forked from iamNCJ/DiLightNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimple_run.py
37 lines (33 loc) · 1.46 KB
/
simple_run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import imageio
import numpy as np
import torch
from diffusers import StableDiffusionControlNetPipeline
from diffusers.utils import get_class_from_dynamic_module
# load pipelines
device = 'cuda'
NeuralTextureControlNetModel = get_class_from_dynamic_module(
"dilightnet/model_helpers",
"neuraltexture_controlnet.py",
"NeuralTextureControlNetModel"
)
neuraltexture_controlnet = NeuralTextureControlNetModel.from_pretrained("DiLightNet/DiLightNet")
pipe = StableDiffusionControlNetPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-1", controlnet=neuraltexture_controlnet,
).to(device)
# load cond images
cond_img_path = 'examples/input/futuristic_soldier'
mask = imageio.v3.imread(cond_img_path + '_mask.png')[..., :1] / 255.
source_image = imageio.v3.imread(cond_img_path + '.png')[..., :3] / 255.
hint_types = ['diffuse', 'ggx0.05', 'ggx0.13', 'ggx0.34']
images = [mask, source_image]
for hint_type in hint_types:
image_path = f'{cond_img_path}_{hint_type}.png'
image = imageio.v3.imread(image_path) / 255.
if image.shape[-1] == 4: # Check if the image has an alpha channel
image = image[..., :3] * image[..., 3:] # Premultiply RGB by Alpha
images.append(image)
hint = np.concatenate(images, axis=2).astype(np.float32)[None]
hint = torch.from_numpy(hint).to(torch.float32).permute(0, 3, 1, 2).to(device)
# run pipeline
image = pipe("futuristic soldier with advanced armor weaponry and helmet", image=hint).images[0]
image.save('output.png')