-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEuler018.py
49 lines (41 loc) · 1.59 KB
/
Euler018.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
# Solution to Project Euler problem 18 by tdnzr.
# Algorithm: To calculate the maximum path, I can decimate the row at the very bottom, then work my way upwards.
# Example:
# 3
# 7 4
# 2 4 6
# 8 5 9 3
# I can decimate this triangle by adding max(8, 5) to the 2, max(5, 9) to the 4,
# max(9, 3) to the 6, and then eliminate or ignore row four.
def run():
inputFile = '''75
95 64
17 47 82
18 35 87 10
20 04 82 47 65
19 01 23 75 03 34
88 02 77 73 07 63 67
99 65 04 28 06 16 70 92
41 41 26 56 83 40 80 70 33
41 48 72 33 47 32 37 16 94 29
53 71 44 65 25 43 91 52 97 51 14
70 11 33 28 77 73 17 78 39 68 17 57
91 71 52 38 17 14 91 43 58 50 27 29 48
63 66 04 68 89 53 67 30 73 16 69 87 40 31
04 62 98 27 23 09 70 98 73 93 38 53 60 04 23'''
# Turn the given triangle string into a matrix / list of lists of integers.
# Example result: triangle = [[75], [95, 64], [17, 47, 82]]
triangle = []
for line in inputFile.splitlines():
triangle_line = [int(s) for s in line.split()]
triangle.append(triangle_line)
# Now we decimate the triangle, row for row, beginning at the bottom.
# The outer loop begins at the second-to-last row and goes upwards;
# the inner loop iterates through all columns of the row.
for i in range(len(triangle) - 2, -1, -1):
for j in range(len(triangle[i])):
triangle[i][j] += max(triangle[i + 1][j], triangle[i + 1][j + 1])
# After we've decimated the triangle, the element at the top contains the sum of the longest path.
return triangle[0][0]
if __name__ == "__main__":
print(f"The sum of the largest path is: {run()}")