Skip to content

Commit

Permalink
Add new backend comparison benchmark (tracel-ai#958)
Browse files Browse the repository at this point in the history
* Add new benchmark

* Remove bad comment

* Add more gelu
  • Loading branch information
nathanielsimard authored Nov 16, 2023
1 parent c0859dd commit 945014b
Show file tree
Hide file tree
Showing 2 changed files with 120 additions and 0 deletions.
4 changes: 4 additions & 0 deletions backend-comparison/Cargo.toml
Original file line number Diff line number Diff line change
Expand Up @@ -47,3 +47,7 @@ harness = false
[[bench]]
name = "data"
harness = false

[[bench]]
name = "custom_gelu"
harness = false
116 changes: 116 additions & 0 deletions backend-comparison/benches/custom_gelu.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,116 @@
use burn::tensor::{backend::Backend, Distribution, Shape, Tensor};
use burn_common::benchmark::{run_benchmark, Benchmark};
use core::f64::consts::SQRT_2;
use derive_new::new;

#[derive(Debug)]
enum GeluKind {
Reference,
WithReferenceErf,
WithCustomErf,
}

/// Benchmark how well a backend executes a custom activation function with a lot of basic tensor
/// operations.
#[derive(new)]
struct CustomGeluBenchmark<B: Backend, const D: usize> {
shape: Shape<D>,
num_repeats: usize,
device: B::Device,
kind: GeluKind,
}

impl<B: Backend, const D: usize> Benchmark for CustomGeluBenchmark<B, D> {
type Args = Tensor<B, D>;

fn name(&self) -> String {
format!("Gelu {:?}", self.kind)
}

fn execute(&self, args: Self::Args) {
for _ in 0..self.num_repeats {
match self.kind {
GeluKind::Reference => burn::tensor::activation::gelu(args.clone()),
GeluKind::WithReferenceErf => gelu_custom(args.clone(), Tensor::erf),
GeluKind::WithCustomErf => gelu_custom(args.clone(), erf_custom),
};
}
}

fn prepare(&self) -> Self::Args {
Tensor::random_device(self.shape.clone(), Distribution::Default, &self.device)
}

fn sync(&self) {
B::sync(&self.device)
}
}

fn gelu_custom<B, const D: usize, Erf>(x: Tensor<B, D>, erf: Erf) -> Tensor<B, D>
where
B: Backend,
Erf: Fn(Tensor<B, D>) -> Tensor<B, D>,
{
let x = x.clone() * (erf(x / SQRT_2) + 1);
let result = x / 2;

result
}

fn erf_custom<B: Backend, const D: usize>(x: Tensor<B, D>) -> Tensor<B, D> {
let x1 = -erf_positive(-x.clone());
let x2 = erf_positive(x.clone());
let mask = x.greater_elem(0);

x1.mask_where(mask, x2)
}

/// An approximation of the error function: https://en.wikipedia.org/wiki/Error_function#Numerical_approximations
///
/// > (maximum error: 1.5×10−7)
/// > All of these approximations are valid for x ≥ 0. To use these approximations for negative x, use the fact that erf x is an odd function, so erf x = −erf(−x).
fn erf_positive<B: Backend, const D: usize>(x: Tensor<B, D>) -> Tensor<B, D> {
let p = 0.3275911;
let a1 = 0.254829592;
let a2 = -0.284496736;
let a3 = 1.421413741;
let a4 = -1.453152027;
let a5 = 1.061405429;

let x1 = x.clone().abs() * p + 1;
let t = x1.recip();
let tmp = (((((t.clone() * a5) + a4) * t.clone()) + a3) * t.clone() + a2) * t.clone() + a1;

return -(tmp * t * (-x.clone() * x).exp()) + 1.0;
}

#[allow(dead_code)]
fn bench<B: Backend>(device: &B::Device) {
const D: usize = 3;
let shape: Shape<D> = [32, 512, 2048].into();
let num_repeats = 1;

println!("Backend {}", B::name());
run_benchmark(CustomGeluBenchmark::<B, D>::new(
shape.clone(),
num_repeats,
device.clone(),
GeluKind::Reference,
));
run_benchmark(CustomGeluBenchmark::<B, D>::new(
shape.clone(),
num_repeats,
device.clone(),
GeluKind::WithReferenceErf,
));
run_benchmark(CustomGeluBenchmark::<B, D>::new(
shape,
num_repeats,
device.clone(),
GeluKind::WithCustomErf,
));
}

fn main() {
backend_comparison::bench_on_backend!();
}

0 comments on commit 945014b

Please sign in to comment.