Skip to content

Latest commit

 

History

History

fuzzy

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

fuzzy

npm version npm downloads Twitter Follow

This project is part of the @thi.ng/umbrella monorepo.

About

Fuzzy logic operators & configurable rule inferencing engine.

Features

  • Entirely declarative & functional approach
  • Fully type checked
  • Fuzzy set domain shaping & composition functions (incl. negated / inverse)
  • Various T-norms & S-norms, incl. parametric versions
  • Rules with multiple inputs/outputs and arbitrary term combinators (i.e. T-norms). Syntax sugar for common and/or rules.
  • Defuzzification via customizable strategies and options to balance precision vs. performance
    • Maxima: First, Last, Mean
    • Center-of-Gravity (COG)
  • Linguistic variable creation and term/set classification for given domain values
  • Fuzzy set visualization (via @thi.ng/fuzzy-viz)

References / Further reading

Status

ALPHA - bleeding edge / work-in-progress

Search or submit any issues for this package

Support packages

Installation

yarn add @thi.ng/fuzzy
// ES module
<script type="module" src="https://unpkg.com/@thi.ng/fuzzy?module" crossorigin></script>

// UMD
<script src="https://unpkg.com/@thi.ng/fuzzy/lib/index.umd.js" crossorigin></script>

Package sizes (gzipped, pre-treeshake): ESM: 1.61 KB / CJS: 1.79 KB / UMD: 1.70 KB

Dependencies

API

Generated API docs

(See tests for more usage examples).

Fuzzy set generators & combinators

Generators:

  • constant()
  • point()
  • ramp() / invRamp()
  • triangle()
  • trapezoid()
  • sigmoid() / invSigmoid()
  • gaussian()

Combinators:

  • negate()
  • weighted()
  • alphaCut() / invAlphaCut()
  • compose() / intersect() / union()

Linguistic variables

Linguistic variables (short: L-vars) are groupings of named (and possibly overlapping) fuzzy sets within a given value domain. The can be used standalone or as inputs/outputs in rules (further below).

The @thi.ng/fuzzy-viz package provides utilities to visualize the fuzzy sets of an L-var.

fuzzy set visualization of the example l-var

// temperature sets (in celsius)
const temp = variable(
  // value domain
  [-20, 40],
  {
    freezing: invSigmoid(0, 2),
    cold: trapezoid(-1, 2, 16, 20),
    warm: trapezoid(15, 20, 30, 34),
    hot: sigmoid(32, 2)
  }
);

evaluate(temp, 18)
// {
//   freezing: 2.220446049250313e-16,
//   cold: 0.5,
//   warm: 0.6,
//   hot: 6.914400106935423e-13
// }

evaluate(temp, 28)
// {
//   freezing: 0,
//   cold: 0,
//   warm: 1,
//   hot: 0.0003353501304664781
// }

// classify temperature (min confidence 33%, default: 50%)
classify(temp, 28, 0.33)
// "warm"

Rule creation & inferencing

Example taken from Franck Dernoncourt's Introduction to Fuzzy Logic:

fuzzy set illustration from F.Dernoncourt's tutorial

// define fuzzy input variables
const inputs = {
  food: variable([0, 10], {
    awful: invRamp(1, 3),
    delicious: ramp(7, 9),
  }),
  service: variable([0, 10], {
    poor: gaussian(0, 1.5),
    good: gaussian(5, 1.5),
    excellent: gaussian(10, 1.5),
  }),
};

const outputs = {
  tip: variable([0, 30], {
    low: triangle(0, 5, 10),
    medium: triangle(10, 15, 20),
    high: triangle(20, 25, 30),
  }),
};

// l-vars, rules and defuzzification are using generics for type safety
// we define these 2 type aliases for brevity
type I = typeof inputs;
type O = typeof outputs;

// rule definitions:
// if service is poor OR food is awful -> tip is low
// if service is normal -> tip is medium
// if service is excellent OR food is delicious -> tip is high
const rules = [
  or<I, O>({ food: "awful", service: "poor" }, { tip: "low" }),
  or<I, O>({ service: "good" }, { tip: "medium" }),
  or<I, O>({ food: "delicious", service: "excellent" }, { tip: "high" }),
];

// defuzzification using default center-of-gravity strategy
defuzz(
  inputs,
  outputs,
  rules,
  // input values
  { food: 7.32, service: 7.83 },
);
// { tip: 22.650000000000034 }

// defuzz with custom strategy (note: each has further config options)
defuzz(
  inputs,
  outputs,
  rules,
  // input values
  { food: 7.32, service: 7.83 },
  // custom defuzz strategy
  meanOfMaximaStrategy()
);
// { tip: 25.050000000000043 }

Note: The results are slightly different than those in the textbook example, due to different gaussian fuzzy sets used for the service L-var.

Using instrumentStrategy() from the upcoming @thi.ng/fuzzy-viz package, we can also visualize the final, transformed fuzzy sets used to compute crisp results and highlight the position of the crisp result value.

Here is the ASCII art output for the COG strategy and using tnormMin (the default) to transform each rule's output set(s):

...........................................................................|........................
...........................................................................|........................
...........................................................................|........................
...........................................................................|........................
...........................................................................|........................
...........................................................................|........................
...........................................................................|........................
...........................................................................|........................
...........................................................................|........................
...........................................................................|........................
........................................................................▁▅▅|▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅.....
.......................................................................▁███|███████████████████▇....
......................................................................▁████|████████████████████▇...
....................................▅▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▅....▂█████|█████████████████████▇..
...................................▅█████████████████████████████▅..▂██████|███████████████████████.
..................................▅███████████████████████████████▅▂███████|████████████████████████
                                                                           ^ 22.65

Different results can be obtained by adjusting the T-norm used to transform each rule's output sets, here using tnormHamacher(2).

.............................................................................|......................
.............................................................................|......................
.............................................................................|......................
.............................................................................|......................
.............................................................................|......................
.............................................................................|......................
.............................................................................|......................
.............................................................................|......................
.............................................................................|......................
.............................................................................|......................
.............................................................................|.....▃▂...............
.............................................................................|...▃███▆▂.............
.............................................................................|▁▅███████▇▃...........
................................................▁▃▆▃▁......................▁▄|████████████▆▃........
...........................................▁▂▄▆███████▆▄▂▁..............▂▄▇██|███████████████▆▃▁....
...................................▁▂▃▄▅▆▇█████████████████▇▆▅▄▃▂▁..▂▄▆██████|███████████████████▅▃▁
                                                                             ^ 23.55

...or using tnormAczelAlsina(2) (there're many more available):

............................................................................|.......................
............................................................................|.......................
............................................................................|.......................
............................................................................|.......................
............................................................................|.......................
............................................................................|.......................
............................................................................|.......................
............................................................................|.......................
............................................................................|.......................
............................................................................|.......................
............................................................................|.▂▃▄▅▅▅▅▅▄▄▃▁..........
..........................................................................▂▅|██████████████▆▄.......
........................................................................▃▇██|█████████████████▆▂....
........................................▁▂▃▄▄▅▅▆▆▆▆▆▆▆▅▅▄▄▃▂▁.........▃█████|███████████████████▆▁..
....................................▂▄▇███████████████████████▇▄▂....▆██████|█████████████████████▄.
..................................▃▇█████████████████████████████▇▃▂████████|██████████████████████▇
                                                                            ^ 22.95

Just for illustration purposes, SVG output can be obtained by merely switching to another instrumentation function (here fuzzySetToSvg()):

fuzzySetToSvg() visualization example

Authors

Karsten Schmidt

If this project contributes to an academic publication, please cite it as:

@misc{thing-fuzzy,
  title = "@thi.ng/fuzzy",
  author = "Karsten Schmidt",
  note = "https://thi.ng/fuzzy",
  year = 2020
}

License

© 2020 Karsten Schmidt // Apache Software License 2.0