Skip to content

Commit

Permalink
nonnegativity of cond multidistance
Browse files Browse the repository at this point in the history
  • Loading branch information
teorth committed Nov 4, 2024
1 parent 26d310b commit 514591d
Show file tree
Hide file tree
Showing 2 changed files with 15 additions and 10 deletions.
23 changes: 14 additions & 9 deletions PFR/MoreRuzsaDist.lean
Original file line number Diff line number Diff line change
Expand Up @@ -933,15 +933,20 @@ theorem condMultiDist_nonneg [Fintype G] {m : ℕ} {Ω : Fin m → Type*} (hΩ :
dsimp [condMultiDist]
apply Finset.sum_nonneg
intro y _
apply mul_nonneg
. apply Finset.prod_nonneg
intro i _
exact ENNReal.toReal_nonneg
have (i : Fin m) : ℙ (Y i ⁻¹' {y i}) ≠ 0 := by
-- This probably requires additional assumptions on Y.
sorry
exact multiDist_nonneg (fun i => ⟨ℙ[|Y i ⁻¹' {y i}]⟩)
(fun i => ProbabilityTheory.cond_isProbabilityMeasure (this i)) X hX
by_cases h: ∀ i : Fin m, ℙ (Y i ⁻¹' {y i}) ≠ 0
. apply mul_nonneg
. apply Finset.prod_nonneg
intro i _
exact ENNReal.toReal_nonneg
exact multiDist_nonneg (fun i => ⟨ℙ[|Y i ⁻¹' {y i}]⟩)
(fun i => ProbabilityTheory.cond_isProbabilityMeasure (h i)) X hX
simp only [ne_eq, not_forall, Decidable.not_not] at h
obtain ⟨i, hi⟩ := h
apply le_of_eq
symm
convert zero_mul ?_
apply Finset.prod_eq_zero (Finset.mem_univ i)
simp only [hi, ENNReal.zero_toReal]

/-- A technical lemma: can push a constant into a product at a specific term -/
private lemma Finset.prod_mul {α β:Type*} [Fintype α] [DecidableEq α] [CommMonoid β] (f:α → β) (c: β) (i₀:α) : (∏ i, f i) * c = ∏ i, (if i=i₀ then f i * c else f i) := calc
Expand Down
2 changes: 1 addition & 1 deletion blueprint/src/chapter/torsion.tex
Original file line number Diff line number Diff line change
Expand Up @@ -333,7 +333,7 @@ \section{The tau functional}
\begin{lemma}[Conditional multidistance nonnegative]\label{cond-multidist-nonneg}\uses{cond-multidist-def}\lean{condMultiDist_nonneg}\leanok If $X_{[m]} = (X_i)_{1 \leq i \leq m}$ and $Y_{[m]} = (Y_i)_{1 \leq i \leq m}$ are tuples of random variables, then $D[ X_{[m]} | Y_{[m]} ] \geq 0$.
\end{lemma}

\begin{proof}\uses{multidist-nonneg} Clear from \Cref{multidist-nonneg} and \Cref{cond-multidist-def}, except that some care may need to be taken to deal with the $y_i$ where $p_{Y_i}$ vanish.
\begin{proof}\uses{multidist-nonneg}\leanok Clear from \Cref{multidist-nonneg} and \Cref{cond-multidist-def}, except that some care may need to be taken to deal with the $y_i$ where $p_{Y_i}$ vanish.
\end{proof}


Expand Down

0 comments on commit 514591d

Please sign in to comment.