Skip to content

Commit

Permalink
feature(norm): Add GroupNorm (tracel-ai#963)
Browse files Browse the repository at this point in the history
* Add GroupNorm

* Fix implemenation and add tests

* Address PR comments

* Fix formatting

* Update burn book
  • Loading branch information
dcvz authored Nov 21, 2023
1 parent 4711db0 commit 88b4420
Show file tree
Hide file tree
Showing 3 changed files with 255 additions and 0 deletions.
1 change: 1 addition & 0 deletions burn-book/src/building-blocks/module.md
Original file line number Diff line number Diff line change
Expand Up @@ -111,6 +111,7 @@ Burn comes with built-in modules that you can use to build your own modules.
| ----------- | --------------------------------------- |
| `BatchNorm` | `nn.BatchNorm1d`, `nn.BatchNorm2d` etc. |
| `LayerNorm` | `nn.LayerNorm` |
| `GroupNorm` | `nn.GroupNorm` |
| `Dropout` | `nn.Dropout` |
| `GELU` | `nn.GELU` |
| `Linear` | `nn.Linear` |
Expand Down
252 changes: 252 additions & 0 deletions burn-core/src/nn/norm/group.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,252 @@
use crate as burn;

use crate::config::Config;
use crate::module::Module;
use crate::module::Param;
use crate::tensor::backend::Backend;
use crate::tensor::Tensor;

/// Configuration to create a [GroupNorm](GroupNorm) layer.
#[derive(Config)]
pub struct GroupNormConfig {
/// The number of groups to separate the channels into
num_groups: usize,
/// The number of channels expected in the input
num_channels: usize,
/// A value required for numerical stability. Default: 1e-5
#[config(default = 1e-5)]
epsilon: f64,
/// A boolean value that when set to `true`, this module has learnable
/// per-channel affine parameters initialized to ones (for weights)
/// and zeros (for biases). Default: `true`
#[config(default = true)]
affine: bool,
}

/// Applies Group Normalization over a mini-batch of inputs.
///
/// `Y = groupnorm(X) * γ + β`
#[derive(Module, Debug)]
pub struct GroupNorm<B: Backend> {
num_groups: usize,
num_channels: usize,
gamma: Option<Param<Tensor<B, 1>>>,
beta: Option<Param<Tensor<B, 1>>>,
epsilon: f64,
affine: bool,
}

impl GroupNormConfig {
/// Initialize a new [group norm](GroupNorm) module.
pub fn init<B: Backend>(&self) -> GroupNorm<B> {
assert_eq!(
self.num_channels % self.num_groups,
0,
"The number of channels must be divisible by the number of groups"
);

let (gamma, beta) = if self.affine {
let gamma = Tensor::ones([self.num_channels]).into();
let beta = Tensor::zeros([self.num_channels]).into();

(Some(gamma), Some(beta))
} else {
(None, None)
};

GroupNorm {
num_groups: self.num_groups,
num_channels: self.num_channels,
gamma,
beta,
epsilon: self.epsilon,
affine: self.affine,
}
}

/// Initialize a new [group norm](GroupNorm) module with a [record](GroupNormRecord).
pub fn init_with<B: Backend>(&self, record: GroupNormRecord<B>) -> GroupNorm<B> {
GroupNorm {
num_groups: self.num_groups,
num_channels: self.num_channels,
gamma: record.gamma,
beta: record.beta,
epsilon: self.epsilon,
affine: self.affine,
}
}
}

impl<B: Backend> GroupNorm<B> {
/// Applies the forward pass on the input tensor.
///
/// # Shapes
///
/// - input: `[..., any, d_model]`
/// - output: `[..., any, d_model]`
pub fn forward<const D: usize>(&self, input: Tensor<B, D>) -> Tensor<B, D> {
let shape = input.shape();
if shape.num_elements() <= 2 {
panic!(
"input rank for GroupNorm should be at least 3, but got {}",
shape.num_elements()
);
}

let batch_size = shape.dims[0];
let num_channels = shape.dims[1];

if num_channels != self.num_channels {
panic!(
"expected {} channels but got {}",
self.num_channels, num_channels
);
}

let hidden_size =
shape.dims[2..].iter().product::<usize>() * num_channels / self.num_groups;
let input = input.reshape([batch_size, self.num_groups, hidden_size]);

let mean = input.clone().sum_dim(2) / hidden_size as f64;
let var = input.clone().sqrt().sum_dim(2) / hidden_size as f64;
let input_normalized = input.sub(mean).div(var.sqrt().add_scalar(self.epsilon));

if self.affine {
let mut affine_shape = [1; D];
affine_shape[1] = num_channels;

input_normalized
.reshape(shape)
.mul(self.gamma.clone().unwrap().val().reshape(affine_shape))
.add(self.beta.clone().unwrap().val().reshape(affine_shape))
} else {
input_normalized.reshape(shape)
}
}
}

#[cfg(test)]
mod tests {
use super::*;
use crate::TestBackend;
use burn_tensor::Data;

#[test]
fn group_norm_forward_affine_false() {
let module = GroupNormConfig::new(2, 6)
.with_affine(false)
.init::<TestBackend>();

assert!(module.gamma.is_none());
assert!(module.beta.is_none());

let input = Tensor::from_data(Data::from([
[
[-0.3034f32, 0.2726, -0.9659],
[-1.1845, -1.3236, 0.0172],
[1.9507, 1.2554, -0.8625],
[1.0682, 0.3604, 0.3985],
[-0.4957, -0.4461, -0.9721],
[1.5157, -0.1546, -0.5596],
],
[
[-1.6698, -0.4040, -0.7927],
[0.3736, -0.0975, -0.1351],
[-0.9461, 0.5461, -0.6334],
[-1.0919, -0.1158, 0.1213],
[-0.9535, 0.1281, 0.4372],
[-0.2845, 0.3488, 0.5641],
],
]));

let output = module.forward(input);

output.to_data().assert_approx_eq(
&Data::from([
[
[-0.1653, 0.3748, -0.7866],
[-0.9916, -1.1220, 0.1353],
[1.9485, 1.2965, -0.6896],
[1.2769, 0.3628, 0.4120],
[-0.7427, -0.6786, -1.3578],
[1.8547, -0.3022, -0.8252],
],
[
[-1.9342, 0.0211, -0.5793],
[1.2223, 0.4945, 0.4365],
[-0.8163, 1.4887, -0.3333],
[-1.7960, -0.0392, 0.3875],
[-1.5469, 0.3998, 0.9561],
[-0.3428, 0.7970, 1.1845],
],
]),
3,
);
}

#[test]
fn group_norm_forward_affine_true() {
let module = GroupNormConfig::new(3, 6)
.with_affine(true)
.init::<TestBackend>();

module
.gamma
.as_ref()
.expect("Gamma is None")
.val()
.to_data()
.assert_approx_eq(&Data::ones([6].into()), 3);

module
.beta
.as_ref()
.expect("beta is None")
.val()
.to_data()
.assert_approx_eq(&Data::zeros([6]), 3);

let input = Tensor::from_data(Data::from([
[
[-0.3034f32, 0.2726, -0.9659],
[-1.1845, -1.3236, 0.0172],
[1.9507, 1.2554, -0.8625],
[1.0682, 0.3604, 0.3985],
[-0.4957, -0.4461, -0.9721],
[1.5157, -0.1546, -0.5596],
],
[
[-1.6698, -0.4040, -0.7927],
[0.3736, -0.0975, -0.1351],
[-0.9461, 0.5461, -0.6334],
[-1.0919, -0.1158, 0.1213],
[-0.9535, 0.1281, 0.4372],
[-0.2845, 0.3488, 0.5641],
],
]));

let output = module.forward(input);

output.to_data().assert_approx_eq(
&Data::from([
[
[0.4560, 1.4014, -0.6313],
[-0.9901, -1.2184, 0.9822],
[1.4254, 0.6360, -1.7682],
[0.4235, -0.3800, -0.3367],
[-0.3890, -0.3268, -0.9862],
[2.1325, 0.0386, -0.4691],
],
[
[-1.8797, 0.0777, -0.5234],
[1.2802, 0.5517, 0.4935],
[-1.0102, 1.5327, -0.4773],
[-1.2587, 0.4047, 0.8088],
[-1.9074, 0.1691, 0.7625],
[-0.6230, 0.5928, 1.0061],
],
]),
3,
);
}
}
2 changes: 2 additions & 0 deletions burn-core/src/nn/norm/mod.rs
Original file line number Diff line number Diff line change
@@ -1,5 +1,7 @@
mod batch;
mod group;
mod layer;

pub use batch::*;
pub use group::*;
pub use layer::*;

0 comments on commit 88b4420

Please sign in to comment.