Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[DRAFT] Add support gradient cache for Reranker #148

Open
wants to merge 17 commits into
base: main
Choose a base branch
from
Prev Previous commit
Next Next commit
fix: trainer
  • Loading branch information
sigridjineth committed Aug 24, 2024
commit 70d65ab3f4849b87a3ca20859d7a03bc14883428
17 changes: 3 additions & 14 deletions src/tevatron/reranker/driver/train.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,10 +7,8 @@
HfArgumentParser,
set_seed,
)
from transformers import TrainingArguments

from tevatron.reranker.arguments import ModelArguments, DataArguments, \
TevatronTrainingArguments
from tevatron.reranker.arguments import ModelArguments, DataArguments, TevatronTrainingArguments
from tevatron.reranker.modeling import RerankerModel
from tevatron.reranker.dataset import RerankerTrainDataset
from tevatron.reranker.collator import RerankerTrainCollator
Expand All @@ -22,17 +20,9 @@ def main():
parser = HfArgumentParser((ModelArguments, DataArguments, TevatronTrainingArguments))

if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
model_args, data_args, training_args, tevatron_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args, tevatron_args = parser.parse_args_into_dataclasses()
model_args: ModelArguments
data_args: DataArguments
training_args: TrainingArguments
tevatron_args: TevatronTrainingArguments

# Combine TrainingArguments and TevatronTrainingArguments
for key, value in vars(tevatron_args).items():
setattr(training_args, key, value)
model_args, data_args, training_args = parser.parse_args_into_dataclasses()

if (
os.path.exists(training_args.output_dir)
Expand Down Expand Up @@ -60,7 +50,6 @@ def main():
)
logger.info("Training/evaluation parameters %s", training_args)
logger.info("MODEL parameters %s", model_args)
logger.info("Tevatron parameters %s", tevatron_args)

set_seed(training_args.seed)

Expand Down