This project is part of the @thi.ng/umbrella monorepo.
Immutable, optimized and optionally typed path-based object property / array accessors with structural sharing.
STABLE - used in production
Search or submit any issues for this package
As part of a larger effort to enforce more consistent naming conventions
across various umbrella packages, all higher-order operators in this
package are now using the def
prefix: e.g. getterT()
=>
defGetter()
, setterT()
=> defSetter()
.
Type checked accessors are now the default and those functions expect
paths provided as tuples. To continue using string based paths (e.g.
"a.b.c"
), alternative Unsafe
versions are provided. E.g. getIn()
(type checked) vs. getInUnsafe()
(unchecked). Higher-order versions
also provide fallbacks (e.g. getter()
=> defGetterUnsafe()
).
Type checking for paths is currently "only" supported for the first 8
levels of nesting. Deeper paths are supported but only partially checked
and their value type inferred as any
.
yarn add @thi.ng/paths
// ES module
<script type="module" src="https://unpkg.com/@thi.ng/paths?module" crossorigin></script>
// UMD
<script src="https://unpkg.com/@thi.ng/paths/lib/index.umd.js" crossorigin></script>
Package sizes (gzipped, pre-treeshake): ESM: 1.18 KB / CJS: 1.29 KB / UMD: 1.25 KB
Several demos in this repo's /examples directory are using this package.
A selection:
Screenshot | Description | Live demo | Source |
---|---|---|---|
Using hdom in an Elm-like manner | Demo | Source | |
Event handling w/ interceptors and side effects | Demo | Source | |
Basic SPA example with atom-based UI router | Demo | Source | |
Minimal demo of using rstream constructs to form an interceptor-style event loop | Demo | Source | |
Obligatory to-do list example with undo/redo | Demo | Source | |
Triple store query results & sortable table | Demo | Source |
As stated in the breaking changes section, since
v4.0.0 paths are now type checked by default. These new functions use
Typescript generics to validate a given path against the type structure
of the target state object. Since string paths cannot be checked, only
path tuples are supported. Type checking & inference supports path
lengths up to 8 (i.e. levels of hierarchy) before reverting back to
any
for longer/deeper paths (there's no depth limit per se).
Due to missing type information of the not-yet-known state value, using
the typed checked higher-order versions (e.g. defGetter
, defSetter
etc.) is slightly more verbose compared to their immediate use,
first-order versions (e.g. getIn()
, setIn()
etc.), where everything
can be inferred directly. However, (re)using the HOF-constructed
accessors can be somewhat faster and more convenient... YMMV! More details below.
When accessing data structures with optional properties, not only the leaf value type targeted by a lookup path is important, but any intermediate optional properties need to be considered too. Furthermore, we need to distinguish between read (get) and write (update) use cases for correct type inference.
For example, given these types:
type Foo1 = { a: { b: { c?: number; } } };
type Foo2 = { a?: { b: { c: number; } } };
For get/read purposes the inferred type for c
will both be number | undefined
. Even though c
in Foo2
is not marked as optional, the a
property is optional and so attempting to lookup c
can yield
undefined
...
For set/update/write purposes, the type for c
is inferred verbatim.
I.e. if a property is marked as optional, a setter will allow
undefined
as new value as well.
The defGetter()
, defSetter()
and defUpdater()
functions compile a
lookup path tuple into an optimized function, operating directly at the
value the path points to in a nested object given later. For getters,
this essentially compiles to:
defGetter(["a","b","c"]) => (obj) => obj.a.b.c;
...with the important difference that the function returns undefined
if any intermediate values along the lookup path are undefined (and
doesn't throw an error).
For setters / updaters, the resulting function too accepts a single object (or array) to operate on and when called, immutably replaces the value at the given path, i.e. it produces a selective deep copy of obj up until given path. If any intermediate key is not present in the given object, it creates a plain empty object for that missing key and descends further along the path.
// define state structure (see above example)
interface State {
a: {
b?: number;
c: string[];
}
}
const state: State = { a: { b: 1, c: ["c1", "c2"] } };
// build type checked getter for `b` & `c`
const getB = defGetter<State, "a", "b">(["a", "b"]);
const getFirstC = defGetter<State, "a", "c", 0>(["a", "c", 0]);
const b = getB(state); // b inferred as `number | undefined`
const c1 = getFirstC(state); // c1 inferred as `string`
Paths can also be defined as dot-separated strings, however cannot be
type checked and MUST use the Unsafe
version of each operation:
s = defSetterUnsafe("a.b.c");
s({ a: { b: { c: 23 } } }, 24)
// { a: { b: { c: 24 } } }
s({ x: 23 }, 24)
// { x: 23, a: { b: { c: 24 } } }
s(null, 24)
// { a: { b: { c: 24 } } }
Nested value updaters follow a similar pattern, but also take a user supplied function to apply to the existing value (incl. any other arguments passed):
type State = { a?: { b?: number; } };
const inc = defUpdater<State, "a", "b">(
["a","b"],
// x inferred as number | undefined
(x) => x !== undefined ? x + 1 : 1
);
inc({ a: { b: 10 } });
// { a: { b: 11 } }
inc({});
// { a: { b: 1 } }
// with additional arguments
add = defUpdater("a.b", (x, n) => x + n);
add({a: {b: 10}}, 13);
// { a: { b: 23 } }
In addition to these higher-order functions, the module also provides
immediate-use wrappers: getIn()
, setIn()
, updateIn()
and
deleteIn()
. These functions are using defGetter
/ defSetter
internally, so come with the same contracts/disclaimers...
const state = { a: { b: { c: 23 } } };
const cPath = <const>["a", "b", "c"];
getIn(state, cPath)
// 23
setIn(state, cPath, 24)
// { a: { b: { c: 24 } } }
// apply given function to path value
// Note: New `c` is 24, since above `setIn()` didn't mutate orig
updateIn(state, cPath, (x) => x + 1)
// { a: { b: { c: 24 } } }
// immutably remove path key
deleteIn(state, cPath)
// { a: { b: {} } }
Since deleteIn
immutably removes a key from the given state object, it
also returns a new type from which the key has been explicitly removed.
Those return types come in the form of Without{1-8}<...>
interfaces.
// again using `state` from above example
// remove nested key `a.c`
const state2 = deleteIn(state, ["a","b","c"]);
// compile error: "Property `c` does not exist`
state2.a.b.c;
Mainly a potential concern for the non-typechecked versions - currently,
none of the setter/update/mutation functions explicitly disallow
updating an object's __proto__
property. However, the package provides
the isProtoPath()
and disallowProtoPath()
helpers which can & should be
used in conjunction with the setters in situations where it's advisable
to do so.
setIn({}, disallowProtoPath("__proto__.foo", true));
// Uncaught Error: unsafe path: '__proto__.foo'
Only keys in the path will be updated, all other keys present in the
given object retain their original/identical values to provide efficient
structural sharing / re-use. This is the same behavior as in Clojure's
immutable maps or those provided by ImmutableJS (albeit those
implementation are completely different - they're using trees, we're
using the ES6 spread op (for objects, slice()
for arrays) and dynamic
functional composition to produce the setter/updater).
const s = defSetterUnsafe("a.b.c");
// original
const a = { x: { y: { z: 1 } }, u: { v: 2 } };
// updated version
const b = s(a, 3);
// { x: { y: { z: 1 } }, u: { v: 2 }, a: { b: { c: 3 } } }
// verify anything under keys `x` & `u` is still identical
a.x === b.x // true
a.x.y === b.x.y // true
a.u === b.u; // true
defMutator()
/defMutatorUnsafe()
are the mutable alternatives to
defSetter()
/defSetterUnsafe()
. Each returns a function, which when
called, mutates given object / array at given path location and bails if
any intermediate path values are non-indexable (only the very last path
element can be missing in the actual target object structure). If
successful, returns original (mutated) object, else undefined
. This
function too provides optimized versions for path lengths <= 4.
As with setIn
, mutIn
is the immediate use mutator, i.e. the same as:
defMutator(path)(state, val)
.
mutIn({ a: { b: [10, 20] } }, ["a", "b", 1], 23);
// or
mutInUnsafe({ a: { b: [10, 20] } }, "a.b.1", 23);
// { a: { b: [ 10, 23 ] } }
// no-op (because of missing path structure in target object)
mutInUnsafe({}, "a.b.c", 23);
// undefined
The exists()
function takes an arbitrary object and lookup path
(string or tuple). Descends into object along path and returns true if
the full path exists (even if final leaf value is null
or
undefined
). Checks are performed using hasOwnProperty()
.
exists({ a: { b: { c: [null] } } }, "a.b.c.0");
// true
exists({ a: { b: { c: [null] } } }, "a.b.c.1");
// false
Karsten Schmidt
© 2016 - 2020 Karsten Schmidt // Apache Software License 2.0