Skip to content

Commit

Permalink
Prove 3588 !-> [3862, 3878, 3917, 3955]
Browse files Browse the repository at this point in the history
We prove this using a proof that is specific to this equation, but
designed to be mostly generalizable and perhaps possible to automatically
generalize.
  • Loading branch information
lyphyser committed Oct 9, 2024
1 parent 8c133bb commit 987f31e
Show file tree
Hide file tree
Showing 2 changed files with 195 additions and 0 deletions.
191 changes: 191 additions & 0 deletions equational_theories/Confluence.lean
Original file line number Diff line number Diff line change
@@ -1,7 +1,9 @@
import equational_theories.ConfluenceAttr
import equational_theories.FreeMagma
import equational_theories.AllEquations
import equational_theories.FactsSyntax
import Mathlib.Tactic.NthRewrite
import Mathlib.Tactic.CasesM

namespace FreeMagma

Expand Down Expand Up @@ -1013,4 +1015,193 @@ theorem «Facts» : ∃ (G : Type) (_ : Magma G), Facts G [1110] [8, 411, 1629,

end rw1110



open Lean.Parser.Tactic

attribute [confluence_simps] not_true_eq_false not_false_eq_true false_implies implies_true imp_false false_and and_true and_self not_and and_imp
attribute [confluence_simps] ite_eq_right_iff
attribute [confluence_simps] Option.or Option.getD Option.ite_none_right_eq_some Option.some.injEq
attribute [confluence_simps] forall_apply_eq_imp_iff₂
attribute [confluence_simps] Fork.injEq

simproc [confluence_simps] confluenceReduceCtorEq (_) := reduceCtorEq

local macro "separate" : tactic => `(tactic| (
try intros
try repeat
simp only [Not.eq_1]
try intros
try injections
try casesm* _ ∨ _, _ ∧ _, Exists _
try any_goals
try subst_eqs
try trivial
))

local macro "autosplit" : tactic => `(tactic| (
try any_goals separate
repeat'
split at *
try any_goals separate
))

local macro "prove_elim" : tactic => `(tactic| (
autosplit
all_goals simp_all only [confluence_simps, exists_and_right, exists_eq_right_right', exists_eq_right', false_iff, not_exists]
constructor
· intro h
subst_eqs
repeat constructor
· autosplit
))

local macro "prove_elim_not" : tactic => `(tactic| (
autosplit
all_goals simp_all only [confluence_simps, false_iff, not_exists, not_and, true_iff, forall_eq', forall_apply_eq_imp_iff, true_iff, not_false_eq_true]
try separate
rename_i h
rw [eq_comm]
apply h
try trivial
))

local macro "compute" lemmus:simpLemma : tactic => `(tactic| (
simp only [$lemmus, ↓reduceIte, and_self]
))

namespace rw3588

variable [DecidableEq α]

-- equation 3588 := x ◇ y = z ◇ ((x ◇ y) ◇ z)
def rule1 : FreeMagma α → Option (FreeMagma α)
| z1 ⋆ ((x ⋆ y) ⋆ z2) =>
if z1 = z2 then
x ⋆ y
else
none
| _ => none

-- generated by Knuth-Bendix completion with Vampire or kbcv
def rule2 : FreeMagma α → Option (FreeMagma α)
| ((z1 ⋆ w1) ⋆ (x ⋆ y)) ⋆ (z2 ⋆ w2) =>
if z1 = z2 ∧ w1 = w2 then
x ⋆ y
else
none
| _ => none

def rule (x: FreeMagma α): FreeMagma α :=
((rule1 x).or (rule2 x)).getD x

def rule_eq_rule21' (x: FreeMagma α):
rule x = ((rule2 x).or (rule1 x)).getD x := by
simp only [rule, Option.or, Option.getD]
autosplit
any_goals simp_all only [Option.some.injEq]
exfalso
simp_all only [rule1, rule2]
autosplit

def rule_eq_rule12 (x: FreeMagma α) := by
simpa [rule1, rule2, Option.or, Option.getD] using rule.eq_def x

def rule_eq_rule21 {x: FreeMagma α} := by
simpa [rule1, rule2, Option.or, Option.getD] using rule_eq_rule21' x

def rule2.elim (e r: FreeMagma α): rule2 e = some r ↔
∃ x y z w, e = ((z ⋆ w) ⋆ (x ⋆ y)) ⋆ (z ⋆ w) ∧ r = x ⋆ y := by
simp only [rule2]
prove_elim

def rule2.elim_not (e: FreeMagma α): rule2 e = none ↔
¬∃ x y z w, e = ((z ⋆ w) ⋆ (x ⋆ y)) ⋆ (z ⋆ w) := by
simp only [rule2]
prove_elim_not

def rule1.elim (e r: FreeMagma α): rule1 e = some r ↔
∃ x y z, e = z ⋆ ((x ⋆ y) ⋆ z) ∧ r = x ⋆ y := by
simp only [rule1]
prove_elim

def rule1.elim_not (e: FreeMagma α): rule1 e = none ↔
¬∃ x y z, e = z ⋆ ((x ⋆ y) ⋆ z) := by
simp only [rule1]
prove_elim_not

def rule.elim' (x y: FreeMagma α): rule x = y ↔
rule1 x = some y ∨ rule2 x = some y ∨ (x = y ∧ rule1 x = none ∧ rule2 x = none) := by
constructor
· intro h
simp only [rule, Option.or, Option.getD] at h
autosplit
all_goals simp_all
· intro h
rcases h with h1 | h2 | ⟨h0, h1, h2⟩
next h1 => simp only [rule, h1, Option.or, Option.getD]
next h2 => simp only [rule_eq_rule21', h2, Option.or, Option.getD]
next h' => simp only [rule, ← h0, h1, h2, Option.or, Option.getD]

def rule.elim (e r: FreeMagma α) := by
simpa only [rule1.elim, rule2.elim, rule1.elim_not, rule2.elim_not] using rule.elim' e r

instance rule_projection : IsProj (@rule α _) where
proj := by
intro x
simp only [rule, rule1, rule2, Option.or, Option.getD]
autosplit
· apply SubtermOf.right
apply SubtermOf.left
rfl
· apply SubtermOf.left
apply SubtermOf.right
rfl
· apply SubtermOf.left
apply SubtermOf.right
rfl

theorem comp1 {α} [DecidableEq α] {x y z : FreeMagma α}:
rule (z ⋆ (x ⋆ y ⋆ z)) = x ⋆ y := by
compute rule_eq_rule12

theorem comp2 {α} [DecidableEq α] {x y z : FreeMagma α} (hxy: NF rule (x ⋆ y)):
rule (z ⋆ rule (x ⋆ y ⋆ z)) = x ⋆ y := by
generalize h: rule (x ⋆ y ⋆ z) = e
simp only [rule.elim] at h
separate
· compute rule_eq_rule21
· apply rw_eq_self_of_NF rule hxy
· exact comp1

theorem comp3 {α} [DecidableEq α] {x y z : FreeMagma α} (hx: NF rule x) (hy: NF rule y):
rule (z ⋆ rule (rule (x ⋆ y) ⋆ z)) = rule (x ⋆ y) := by
generalize h: rule (x ⋆ y) = e
simp only [rule.elim] at h
separate
all_goals apply comp2
· apply Everywhere.left hy
· apply Everywhere.right hx
· rw [NF, Everywhere]
refine ⟨hx, hy, ?_⟩
simp only [rule.elim]
right
right
constructorm* _ ∧ _
all_goals trivial

@[equational_result]
theorem «Facts» :
∃ (G : Type) (_ : Magma G), Facts G [3588] [3862, 3878, 3917, 3955] := by
use ConfMagma (@rule Nat _), inferInstance
repeat' apply And.intro
· rintro ⟨x, hx⟩ ⟨y, hy⟩ ⟨z, hz⟩
simp only [Magma.op, bu, hx, hy, hz, buFixed_rw_op]
symm
congr! 1
apply comp3 ((NF_iff_buFixed rule).mpr hx) ((NF_iff_buFixed rule).mpr hy)
all_goals refute

end rw3588

end Confluence
4 changes: 4 additions & 0 deletions equational_theories/ConfluenceAttr.lean
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
import Lean.Meta.Tactic.Simp.RegisterCommand

-- doesn't work in the same file where it's declared
register_simp_attr confluence_simps

0 comments on commit 987f31e

Please sign in to comment.