Skip to content

Latest commit

 

History

History

random

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

random

npm version npm downloads Twitter Follow

This project is part of the @thi.ng/umbrella monorepo.

About

Pseudo-random number generators w/ unified API, distributions, weighted choices, ID generation.

This package provides the IRandom interface and various (mostly seedable) pseudo-random number generator implementations, incl. IRandom wrappers for Math.random() and window.crypto:

Partially ported from C implementations taken from c.thi.ng.

Random distributions

Other utilities

Status

STABLE - used in production

Search or submit any issues for this package

Related packages

  • @thi.ng/ksuid - Configurable K-sortable unique identifiers, binary & base-N encoded

Installation

yarn add @thi.ng/random
// ES module
<script type="module" src="https://unpkg.com/@thi.ng/random?module" crossorigin></script>

// UMD
<script src="https://unpkg.com/@thi.ng/random/lib/index.umd.js" crossorigin></script>

Package sizes (gzipped, pre-treeshake): ESM: 1.66 KB / CJS: 1.79 KB / UMD: 1.77 KB

Dependencies

Usage examples

Several demos in this repo's /examples directory are using this package.

A selection:

Screenshot Description Live demo Source
Probabilistic color theme generator Demo Source
Interactive inverse FFT toy synth Demo Source
Interactive pixel sorting tool using thi.ng/color & thi.ng/pixel Demo Source
Evolutionary shader generation using genetic programming Demo Source

API

Generated API docs

import { Smush32 } from "@thi.ng/random";

const rnd = new Smush32(0xdecafbad);

// the following methods are available for all generators

// next uint (0 .. 2^32-1)
rnd.int()
// 4022849029

// next float [0.0 .. 1.0)
rnd.float()
// 0.2698542904737066

// next normalized float (w/ opt scale)
// [-scale .. +scale)
rnd.norm(100)
// 57.70723665079737

// next float in given interval [min .. max)
rnd.minmax(10, 20)
// 15.295951807707537

// next gaussian (using iterative CLT approach)
// optional params: num samples, offset, scale
rnd.gaussian()
// 0.10632886109089679

Authors

Karsten Schmidt

If this project contributes to an academic publication, please cite it as:

@misc{thing-random,
  title = "@thi.ng/random",
  author = "Karsten Schmidt",
  note = "https://thi.ng/random",
  year = 2015
}

License

© 2015 - 2021 Karsten Schmidt // Apache Software License 2.0