Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: Improve other bounds using PFR 9 #232

Merged
merged 4 commits into from
Nov 19, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
15 changes: 8 additions & 7 deletions PFR/ApproxHomPFR.lean
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@ import Mathlib.Analysis.Normed.Lp.PiLp
import Mathlib.Analysis.InnerProductSpace.PiL2
import LeanAPAP.Extras.BSG
import PFR.HomPFR
import PFR.RhoFunctional

/-!
# The approximate homomorphism form of PFR
Expand All @@ -28,10 +29,10 @@ variable {G G' : Type*} [AddCommGroup G] [Fintype G] [AddCommGroup G'] [Fintype
Let $f : G \to G'$ be a function, and suppose that there are at least
$|G|^2 / K$ pairs $(x,y) \in G^2$ such that $$ f(x+y) = f(x) + f(y).$$
Then there exists a homomorphism $\phi : G \to G'$ and a constant $c \in G'$ such that
$f(x) = \phi(x)+c$ for at least $|G| / (2 ^ {172} * K ^ {146})$ values of $x \in G$. -/
$f(x) = \phi(x)+c$ for at least $|G| / (2 ^ {144} * K ^ {122})$ values of $x \in G$. -/
theorem approx_hom_pfr (f : G → G') (K : ℝ) (hK : K > 0)
(hf : Nat.card G ^ 2 / K ≤ Nat.card {x : G × G | f (x.1 + x.2) = f x.1 + f x.2}) :
∃ (φ : G →+ G') (c : G'), Nat.card {x | f x = φ x + c} ≥ Nat.card G / (2 ^ 172 * K ^ 146) := by
∃ (φ : G →+ G') (c : G'), Nat.card {x | f x = φ x + c} ≥ Nat.card G / (2 ^ 144 * K ^ 122) := by
let A := (Set.univ.graphOn f).toFinite.toFinset
have hA : #A = Nat.card G := by rw [Set.Finite.card_toFinset]; simp [← Nat.card_eq_fintype_card]
have hA_nonempty : A.Nonempty := by simp [-Set.Finite.toFinset_setOf, A]
Expand Down Expand Up @@ -64,7 +65,7 @@ theorem approx_hom_pfr (f : G → G') (K : ℝ) (hK : K > 0)
replace : Nat.card (A'' + A'') ≤ 2 ^ 14 * K ^ 12 * Nat.card A'' := by
rewrite [← this, hA''_coe]
simpa [← pow_mul] using hA'2
obtain ⟨H, c, hc_card, hH_le, hH_ge, hH_cover⟩ := PFR_conjecture_improv_aux hA''_nonempty this
obtain ⟨H, c, hc_card, hH_le, hH_ge, hH_cover⟩ := better_PFR_conjecture_aux hA''_nonempty this
clear hA'2 hA''_coe hH_le hH_ge
obtain ⟨H₀, H₁, φ, hH₀H₁, hH₀H₁_card⟩ := goursat H

Expand Down Expand Up @@ -168,7 +169,7 @@ theorem approx_hom_pfr (f : G → G') (K : ℝ) (hK : K > 0)
· positivity
· rewrite [Nat.cast_pos, Finset.card_pos, Set.Finite.toFinset_nonempty _]
exact h_nonempty
rw [show 146 = 2 + 144 by norm_num, show 172 = 4 + 168 by norm_num, pow_add, pow_add,
rw [show 122 = 2 + 120 by norm_num, show 144 = 4 + 140 by norm_num, pow_add, pow_add,
mul_mul_mul_comm]
gcongr
rewrite [← c.toFinite.toFinset_prod (H₁ : Set G').toFinite, Finset.card_product]
Expand All @@ -178,17 +179,17 @@ theorem approx_hom_pfr (f : G → G') (K : ℝ) (hK : K > 0)
refine (mul_le_mul_of_nonneg_right hc_card (by positivity)).trans ?_
rewrite [mul_div_left_comm, mul_assoc]
refine (mul_le_mul_of_nonneg_right hc_card (by positivity)).trans_eq ?_
rw [mul_assoc ((_ * _)^6), mul_mul_mul_comm, mul_comm (_ ^ (1/2) * _), mul_comm_div,
rw [mul_assoc ((_ * _)^5), mul_mul_mul_comm, mul_comm (_ ^ (1/2) * _), mul_comm_div,
← mul_assoc _ (_^_) (_^_), mul_div_assoc, mul_mul_mul_comm _ (_^_) (_^_),
← mul_div_assoc, mul_assoc _ (_^(1/2)) (_^(1/2)),
← Real.rpow_add (Nat.cast_pos.mpr Nat.card_pos), add_halves, Real.rpow_one,
← Real.rpow_add (Nat.cast_pos.mpr Nat.card_pos), add_halves, Real.rpow_neg_one,
mul_comm _ (_ / _), mul_assoc (_^6)]
mul_comm _ (_ / _), mul_assoc (_^5)]
conv => { lhs; rhs; rw [← mul_assoc, ← mul_div_assoc, mul_comm_div, mul_div_assoc] }
rw [div_self <| Nat.cast_ne_zero.mpr (Nat.ne_of_lt Nat.card_pos).symm, mul_one]
rw [mul_inv_cancel₀ <| Nat.cast_ne_zero.mpr (Nat.ne_of_lt Nat.card_pos).symm, one_mul, ← sq,
← Real.rpow_two, ← Real.rpow_mul (by positivity), Real.mul_rpow (by positivity) (by positivity)]
have : K ^ (12 : ℕ) = K ^ (12 : ℝ) := (Real.rpow_natCast K 12).symm
rw [this, ← Real.rpow_mul (by positivity)]
norm_num
exact Real.rpow_natCast K 144
exact Real.rpow_natCast K 120
15 changes: 8 additions & 7 deletions PFR/HomPFR.lean
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@ import Mathlib.Data.Set.Card
import PFR.Mathlib.LinearAlgebra.Basis.VectorSpace
import PFR.Mathlib.SetTheory.Cardinal.Finite
import PFR.ImprovedPFR
import PFR.RhoFunctional

/-!
# The homomorphism form of PFR
Expand All @@ -16,7 +17,7 @@ few values.
abelian 2-groups.
* `homomorphism_pfr` : If $f : G → G'$ is a map between finite abelian elementary 2-groups such
that $f(x+y)-f(x)-f(y)$ takes at most $K$ values, then there is a homomorphism $\phi: G \to G'$
such that $f(x)-\phi(x)$ takes at most $K^{12}$ values.
such that $f(x)-\phi(x)$ takes at most $K^{10}$ values.
-/

open Set
Expand Down Expand Up @@ -64,9 +65,9 @@ open Set Fintype
/-- Let $f: G \to G'$ be a function, and let $S$ denote the set
$$ S := \{ f(x+y)-f(x)-f(y): x,y \in G \}.$$
Then there exists a homomorphism $\phi: G \to G'$ such that
$$ |\{f(x) - \phi(x)\}| \leq |S|^{12}. $$ -/
$$ |\{f(x) - \phi(x)\}| \leq |S|^{10}. $$ -/
theorem homomorphism_pfr (f : G → G') (S : Set G') (hS : ∀ x y : G, f (x+y) - (f x) - (f y) ∈ S) :
∃ (φ : G →+ G') (T : Set G'), Nat.card T ≤ Nat.card S ^ 12 ∧ ∀ x : G, (f x) - (φ x) ∈ T := by
∃ (φ : G →+ G') (T : Set G'), Nat.card T ≤ Nat.card S ^ 10 ∧ ∀ x : G, (f x) - (φ x) ∈ T := by
classical
have : 0 < Nat.card G := Nat.card_pos
let A := univ.graphOn f
Expand All @@ -88,7 +89,7 @@ theorem homomorphism_pfr (f : G → G') (S : Set G') (hS : ∀ x y : G, f (x+y)
norm_cast
exact (Nat.card_mono (toFinite B) hAB).trans hB_card
have hA_nonempty : A.Nonempty := by simp [A]
obtain ⟨H, c, hcS, -, -, hAcH⟩ := PFR_conjecture_improv_aux hA_nonempty hA_le
obtain ⟨H, c, hcS, -, -, hAcH⟩ := better_PFR_conjecture_aux hA_nonempty hA_le
have : 0 < Nat.card c := by
have : c.Nonempty := by
by_contra! H
Expand Down Expand Up @@ -139,7 +140,7 @@ theorem homomorphism_pfr (f : G → G') (S : Set G') (hS : ∀ x y : G, f (x+y)
congr! 3 with a
rw [← range, ← range, ← graphOn_univ_eq_range, ← graphOn_univ_eq_range, vadd_graphOn_univ]
refine ⟨φ, T, ?_, ?_⟩
· have : (Nat.card T : ℝ) ≤ (Nat.card S : ℝ) ^ (12 : ℝ) := by calc
· have : (Nat.card T : ℝ) ≤ (Nat.card S : ℝ) ^ (10 : ℝ) := by calc
(Nat.card T : ℝ) ≤ Nat.card (c + {(0 : G)} ×ˢ (H₁ : Set G')) := by
norm_cast; apply Nat.card_image_le (toFinite _)
_ ≤ Nat.card c * Nat.card H₁ := by
Expand All @@ -148,9 +149,9 @@ theorem homomorphism_pfr (f : G → G') (S : Set G') (hS : ∀ x y : G, f (x+y)
rw [Set.card_singleton_prod] ; rfl
_ ≤ Nat.card c * ((Nat.card H / Nat.card A) * Nat.card c) := by gcongr
_ = Nat.card c ^ 2 * (Nat.card H / Nat.card A) := by ring
_ ≤ (Nat.card S ^ (6 : ℝ) * Nat.card A ^ (1 / 2 : ℝ) * Nat.card H ^ (-1 / 2 : ℝ)) ^ 2
_ ≤ (Nat.card S ^ (5 : ℝ) * Nat.card A ^ (1 / 2 : ℝ) * Nat.card H ^ (-1 / 2 : ℝ)) ^ 2
* (Nat.card H / Nat.card A) := by gcongr
_ = (Nat.card S : ℝ) ^ (12 : ℝ) := by
_ = (Nat.card S : ℝ) ^ (10 : ℝ) := by
rw [← Real.rpow_two, div_eq_mul_inv, div_eq_mul_inv, div_eq_mul_inv]
have : 0 < Nat.card S := by
have : S.Nonempty := ⟨f (0 + 0) - f 0 - f 0, hS 0 0⟩
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,21 @@
import Mathlib.LinearAlgebra.Dimension.FreeAndStrongRankCondition
import PFR.Mathlib.SetTheory.Cardinal.Arithmetic

open Cardinal Module Module Set Submodule

universe u v

variable {K : Type u} {V : Type v} [Ring K] [StrongRankCondition K]
[AddCommGroup V] [Module K V] [Module.Free K V] [Module.Finite K V]

variable (K V) in
theorem cardinal_le_aleph0_of_finiteDimensional [h : Countable K] :
#V ≤ ℵ₀ := by
rw [← lift_le_aleph0.{v, u}, lift_cardinal_mk_eq_lift_cardinal_mk_field_pow_lift_rank K V]
apply power_le_aleph0 (lift_le_aleph0.mpr (mk_le_aleph0_iff.mpr h))
(lift_lt_aleph0.mpr (rank_lt_aleph0 K V))

variable (K V) in
theorem countable_of_finiteDimensional [h : Countable K] : Countable V := by
have : #V ≤ ℵ₀ := cardinal_le_aleph0_of_finiteDimensional K V
exact mk_le_aleph0_iff.mp this
14 changes: 14 additions & 0 deletions PFR/Mathlib/SetTheory/Cardinal/Arithmetic.lean
Original file line number Diff line number Diff line change
@@ -0,0 +1,14 @@
import Mathlib.SetTheory.Cardinal.Arithmetic

universe u

open Function Set Cardinal Equiv Order Ordinal


/- Put just after `power_nat_eq` -/
theorem power_le_aleph0 {a b : Cardinal.{u}} (ha : a ≤ ℵ₀) (hb : b < ℵ₀) : a ^ b ≤ ℵ₀ := by
rcases lt_aleph0.1 hb with ⟨n, rfl⟩
have : a ^ (n : Cardinal.{u}) ≤ ℵ₀ ^ (n : Cardinal.{u}) := power_le_power_right ha
apply this.trans
simp only [power_natCast]
exact power_nat_le le_rfl
26 changes: 18 additions & 8 deletions PFR/WeakPFR.lean
Original file line number Diff line number Diff line change
@@ -1,6 +1,8 @@
import Mathlib.LinearAlgebra.Dimension.FreeAndStrongRankCondition
import Mathlib.LinearAlgebra.FreeModule.PID
import Mathlib.MeasureTheory.Constructions.SubmoduleQuotient
import PFR.Mathlib.Data.Set.Pointwise.SMul
import PFR.Mathlib.LinearAlgebra.Dimension.FreeAndStrongRankCondition
import PFR.ForMathlib.AffineSpaceDim
import PFR.ForMathlib.Entropy.RuzsaSetDist
import PFR.ForMathlib.GroupQuot
Expand Down Expand Up @@ -599,10 +601,10 @@ variable [Module.Finite ℤ G]
is a canonical isomorphism between H⧸H' and G⧸N, where N is the preimage of H' in G. A bit clunky;
may be a better way to do this -/
lemma third_iso {G : Type*} [AddCommGroup G] {G₂ : AddSubgroup G} (H' : AddSubgroup (G ⧸ G₂)) :
let H := G ⧸ G₂
let φ : G →+ H := mk' G₂
let N := AddSubgroup.comap φ H'
∃ e : H ⧸ H' ≃+ G ⧸ N, ∀ x : G, e (mk' H' (φ x))= mk' N x := by
let H := G ⧸ G₂
let φ : G →+ H := mk' G₂
let N := AddSubgroup.comap φ H'
∃ e : H ⧸ H' ≃+ G ⧸ N, ∀ x : G, e (mk' H' (φ x)) = mk' N x := by
set H := G ⧸ G₂
let φ : G →+ H := mk' G₂
let N := AddSubgroup.comap φ H'
Expand All @@ -624,7 +626,7 @@ lemma third_iso {G : Type*} [AddCommGroup G] {G₂ : AddSubgroup G} (H' : AddSub
convert (quotientQuotientEquivQuotientAux_mk_mk _ _ h1 x) using 1

lemma single {Ω : Type*} [MeasurableSpace Ω] [DiscreteMeasurableSpace Ω] (μ : Measure Ω)
[IsProbabilityMeasure μ] {A : Set Ω} {z : Ω} (hA : μ.real A = 1) (hz : μ.real {z} > 0) :
[IsProbabilityMeasure μ] {A : Set Ω} {z : Ω} (hA : μ.real A = 1) (hz : 0 < μ.real {z}) :
z ∈ A := by
contrapose! hz
have : Disjoint {z} A := by simp [hz]
Expand Down Expand Up @@ -1087,16 +1089,24 @@ lemma weak_PFR {A : Set G} [Finite A] {K : ℝ} (hA : A.Nonempty) (hK : 0 < K)
/-- Let $A\subseteq \mathbb{Z}^d$ and $\lvert A-A\rvert\leq K\lvert A\rvert$.
There exists $A'\subseteq A$ such that $\lvert A'\rvert \geq K^{-17}\lvert A\rvert$
and $\dim A' \leq \frac{40}{\log 2} \log K$.-/
theorem weak_PFR_int {A : Set G} [A_fin : Finite A] (hnA : A.Nonempty) {K : ℝ} (hK : 0 < K)
theorem weak_PFR_int
{G : Type*} [AddCommGroup G] [Module.Free ℤ G] [Module.Finite ℤ G]
{A : Set G} [A_fin : Finite A] (hnA : A.Nonempty) {K : ℝ}
(hA : Nat.card (A-A) ≤ K * Nat.card A) :
∃ A' : Set G, A' ⊆ A ∧ Nat.card A' ≥ K ^ (-17 : ℝ) * Nat.card A ∧
AffineSpace.finrank ℤ A' ≤ (40 / log 2) * log K := by
have : Nonempty (A - A) := (hnA.sub hnA).coe_sort
have : Finite (A - A) := Set.Finite.sub A_fin A_fin
have hK : 0 < K := by
have : 0 < K * Nat.card A := lt_of_lt_of_le (mod_cast Nat.card_pos) hA
have : (0 : ℝ) ≤ Nat.card A := Nat.cast_nonneg' _
nlinarith
have : Countable G := countable_of_finiteDimensional ℤ G
let m : MeasurableSpace G := ⊤
apply weak_PFR hnA hK ((rdist_set_le A A hnA hnA).trans _)
suffices log (Nat.card (A-A)) ≤ log K + log (Nat.card A) by linarith
rw [← log_mul (by positivity) _]
· apply log_le_log _ hA
norm_cast
have : Nonempty (A - A) := (hnA.sub hnA).coe_sort
have : Finite (A - A) := Set.Finite.sub A_fin A_fin
exact Nat.card_pos
exact_mod_cast ne_of_gt (@Nat.card_pos _ hnA.to_subtype _)
27 changes: 14 additions & 13 deletions blueprint/src/chapter/approx_hom_pfr.tex
Original file line number Diff line number Diff line change
Expand Up @@ -28,22 +28,23 @@ \chapter{Approximate homomorphism version of PFR}
Let $f: G \to G'$ be a function, and suppose that there are at least $|G|^2 / K$ pairs $(x,y) \in G^2$ such that
$$ f(x+y) = f(x) + f(y).$$
Then there exists a homomorphism $\phi: G \to G'$ and a constant $c \in G'$
such that $f(x) = \phi(x)+c$ for at least $|G| / (2 ^ {172} * K ^ {146})$ values of $x \in G$.
such that $f(x) = \phi(x)+c$ for at least $|G| / (2 ^ {144} * K ^ {122})$
values of $x \in G$.
\end{theorem}

\begin{proof}\uses{goursat, cs-bound, bsg, pfr_aux-improv}\leanok Consider the graph $A \subset G \times G'$ defined by
$$ A := \{ (x,f(x)): x \in G \}.$$
Clearly, $|A| = |G|$. By hypothesis, we have $a+a' \in A$ for at least
$|A|^2/K$ pairs $(a,a') \in A^2$. By \Cref{cs-bound}, this implies that
$E(A) \geq |A|^3/K^2$. Applying \Cref{bsg}, we conclude that there
exists a subset $A' \subset A$ with $|A'| \geq |A|/C_1 K^{2C_2}$ and $|A'+A'|
\leq C_1C_3 K^{2(C_2+C_4)} |A'|$. Applying \Cref{pfr_aux-improv}, we may
find a subspace $H \subset G \times G'$ such that $|H| / |A'| \in [L^{-10},
L^{10}$ and a subset $c$ of cardinality at most $L^6 |A'|^{1/2} / |H|^{1/2}$
such that $A' \subseteq c + H$, where $L = C_1C_3 K^{2(C_2+C_4)}$. If we let
$H_0,H_1$ be as in \Cref{goursat}, this implies on taking projections
the projection of $A'$ to $G$ is covered by at most $|c|$ translates of
$H_0$. This implies that
$|A|^2/K$ pairs $(a,a') \in A^2$. By \Cref{cs-bound}, this implies that $E(A)
\geq |A|^3/K^2$. Applying \Cref{bsg}, we conclude that there exists a subset
$A' \subset A$ with $|A'| \geq |A|/C_1 K^{2C_2}$ and $|A'+A'| \leq C_1C_3
K^{2(C_2+C_4)} |A'|$. Applying \Cref{pfr-9-aux'}, we may find a subspace $H
\subset G \times G'$ such that $|H| / |A'| \in [L^{-8}, L^{8}]$ and a subset
$c$ of cardinality at most $L^5 |A'|^{1/2} / |H|^{1/2}$ such that $A'
\subseteq c + H$, where $L = C_1C_3 K^{2(C_2+C_4)}$. If we let $H_0,H_1$ be
as in \Cref{goursat}, this implies on taking projections the projection of
$A'$ to $G$ is covered by at most $|c|$ translates of $H_0$. This implies
that
$$ |c| |H_0| \geq |A'|;$$
since $|H_0| |H_1| = |H|$, we conclude that
$$ |H_1| \leq |c| |H|/|A'|.$$
Expand All @@ -54,10 +55,10 @@ \chapter{Approximate homomorphism version of PFR}
(x,\phi(x)+c): x \in G \}$ for some $c \in G'$. The number of translates is
bounded by
$$
|c|^2 \frac{|H|}{|A'|} \leq \left(L^6 \frac{|A'|^{1/2}}{|H|^{1/2}}\right)^2 \frac{|H|}{|A'|} = L^{12}.
|c|^2 \frac{|H|}{|A'|} \leq \left(L^5 \frac{|A'|^{1/2}}{|H|^{1/2}}\right)^2 \frac{|H|}{|A'|} = L^{10}.
$$

By the pigeonhole principle, one of these translates must then contain at
least $|A'|/L^{12} \geq |G| / (C_1C_3 K^{2(C_2+C_4)})^{12} (C_1 K^{2C_2})$
least $|A'|/L^{10} \geq |G| / (C_1C_3 K^{2(C_2+C_4)})^{10} (C_1 K^{2C_2})$
elements of $A'$ (and hence of $A$), and the claim follows.
\end{proof}
21 changes: 18 additions & 3 deletions blueprint/src/chapter/further_improvement.tex
Original file line number Diff line number Diff line change
Expand Up @@ -344,19 +344,34 @@ \section{Studying a minimizer}
By \Cref{rho-invariant} we get $\rho(U_{H_1})+\rho(U_{H_2})\le \rho(Y_1) + \rho(Y_2) + 8 d[Y_1;Y_2]$, and thus the claim holds for $H=H_1$ or $H=H_2$.
\end{proof}

\begin{corollary}\label{pfr-9-aux}\lean{better_PFR_conjecture_aux}\leanok
If $|A+A| \leq K|A|$, then there exists a subgroup $H$ and $t\in G$ such that $|A \cap (H+t)| \geq K^{-4} \sqrt{|A||V|}$, and $|H|/|A|\in[K^{-8},K^8]$.
\begin{corollary}\label{pfr-9-aux}\lean{better_PFR_conjecture_aux0}\leanok
If $|A+A| \leq K|A|$, then there exists a subgroup $H$ and $t\in G$ such that
$|A \cap (H+t)| \geq K^{-4} \sqrt{|A||H|}$, and $|H|/|A|\in[K^{-8},K^8]$.
\end{corollary}

\begin{proof}\leanok
\uses{pfr-rho,rho-init,rho-subgroup}
Apply \Cref{pfr-rho} on $U_A,U_A$ to get a subspace such that $2\rho(U_H)\le 2\rho(U_A)+8d[U_A;U_A]$. Recall that $d[U_A;U_A]\le \log K$ as proved in \Cref{pfr_aux}, and $\rho(U_A)=0$ by \Cref{rho-init}. Therefore $\rho(U_H)\le 4\log(K)$. The claim then follows from \Cref{rho-subgroup}.
\end{proof}


\begin{corollary}\label{pfr-9-aux'}\lean{better_PFR_conjecture_aux}\leanok
If $|A+A| \leq K|A|$, then there exist a subgroup $H$ and a subset $c$ of $G$
with $A \subseteq c + H$, such that $|c| \leq K^{5} |A|^{1/2}/|H|^{1/2}$ and
$|H|/|A|\in[K^{-8},K^8]$.
\end{corollary}

\begin{proof}\leanok
\uses{pfr-9-aux, ruz-cov}
Apply \Cref{pfr-9-aux} and \Cref{ruz-cov} to get the result, as in the proof
of \Cref{pfr_aux}.
\end{proof}


\begin{theorem}[PFR with \texorpdfstring{$C=9$}{C=9}]\label{pfr-9}\lean{better_PFR_conjecture}\leanok If $A \subset {\bf F}_2^n$ is finite non-empty with $|A+A| \leq K|A|$, then there exists a subgroup $H$ of ${\bf F}_2^n$ with $|H| \leq |A|$ such that $A$ can be covered by at most $2K^9$ translates of $H$.
\end{theorem}

\begin{proof}\leanok
\uses{pfr-9-aux,ruz-cov}
Apply \Cref{pfr-9-aux} and \Cref{ruz-cov} to get a variant of \Cref{pfr_aux}. The remaining part is the same as \Cref{pfr}.
Given \Cref{pfr-9-aux'}, the proof is the same as that of \Cref{pfr}.
\end{proof}
17 changes: 8 additions & 9 deletions blueprint/src/chapter/hom_pfr.tex
Original file line number Diff line number Diff line change
Expand Up @@ -19,20 +19,19 @@ \chapter{Homomorphism version of PFR}
\begin{theorem}[Homomorphism form of PFR]\label{hom-pfr}\lean{homomorphism_pfr}\leanok Let $f: G \to G'$ be a function, and let $S$ denote the set
$$ S := \{ f(x+y)-f(x)-f(y): x,y \in G \}.$$
Then there exists a homomorphism $\phi: G \to G'$ such that
$$ |\{ f(x) - \phi(x): x \in G \}| \leq |S|^{12}.$$
$$ |\{ f(x) - \phi(x): x \in G \}| \leq |S|^{10}.$$
\end{theorem}

\begin{proof}\uses{goursat, pfr_aux-improv}\leanok
Consider the graph $A \subset G \times G'$ defined by
$$ A := \{ (x,f(x)): x \in G \}.$$
Clearly, $|A| = |G|$. By hypothesis, we have
$$ A+A \subset \{ (x,f(x)+s): x \in G, s \in S\}$$
and hence $|A+A| \leq |S| |A|$. Applying \Cref{pfr_aux-improv}, we may
find a subspace $H \subset G \times G'$ such that $|H|/ |A| \in [K^{-10},
K^{10}]$ and $A$ is covered by $c + H$ with $|c| \le |S|^6|A|^{1/2} /
|H|^{1/2}$. If we let $H_0, H_1$ be as in \Cref{goursat}, this implies
on taking projections that $G$ is covered by at most $|c|$ translates of
$H_0$. This implies that
and hence $|A+A| \leq |S| |A|$. Applying \Cref{pfr-9-aux'}, we may find a
subspace $H \subset G \times G'$ such that $|H|/ |A| \in [|S|^{-8}, |S|^{8}]$
and $A$ is covered by $c + H$ with $|c| \le |S|^5|A|^{1/2} / |H|^{1/2}$. If
we let $H_0, H_1$ be as in \Cref{goursat}, this implies on taking projections
that $G$ is covered by at most $|c|$ translates of $H_0$. This implies that
$$ |c| |H_0| \geq |G|;$$
since $|H_0| |H_1| = |H|$, we conclude that
$$ |H_1| \leq |c| |H|/|G| = |c| |H|/|A|.$$
Expand All @@ -41,8 +40,8 @@ \chapter{Homomorphism version of PFR}
is a homomorphism, each such translate can be written in the form $\{
(x,\phi(x)+d): x \in G \}$ for some $d \in G'$. Since
$$
|c| |H_1| \le |c|^2 \frac{|H|}{|A|} \le \left(|S|^6 \frac{|A|^{1/2}}{|H|^{1/2}}\right)^2 \frac{|H|}{|A|}
= |S|^{12},
|c| |H_1| \le |c|^2 \frac{|H|}{|A|} \le \left(|S|^5 \frac{|A|^{1/2}}{|H|^{1/2}}\right)^2 \frac{|H|}{|A|}
= |S|^{10},
$$
the result follows.
\end{proof}
Loading
Loading