted_type, "__bson__", None)
if bson_serialization_method is not None:
bson_serialized_fields.add(field_name)
annotations[field_name] = substituted_type
# Validate fields
for (field_name, field_type) in annotations.items():
value = namespace.get(field_name, Undefined)
if is_dunder(field_name) or not should_touch_field(value, field_type):
continue # pragma: no cover
# https://github.com/nedbat/coveragepy/issues/198
if isinstance(value, PDFieldInfo):
raise TypeError("please use odmantic.Field instead of pydantic.Field")
if is_type_mutable(field_type):
mutable_fields.add(field_name)
if lenient_issubclass(field_type, EmbeddedModel):
if isinstance(value, ODMFieldInfo):
namespace[field_name] = value.pydantic_field_info
key_name = (
value.key_name if value.key_name is not None else field_name
)
primary_field = value.primary_field
index = value.index
unique = value.unique
else:
key_name = field_name
primary_field = False
index = False
unique = False
odm_fields[field_name] = ODMEmbedded(
primary_field=primary_field,
model=field_type,
key_name=key_name,
model_config=config,
index=index,
unique=unique,
)
elif is_type_argument_subclass(field_type, EmbeddedModel):
if isinstance(value, ODMFieldInfo):
if value.primary_field:
raise TypeError(
"Declaring a generic type of embedded models as a primary "
f"field is not allowed: {field_name} in {name}"
)
namespace[field_name] = value.pydantic_field_info
key_name = (
value.key_name if value.key_name is not None else field_name
)
index = value.index
unique = value.unique
else:
key_name = field_name
index = False
unique = False
model = get_first_type_argument_subclassing(field_type, EmbeddedModel)
assert model is not None
if len(model.__references__) > 0:
raise TypeError(
"Declaring a generic type of embedded models containing "
f"references is not allowed: {field_name} in {name}"
)
generic_origin = get_origin(field_type)
assert generic_origin is not None
odm_fields[field_name] = ODMEmbeddedGeneric(
model=model,
generic_origin=generic_origin,
key_name=key_name,
model_config=config,
index=index,
unique=unique,
)
elif lenient_issubclass(field_type, Model):
if not isinstance(value, ODMReferenceInfo):
raise TypeError(
f"cannot define a reference {field_name} (in {name}) without"
" a Reference assigned to it"
)
key_name = value.key_name if value.key_name is not None else field_name
raise_on_invalid_key_name(key_name)
odm_fields[field_name] = ODMReference(
model=field_type, key_name=key_name, model_config=config
)
references.append(field_name)
del namespace[field_name] # Remove default ODMReferenceInfo value
else:
if isinstance(value, ODMFieldInfo):
key_name = (
value.key_name if value.key_name is not None else field_name
)
raise_on_invalid_key_name(key_name)
odm_fields[field_name] = ODMField(
primary_field=value.primary_field,
key_name=key_name,
model_config=config,
index=value.index,
unique=value.unique,
)
namespace[field_name] = value.pydantic_field_info
elif value is Undefined:
odm_fields[field_name] = ODMField(
primary_field=False, key_name=field_name, model_config=config
)
else:
try:
parse_obj_as(field_type, value)
except ValidationError:
raise TypeError(
f"Unhandled field definition {name}: {repr(field_type)}"
f" = {repr(value)}"
)
odm_fields[field_name] = ODMField(
primary_field=False, key_name=field_name, model_config=config
)
# NOTE: Duplicate key detection make sur that at most one primary key is
# defined
duplicate_key = find_duplicate_key(odm_fields.values())
if duplicate_key is not None:
raise TypeError(f"Duplicated key_name: {duplicate_key} in {name}")
namespace["__annotations__"] = annotations
namespace["__odm_fields__"] = odm_fields
namespace["__references__"] = tuple(references)
namespace["__bson_serialized_fields__"] = frozenset(bson_serialized_fields)
namespace["__mutable_fields__"] = frozenset(mutable_fields)
namespace["Config"] = config
@no_type_check
def __new__(
mcs,
name: str,
bases: Tuple[type, ...],
namespace: Dict[str, Any],
**kwargs: Any,
):
is_custom_cls = namespace.get(
"__module__"
) != "odmantic.model" and namespace.get("__qualname__") not in (
"_BaseODMModel",
"Model",
"EmbeddedModel",
)
if is_custom_cls:
# Handle calls from pydantic.main.create_model (used internally by FastAPI)
patched_bases = []
for b in bases:
if hasattr(b, "__pydantic_model__"):
patched_bases.append(b.__pydantic_model__)
else:
patched_bases.append(b)
bases = tuple(patched_bases)
# Nullify unset docstring (to avoid getting the docstrings from the parent
# classes)
if namespace.get("__doc__", None) is None:
namespace["__doc__"] = ""
cls = super().__new__(mcs, name, bases, namespace, **kwargs)
if is_custom_cls:
config: BaseODMConfig = namespace["Config"]
# Patch Model related fields to build a "pure" pydantic model
odm_fields: Dict[str, ODMBaseField] = namespace["__odm_fields__"]
for field_name, field in odm_fields.items():
if isinstance(field, (ODMReference, ODMEmbedded)):
namespace["__annotations__"][
field_name
] = field.model.__pydantic_model__
# Build the pydantic model
pydantic_cls = pydantic.main.ModelMetaclass.__new__(
mcs, f"{name}.__pydantic_model__", (BaseBSONModel,), namespace, **kwargs
)
# Change the title to generate clean JSON schemas from this "pure" model
if config.title is None:
pydantic_cls.__config__.title = name
cls.__pydantic_model__ = pydantic_cls
for name, field in cls.__odm_fields__.items():
field.bind_pydantic_field(cls.__fields__[name])
setattr(cls, name, FieldProxy(parent=None, field=field))
return cls
@dataclass_transform(kw_only_default=True, field_specifiers=(Field, ODMFieldInfo))
class ModelMetaclass(BaseModelMetaclass):
@no_type_check
def __new__( # noqa C901
mcs,
name: str,
bases: Tuple[type, ...],
namespace: Dict[str, Any],
**kwargs: Any,
):
if namespace.get("__module__") != "odmantic.model" and namespace.get(
"__qualname__"
) not in ("_BaseODMModel", "Model"):
mcs.__validate_cls_namespace__(name, namespace)
config: BaseODMConfig = namespace["Config"]
primary_field: Optional[str] = None
odm_fields: Dict[str, ODMBaseField] = namespace["__odm_fields__"]
for field_name, field in odm_fields.items():
if isinstance(field, ODMField) and field.primary_field:
primary_field = field_name
break
if primary_field is None:
if "id" in odm_fields:
raise TypeError(
"can't automatically generate a primary field since an 'id' "
"field already exists"
)
primary_field = "id"
odm_fields["id"] = ODMField(
primary_field=True, key_name="_id", model_config=config
)
namespace["id"] = PDField(default_factory=ObjectId)
namespace["__annotations__"]["id"] = ObjectId
namespace["__primary_field__"] = primary_field
if config.collection is not None:
collection_name = config.collection
elif "__collection__" in namespace:
collection_name = namespace["__collection__"]
warnings.warn(
"Defining the collection name with `__collection__` is deprecated. "
"Please use `collection` config attribute instead.",
DeprecationWarning,
)
else:
cls_name = name
if cls_name.endswith("Model"):
# TODO document this
cls_name = cls_name[:-5] # Strip Model in the class name
collection_name = to_snake_case(cls_name)
raise_on_invalid_collection_name(collection_name, cls_name=name)
namespace["__collection__"] = collection_name
return super().__new__(mcs, name, bases, namespace, **kwargs)
def __pos__(cls) -> str:
return cast(str, getattr(cls, "__collection__"))
@dataclass_transform(kw_only_default=True, field_specifiers=(Field, ODMFieldInfo))
class EmbeddedModelMetaclass(BaseModelMetaclass):
@no_type_check
def __new__(
mcs,
name: str,
bases: Tuple[type, ...],
namespace: Dict[str, Any],
**kwargs: Any,
):
if namespace.get("__module__") != "odmantic.model" and namespace.get(
"__qualname__"
) not in ("_BaseODMModel", "EmbeddedModel"):
mcs.__validate_cls_namespace__(name, namespace)
odm_fields: Dict[str, ODMBaseField] = namespace["__odm_fields__"]
for field in odm_fields.values():
if isinstance(field, ODMField) and field.primary_field:
raise TypeError(
f"cannot define a primary field in {name} embedded document"
)
return super().__new__(mcs, name, bases, namespace, **kwargs)
BaseT = TypeVar("BaseT", bound="_BaseODMModel")
class _BaseODMModel(pydantic.BaseModel, metaclass=ABCMeta):
"""Base class for [Model][odmantic.model.Model] and
[EmbeddedModel][odmantic.model.EmbeddedModel].
!!! warning
This internal class should never be instanciated directly.
"""
if TYPE_CHECKING:
__odm_fields__: ClassVar[Dict[str, ODMBaseField]] = {}
__bson_serialized_fields__: ClassVar[FrozenSet[str]] = frozenset()
__mutable_fields__: ClassVar[FrozenSet[str]] = frozenset()
__references__: ClassVar[Tuple[str, ...]] = ()
__pydantic_model__: ClassVar[Type[BaseBSONModel]]
# __fields_modified__ is not a ClassVar but this allows to hide this field from
# the dataclass transform generated constructor
__fields_modified__: ClassVar[Set[str]] = set()
__slots__ = ("__fields_modified__",)
def __init__(self, **data: Any):
super().__init__(**data)
object.__setattr__(self, "__fields_modified__", set(self.__odm_fields__.keys()))
@classmethod
def validate(cls: Type[BaseT], value: Any) -> BaseT:
if isinstance(value, cls):
# Do not copy the object as done in pydantic
# This enable to keep the same python object
return value
return super().validate(value)
def __repr_args__(self) -> "ReprArgs":
# Place the id field first in the repr string
args = list(super().__repr_args__())
id_arg = next((arg for arg in args if arg[0] == "id"), None)
if id_arg is None:
return args
args.remove(id_arg)
args = [id_arg] + args
return args
def copy(
self: BaseT,
*,
include: Union[None, "AbstractSetIntStr", "MappingIntStrAny"] = None,
exclude: Union[None, "AbstractSetIntStr", "MappingIntStrAny"] = None,
update: Optional["DictStrAny"] = None,
deep: bool = False,
) -> BaseT:
"""Duplicate a model, optionally choose which fields to include, exclude and
change.
Danger:
The data is not validated before creating the new model: **you should trust
this data**.
Arguments:
include: fields to include in new model
exclude: fields to exclude from new model, as with values this takes
precedence over include
update: values to change/add in the new model.
deep: set to `True` to make a deep copy of the model
Note:
The `include` and `exclude` kwargs are only affecting the copied data,
not filtering the update object.
Returns:
new model instance
"""
copied = super().copy(
include=include, exclude=exclude, update=update, deep=deep # type: ignore
)
copied._post_copy_update()
return copied
def _post_copy_update(self: BaseT) -> None:
"""Recursively update internal fields of the copied model after it has been
copied.
"""
object.__setattr__(self, "__fields_modified__", set(self.__fields__))
for field_name, field in self.__odm_fields__.items():
if isinstance(field, ODMEmbedded):
value = getattr(self, field_name)
value._post_copy_update()
def update(
self,
patch_object: Union[BaseModel, Dict[str, Any]],
*,
include: Union[None, "AbstractSetIntStr", "MappingIntStrAny"] = None,
exclude: Union[None, "AbstractSetIntStr", "MappingIntStrAny"] = None,
exclude_unset: bool = True,
exclude_defaults: bool = False,
exclude_none: bool = False,
) -> None:
"""Update instance fields from a Pydantic model or a dictionary.
If a pydantic model is provided, only the **fields set** will be
applied by default.
Args:
patch_object: object containing the values to update
include: fields to include from the `patch_object` (include all fields if
`None`)
exclude: fields to exclude from the `patch_object`, this takes
precedence over include
exclude_unset: only update fields explicitly set in the patch object (only
applies to Pydantic models)
exclude_defaults: only update fields that are different from their default
value in the patch object (only applies to Pydantic models)
exclude_none: only update fields different from None in the patch object
(only applies to Pydantic models)
Raises:
ValidationError: the modifications would make the instance invalid
<!--
#noqa: DAR402 ValidationError
-->
"""
if isinstance(patch_object, BaseModel):
patch_dict = patch_object.dict(
include=include, # type: ignore
exclude=exclude, # type: ignore
exclude_unset=exclude_unset,
exclude_defaults=exclude_defaults,
exclude_none=exclude_none,
)
else:
odm_fields = set(self.__odm_fields__.keys())
patch_dict = {}
for k, v in patch_object.items():
if include is not None and k not in include:
continue
if exclude is not None and k in exclude:
continue
if k not in odm_fields:
continue
patch_dict[k] = v
patched_instance_dict = {**self.dict(), **patch_dict}
# FIXME: improve performance by only running updated field validators and then
# model validators
patched_instance = self.validate(patched_instance_dict)
for name, new_value in patched_instance.__dict__.items():
if self.__dict__[name] != new_value:
# Manually change the field to avoid running the validators again
self.__dict__[name] = new_value
self.__fields_set__.add(name)
self.__fields_modified__.add(name)
def __setattr__(self, name: str, value: Any) -> None:
super().__setattr__(name, value)
self.__fields_modified__.add(name)
def dict( # type: ignore # Missing deprecated/ unsupported parameters
self,
*,
include: Union["AbstractSetIntStr", "MappingIntStrAny"] = None, # type: ignore
exclude: Union["AbstractSetIntStr", "MappingIntStrAny"] = None, # type: ignore
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False,
by_alias: bool = False, # FIXME when aliases are supported
) -> "DictStrAny":
"""Generate a dictionary representation of the model, optionally specifying
which fields to include or exclude.
Args:
include: fields to include (include all fields if `None`)
exclude: fields to exclude this takes precedence over include
exclude_unset: only include fields explicitly set
exclude_defaults: only include fields that are different from their default
value
exclude_none: only include fields different from `None`
by_alias: **not supported yet**
Returns:
the dictionary representation of the instance
"""
return super().dict(
include=include,
exclude=exclude,
exclude_unset=exclude_unset,
exclude_defaults=exclude_defaults,
exclude_none=exclude_none,
)
def __doc(
self,
raw_doc: Dict[str, Any],
model: Type["_BaseODMModel"],
include: Optional["AbstractSetIntStr"] = None,
) -> Dict[str, Any]:
doc: Dict[str, Any] = {}
for field_name, field in model.__odm_fields__.items():
if include is not None and field_name not in include:
continue
if isinstance(field, ODMReference):
doc[field.key_name] = raw_doc[field_name][field.model.__primary_field__]
elif isinstance(field, ODMEmbedded):
doc[field.key_name] = self.__doc(raw_doc[field_name], field.model, None)
elif isinstance(field, ODMEmbeddedGeneric):
if field.generic_origin is dict:
doc[field.key_name] = {
item_key: self.__doc(item_value, field.model)
for item_key, item_value in raw_doc[field_name].items()
}
else:
doc[field.key_name] = [
self.__doc(item, field.model) for item in raw_doc[field_name]
]
elif field_name in model.__bson_serialized_fields__:
doc[field.key_name] = model.__fields__[field_name].type_.__bson__(
raw_doc[field_name]
)
else:
doc[field.key_name] = raw_doc[field_name]
if model.Config.extra == "allow":
extras = set(raw_doc.keys()) - set(model.__odm_fields__.keys())
for extra in extras:
value = raw_doc[extra]
subst_type = validate_type(type(value))
bson_serialization_method = getattr(subst_type, "__bson__", lambda x: x)
doc[extra] = bson_serialization_method(raw_doc[extra])
return doc
def doc(self, include: Optional["AbstractSetIntStr"] = None) -> Dict[str, Any]:
"""Generate a document representation of the instance (as a dictionary).
Args:
include: field that should be included; if None, every fields will be
included
Returns:
the document associated to the instance
"""
raw_doc = self.dict()
doc = self.__doc(raw_doc, type(self), include)
return doc
@classmethod
def parse_doc(cls: Type[BaseT], raw_doc: Dict) -> BaseT:
"""Parse a BSON document into an instance of the Model
Args:
raw_doc: document to parse (as Dict)
Raises:
DocumentParsingError: the specified document is invalid
Returns:
an instance of the Model class this method is called on.
"""
errors, obj = cls._parse_doc_to_obj(raw_doc)
if len(errors) > 0:
raise DocumentParsingError(
errors=[errors],
model=cls,
primary_value=raw_doc.get("_id", "<unknown>"),
)
try:
instance = cls.parse_obj(obj)
except ValidationError as e:
raise DocumentParsingError(
errors=e.raw_errors, # type: ignore
model=cls,
primary_value=raw_doc.get("_id", "<unknown>"),
)
return instance
@classmethod
def _parse_doc_to_obj( # noqa C901 # TODO: refactor document parsing
cls: Type[BaseT], raw_doc: Dict, base_loc: Tuple[str, ...] = ()
) -> Tuple[ErrorList, Dict[str, Any]]:
errors: ErrorList = []
obj: Dict[str, Any] = {}
for field_name, field in cls.__odm_fields__.items():
if isinstance(field, ODMReference):
sub_doc = raw_doc.get(field.key_name)
if sub_doc is None:
errors.append(
ErrorWrapper(
exc=ReferencedDocumentNotFoundError(field.key_name),
loc=base_loc + (field_name,),
)
)
else:
sub_errors, sub_obj = field.model._parse_doc_to_obj(
sub_doc, base_loc=base_loc + (field_name,)
)
errors.extend(sub_errors)
obj[field_name] = sub_obj
elif isinstance(field, ODMEmbedded):
value = raw_doc.get(field.key_name, Undefined)
if value is not Undefined:
sub_errors, value = field.model._parse_doc_to_obj(
value, base_loc=base_loc + (field_name,)
)
errors.extend(sub_errors)
else:
if not field.is_required_in_doc():
value = field.get_default_importing_value()
if value is Undefined:
errors.append(
ErrorWrapper(
exc=KeyNotFoundInDocumentError(field.key_name),
loc=base_loc + (field_name,),
)
)
obj[field_name] = value
elif isinstance(field, ODMEmbeddedGeneric):
value = Undefined
raw_value = raw_doc.get(field.key_name, Undefined)
if raw_value is not Undefined:
if isinstance(raw_value, list) and (
field.generic_origin is list
or field.generic_origin is tuple
or field.generic_origin is set
):
value = []
for i, item in enumerate(raw_value):
sub_errors, item = field.model._parse_doc_to_obj(
item, base_loc=base_loc + (field_name, f"[{i}]")
)
if len(sub_errors) > 0:
errors.extend(sub_errors)
else:
value.append(item)
obj[field_name] = value
elif isinstance(raw_value, dict) and field.generic_origin is dict:
value = {}
for item_key, item_value in raw_value.items():
sub_errors, item_value = field.model._parse_doc_to_obj(
item_value,
base_loc=base_loc + (field_name, f'["{item_key}"]'),
)
if len(sub_errors) > 0:
errors.extend(sub_errors)
else:
value[item_key] = item_value
obj[field_name] = value
else:
errors.append(
ErrorWrapper(
exc=IncorrectGenericEmbeddedModelValue(raw_value),
loc=base_loc + (field_name,),
)
)
else:
if not field.is_required_in_doc():
value = field.get_default_importing_value()
if value is Undefined:
errors.append(
ErrorWrapper(
exc=KeyNotFoundInDocumentError(field.key_name),
loc=base_loc + (field_name,),
)
)
else:
obj[field_name] = value
else:
field = cast(ODMField, field)
value = raw_doc.get(field.key_name, Undefined)
if value is Undefined and not field.is_required_in_doc():
value = field.get_default_importing_value()
if value is Undefined:
errors.append(
ErrorWrapper(
exc=KeyNotFoundInDocumentError(field.key_name),
loc=base_loc + (field_name,),
)
)
else:
obj[field_name] = value
if cls.Config.extra == "allow":
extras = set(raw_doc.keys()) - set(obj.keys())
for extra in extras:
obj[extra] = raw_doc[extra]
return errors, obj
class Model(_BaseODMModel, metaclass=ModelMetaclass):
"""Class that can be extended to create an ODMantic Model.
Each model will be bound to a MongoDB collection. You can customize the collection
name by setting the `__collection__` class variable in the model classes.
"""
if TYPE_CHECKING:
__collection__: ClassVar[str] = ""
__primary_field__: ClassVar[str] = ""
id: Union[ObjectId, Any] = Field(init=False) # TODO fix basic id field typing
def __setattr__(self, name: str, value: Any) -> None:
if name == self.__primary_field__:
# TODO implement
raise NotImplementedError(
"Reassigning a new primary key is not supported yet"
)
super().__setattr__(name, value)
@classmethod
def __indexes__(cls) -> Tuple[Union[ODMBaseIndex, pymongo.IndexModel], ...]:
indexes: List[Union[ODMBaseIndex, pymongo.IndexModel]] = []
for field in cls.__odm_fields__.values():
if isinstance(field, ODMBaseIndexableField) and (
field.index or field.unique
):
indexes.append(
ODMSingleFieldIndex(
key_name=field.key_name,
unique=field.unique,
)
)
for index in cast(BaseODMConfig, cls.Config).indexes():
indexes.append(index.to_odm_index() if isinstance(index, Index) else index)
return tuple(indexes)
def update(
self,
patch_object: Union[BaseModel, Dict[str, Any]],
*,
include: Union[None, "AbstractSetIntStr", "MappingIntStrAny"] = None,
exclude: Union[None, "AbstractSetIntStr", "MappingIntStrAny"] = None,
exclude_unset: bool = True,
exclude_defaults: bool = False,
exclude_none: bool = False,
) -> None:
is_primary_field_in_patch = (
isinstance(patch_object, BaseModel)
and self.__primary_field__ in patch_object.__fields__
) or (isinstance(patch_object, dict) and self.__primary_field__ in patch_object)
if is_primary_field_in_patch:
if (
include is None
and (exclude is None or self.__primary_field__ not in exclude)
) or (
include is not None
and self.__primary_field__ in include
and (exclude is None or self.__primary_field__ not in exclude)
):
raise ValueError(
"Updating the primary key is not supported. "
"See the copy method if you want to modify the primary field."
)
return super().update(
patch_object,
include=include,
exclude=exclude,
exclude_unset=exclude_unset,
exclude_defaults=exclude_defaults,
exclude_none=exclude_none,
)
class EmbeddedModel(_BaseODMModel, metaclass=EmbeddedModelMetaclass):
"""Class that can be extended to create an ODMantic Embedded Model.
An embedded document cannot be persisted directly to the database but should be
integrated in a regular ODMantic Model.
"""