Lightweight transducer implementations for ES6 / TypeScript (~24KB minified, full lib).
This library provides altogether ~85 transducers, reducers and sequence generators (iterators) for composing data transformation pipelines.
The overall concept and many of the core functions offered here are directly inspired by the original Clojure implementation by Rich Hickey, though the implementation does differ (also in contrast to some other JS based implementations) and dozens of less common, but generally highly useful operators have been added, with at least a couple dozen more to come.
Please see the @thi.ng/rstream & @thi.ng/csp partner modules for related functionality, supplementing features of this library and depending on it.
Since 0.8.0 this project largely supersedes the @thi.ng/iterators library for most use cases and offers are more powerful API and potentially faster execution of composed transformations (due to lack of ES generator overheads).
yarn add @thi.ng/transducers
Almost all functions can be imported selectively, but for development purposes full module re-exports are defined.
// full import
import * as tx from "@thi.ng/transducers";
// selective
import { transduce } from "@thi.ng/transducers/transduce";
import { push } from "@thi.ng/transducers/rfn/push";
import { map } from "@thi.ng/transducers/xforms/map";
// compose transducer
xform = tx.comp(
tx.filter(x => (x & 1) > 0), // odd numbers only
tx.distinct(), // distinct numbers only
tx.map(x=> x * 3) // times 3
);
// collect as array (tx.push)
tx.transduce(xform, tx.push(), [1, 2, 3, 4, 5, 4, 3, 2, 1]);
// [ 3, 9, 15 ]
// re-use same xform, but collect as set (tx.conj)
tx.transduce(xform, tx.conj(), [1, 2, 3, 4, 5, 4, 3, 2, 1]);
// Set { 3, 9, 15 }
// or apply as transforming iterator
// no reduction, only transformations
[...tx.iterator(xform, [1, 2, 3, 4, 5])]
// [ 3, 9, 15]
// single step execution
// returns undefined if transducer returned no result for this input
// returns array if transducer step produced multiple results
f = tx.step(xform);
f(1) // 3
f(2) // undefined
f(3) // 9
f(4) // undefined
f = tx.step(take)
// use the `frequencies` reducer to create
// a map counting occurrence of each value
tx.transduce(tx.map(x => x.toUpperCase()), tx.frequencies(), "hello world")
// Map { 'H' => 1, 'E' => 1, 'L' => 3, 'O' => 2, ' ' => 1, 'W' => 1, 'R' => 1, 'D' => 1 }
// reduction only (no transform)
tx.reduce(tx.frequencies(), [1, 1, 1, 2, 3, 4, 4])
// Map { 1 => 3, 2 => 1, 3 => 1, 4 => 2 }
// with optional key function, here to bin by word length
tx.reduce(
tx.frequencies(x => x.length),
"my camel is collapsing and needs some water".split(" ")
)
// Map { 2 => 2, 5 => 3, 10 => 1, 3 => 1, 4 => 1 }
// actual grouping
tx.reduce(
tx.groupByMap(x => x.length),
"my camel is collapsing and needs some water".split(" ")
)
// Map {
// 2 => [ 'my', 'is' ],
// 3 => [ 'and' ],
// 4 => [ 'some' ],
// 5 => [ 'camel', 'needs', 'water' ],
// 10 => [ 'collapsing' ]
// }
multiplex
and multiplexObj
can be used to transform values in parallel
using the provided transducers (which can be composed as usual) and results in
a tuple or keyed object.
tx.transduce(
tx.multiplex(
tx.map(x => x.charAt(0)),
tx.map(x => x.toUpperCase()),
tx.map(x => x.length)
),
tx.push(),
["Alice", "Bob", "Charlie"]
)
// [ [ "A", "ALICE", 5 ], [ "B", "BOB", 3 ], [ "C", "CHARLIE", 7 ] ]
tx.transduce(
tx.multiplexObj({
initial: tx.map(x => x.charAt(0)),
name: tx.map(x => x.toUpperCase()),
len: tx.map(x => x.length)
}),
tx.push(),
["Alice", "Bob", "Charlie"]
)
// [ { len: 5, name: 'ALICE', initial: 'A' },
// { len: 3, name: 'BOB', initial: 'B' },
// { len: 7, name: 'CHARLIE', initial: 'C' } ]
// use nested reduce to compute window averages
tx.transduce(
tx.comp(
tx.partition(5, 1),
tx.map(x => tx.reduce(tx.mean(), x))
),
tx.push(),
[1, 2, 3, 3, 4, 5, 5, 6, 7, 8, 8, 9, 10]
);
// [ 2.6, 3.4, 4, 4.6, 5.4, 6.2, 6.8, 7.6, 8.4 ]
// this combined transducer is also directly
// available as: `tx.movingAverage(n)`
tx.transduce(
tx.movingAverage(5),
[1, 2, 3, 3, 4, 5, 5, 6, 7, 8, 8, 9, 10]
);
// [ 2.6, 3.4, 4, 4.6, 5.4, 6.2, 6.8, 7.6, 8.4 ]
// function to test
fn = () => { for(i=0; i<1e6; i++) let x =Math.cos(i); return x; };
// compute the mean of 100 runs
tx.transduce(
tx.comp(tx.benchmark(), tx.take(100)),
tx.mean(),
tx.repeatedly(fn)
);
// 1.93 (milliseconds)
// alternatively, use tx.sideEffect() for any side fx
tx.transduce(
tx.comp(
tx.inspect("orig"),
tx.map(x => x + 1),
tx.inspect("mapped"),
tx.filter(x => (x & 1) > 0)
),
tx.push(),
[1, 2, 3, 4]
);
// orig 1
// mapped 2
// orig 2
// mapped 3
// orig 3
// mapped 4
// orig 4
// mapped 5
// [ 3, 5 ]
The struct
transducer is simply a composition of: partitionOf -> partition -> rename -> mapKeys
.
See code here.
// Higher-order transducer to convert linear input into structured objects
// using given field specs and ordering. A single field spec is an array of
// 2 or 3 items: `[name, size, transform?]`. If `transform` is given, it will
// be used to produce the final value for this field. In the example below,
// it is used to unwrap the ID field values, e.g. from `[0] => 0`
[...tx.iterator(
tx.struct([["id", 1, (id) => id[0]], ["pos", 2], ["vel", 2], ["color", 4]]),
[0, 100, 200, -1, 0, 1, 0.5, 0, 1, 1, 0, 0, 5, 4, 0, 0, 1, 1]) ]
// [ { color: [ 1, 0.5, 0, 1 ],
// vel: [ -1, 0 ],
// pos: [ 100, 200 ],
// id: 0 },
// { color: [ 0, 0, 1, 1 ],
// vel: [ 5, 4 ],
// pos: [ 0, 0 ],
// id: 1 } ]
tx.transduce(
tx.comp(
// split into rows
tx.mapcat(x => x.split("\n")),
// split each row
tx.map(x => x.split(",")),
// convert each row into object, rename array indices
tx.rename({ id: 0, name: 1, alias: 2, num: "length" })
),
tx.push(),
["100,typescript\n101,clojure,clj\n110,rust,rs"]
);
// [ { num: 2, name: 'typescript', id: '100' },
// { num: 3, alias: 'clj', name: 'clojure', id: '101' },
// { num: 3, alias: 'rs', name: 'rust', id: '110' } ]
// result is realized after max. 7 values, irrespective of nesting
tx.transduce(
tx.comp(tx.flatten(), tx.take(7)),
tx.push(),
[1, [2, [3, 4, [5, 6, [7, 8], 9, [10]]]]]
)
// [1, 2, 3, 4, 5, 6, 7]
// this transducer uses 2 scans (a scan = inner reducer per item)
// 1) counts incoming values
// 2) forms an array of the current counter value `x` & repeated `x` times
// 3) emits results as series of reductions in the outer array produced
// by the main reducer
// IMPORTANT: since arrays are mutable we use `pushCopy` as the inner reducer
// instead of `push` (the outer reducer)
xform = tx.comp(
tx.scan(tx.count()),
tx.map(x => [...tx.repeat(x,x)]),
tx.scan(tx.pushCopy())
);
tx.transduce(xform, tx.push(), [1, 1, 1, 1]);
// [ [ [ 1 ] ],
// [ [ 1 ], [ 2, 2 ] ],
// [ [ 1 ], [ 2, 2 ], [ 3, 3, 3 ] ],
// [ [ 1 ], [ 2, 2 ], [ 3, 3, 3 ], [ 4, 4, 4, 4 ] ] ]
// more simple & similar to previous, but without the 2nd xform step
tx.transduce(tx.comp(tx.scan(tx.count), tx.scan(tx.pushCopy)), tx.push(), [1,1,1,1])
// [ [ 1 ], [ 1, 2 ], [ 1, 2, 3 ], [ 1, 2, 3, 4 ] ]
This is a higher-order transducer, purely composed from other transducers. See code here.
src = [65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 33, 48, 49, 50, 51, 126, 122, 121, 120]
[...iterator(hexDump(8, 0x400), src)]
// [ '00000400 | 41 42 43 44 45 46 47 48 | ABCDEFGH',
// '00000408 | 49 4a 21 30 31 32 33 7e | IJ!0123~',
// '00000410 | 7a 79 78 00 00 00 00 00 | zyx.....' ]
[...tx.iterator(tx.bits(8), [ 0xf0, 0xaa ])]
// [ 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0 ]
[...tx.iterator(
tx.comp(
tx.bits(8),
tx.map(x=> x ? "#" : "."),
tx.partition(8),
tx.map(x=>x.join(""))
),
[ 0x00, 0x18, 0x3c, 0x66, 0x66, 0x7e, 0x66, 0x00 ])]
// [ '........',
// '...##...',
// '..####..',
// '.##..##.',
// '.##..##.',
// '.######.',
// '.##..##.',
// '........' ]
// add offset (0x80) to allow negative values to be encoded
// (URL safe result can be produced via opt arg to `base64Encode`)
enc = tx.transduce(
tx.comp(
tx.map(x => x + 0x80),
tx.base64Encode()
),
tx.str(),
tx.range(-8, 8)
);
// "eHl6e3x9fn+AgYKDhIWGhw=="
// remove offset again during decoding, but (for example) only decode while val < 0
[...tx.iterator(
tx.comp(
tx.base64Decode(),
tx.map(x => x - 0x80),
tx.takeWhile(x=> x < 0)
),
enc)]
// [ -8, -7, -6, -5, -4, -3, -2, -1 ]
buf = tx.transduce(
tx.comp(tx.utf8Encode(), tx.base64Encode()),
tx.str(),
"beer (🍺) or hot beverage (☕︎)"
);
// "YmVlciAo8J+Nuikgb3IgaG90IGJldmVyYWdlICjimJXvuI4p"
tx.transduce(tx.comp(tx.base64Decode(), tx.utf8Decode()), tx.str(), buf)
// "beer (🍺) or hot beverage (☕︎)"
tx.transduce(tx.take(10), tx.push(), tx.choices("abcd", [1, 0.5, 0.25, 0.125]))
// [ 'a', 'a', 'b', 'a', 'a', 'b', 'a', 'c', 'd', 'b' ]
tx.transduce(tx.take(1000), tx.frequencies(), tx.choices("abcd", [1, 0.5, 0.25, 0.125]))
// Map { 'c' => 132, 'a' => 545, 'b' => 251, 'd' => 72 }
Documentation is slowly forthcoming in the form of doc comments (incl. code examples) for a growing number the functions listed below. Please see source code for now.
Apart from type aliases, the only real types defined are:
Reducers are the core building blocks of transducers. Unlike other
implementations using OOP approaches, a Reducer
in this lib is a simple
3-element array of functions, each addressing a separate processing step.
Since v0.6.0 the bundled reducers are all wrapped in functions to provide a uniform API (and some of them can be preconfigured and/or are stateful closures). However, it's fine to define stateless reducers as constant arrays.
interface Reducer<A, B> extends Array<any> {
/**
* Initialization, e.g. to provide a suitable accumulator value,
* only called when no initial accumulator has been provided by user.
*/
[0]: () => A,
/**
* Completion. When called usually just returns `acc`, but stateful
* transformers should flush/apply their outstanding results.
*/
[1]: (acc: A) => A,
/**
* Reduction step. Combines new input with accumulator.
* If reduction should terminate early, wrap result via `reduced()`
*/
[2]: (acc: A, x: B) => A | Reduced<A>,
}
// A concrete example:
const push: Reducer<any[], any> = [
// init
() => [],
// completion (nothing to do in this case)
(acc) => acc,
// step
(acc, x) => (acc.push(x), acc),
];
partition
, partitionBy
, streamSort
, streamShuffle
are (examples of)
transducers making use of their 1-arity completing function.
class Reduced<T> implements IDeref<T> {
protected value: T;
constructor(val: T);
deref(): T;
}
Simple type wrapper to identify early termination of a reducer. Does not modify
wrapped value by injecting magic properties. Instances can be created via
reduced(x)
and handled via these helper functions:
From Rich Hickey's original definition:
A transducer is a transformation from one reducing function to another
As shown in the examples above, transducers can be dynamically composed (using
comp()
) to form arbitrary data transformation pipelines without causing large
overheads for intermediate collections.
type Transducer<A, B> = (rfn: Reducer<any, B>) => Reducer<any, A>;
// concrete example of stateless transducer (expanded for clarity)
function map<A, B>(fn: (x: A) => B): Transducer<A, B> {
return (rfn: Reducer<any, B>) => {
return [
() => rfn[0](),
(acc) => rfn[1](acc),
(acc, x: A) => rfn[2](acc, fn(x))
];
};
}
// stateful transducer
// removes successive value repetitions
function dedupe<T>(): Transducer<T, T> {
return (rfn: Reducer<any, T>) => {
// state initialization
let prev = {};
return [
() => rfn[0](),
(acc) => rfn[1](acc),
(acc, x) => {
acc = prev === x ? acc : rfn[2](acc, x);
prev = x;
return acc;
}
];
};
}
Returns new transducer composed from given transducers. Data flow is from left to right. Offers fast paths for up to 10 args. If more are given, composition is done dynamically via for loop.
Helper function to compose reducers.
Similar to transduce()
, but emits results as ES6 iterator (and hence doesn't
use a reduction function).
Reduces iterable using given reducer and optional initial accumulator/result.
Transforms iterable using given transducer and combines results with given reducer and optional initial accumulator/result.
multiplexObj<A, B>(xforms: IObjectOf<Transducer<A, any>>, rfn?: Reducer<B, [PropertyKey, any]>): Transducer<A, B>
groupBinary<T>(bits: number, key: (x: T) => number, branch?: () => IObjectOf<T[]>, leaf?: Reducer<any, T>, left?: PropertyKey, right?: PropertyKey): Reducer<any, T>
groupByObj<A, C>(key: (x: A) => PropertyKey, rfn?: Reducer<C, A>, init?: () => IObjectOf<C>): Reducer<IObjectOf<C>, A>
- Karsten Schmidt
© 2016-2018 Karsten Schmidt // Apache Software License 2.0