forked from OpenMotionLab/MotionGPT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo.py
239 lines (195 loc) · 8.51 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import json
import os
from pathlib import Path
import time
import numpy as np
import pytorch_lightning as pl
import torch
from rich import get_console
from rich.table import Table
from omegaconf import OmegaConf
from tqdm import tqdm
from mGPT.config import parse_args
from mGPT.data.build_data import build_data
from mGPT.models.build_model import build_model
from mGPT.utils.logger import create_logger
import mGPT.render.matplot.plot_3d_global as plot_3d
def motion_token_to_string(motion_token, lengths, codebook_size=512):
motion_string = []
for i in range(motion_token.shape[0]):
motion_i = motion_token[i].cpu(
) if motion_token.device.type == 'cuda' else motion_token[i]
motion_list = motion_i.tolist()[:lengths[i]]
motion_string.append(
(f'<motion_id_{codebook_size}>' +
''.join([f'<motion_id_{int(i)}>' for i in motion_list]) +
f'<motion_id_{codebook_size + 1}>'))
return motion_string
def load_example_input(txt_path, task, model):
with open(txt_path, "r") as file:
Lines = file.readlines()
Lines = [line for line in Lines if line.strip()]
count = 0
texts = []
# Strips the newline character
motion_joints = [torch.zeros((1, 1, 22, 3))] * len(Lines)
motion_lengths = [0] * len(Lines)
motion_token_string = ['']
motion_head = []
motion_heading = []
motion_tailing = []
motion_token = torch.zeros((1, 263))
for i, line in enumerate(Lines):
count += 1
if len(line.split('#')) == 1:
texts.append(line)
else:
feat_path = line.split('#')[1].replace('\n', '')
if os.path.exists(feat_path):
feats = torch.tensor(np.load(feat_path), device=model.device)
feats = model.datamodule.normalize(feats)
motion_lengths[i] = feats.shape[0]
motion_token, _ = model.vae.encode(feats[None])
motion_token_string = motion_token_to_string(
motion_token, [motion_token.shape[1]])[0]
motion_token_length = motion_token.shape[1]
motion_splited = motion_token_string.split('>')
split = motion_token_length // 5 + 1
split2 = motion_token_length // 4 + 1
split3 = motion_token_length // 4 * 3 + 1
motion_head.append(motion_token[:, :motion_token.shape[1] //
5][0])
motion_heading.append(feats[:feats.shape[0] // 4])
motion_tailing.append(feats[feats.shape[0] // 4 * 3:])
if '<Motion_Placeholder_s1>' in line:
motion_joints[i] = model.feats2joints(
feats)[:, :feats.shape[1] // 5]
else:
motion_joints[i] = model.feats2joints(feats)
motion_split1 = '>'.join(
motion_splited[:split]
) + f'><motion_id_{model.codebook_size+1}>'
motion_split2 = f'<motion_id_{model.codebook_size}>' + '>'.join(
motion_splited[split:])
motion_masked = '>'.join(
motion_splited[:split2]
) + '>' + f'<motion_id_{model.codebook_size+2}>' * (
split3 - split2) + '>'.join(motion_splited[split3:])
texts.append(
line.split('#')[0].replace(
'<motion>', motion_token_string).replace(
'<Motion_Placeholder_s1>', motion_split1).replace(
'<Motion_Placeholder_s2>', motion_split2).replace(
'<Motion_Placeholder_Masked>', motion_masked))
return_dict = {
'text': texts,
'motion_joints': motion_joints,
'motion_lengths': motion_lengths,
'motion_token': motion_token,
'motion_token_string': motion_token_string,
}
if len(motion_head) > 0:
return_dict['motion_head'] = motion_head
if len(motion_heading) > 0:
return_dict['motion_heading'] = motion_heading
if len(motion_tailing) > 0:
return_dict['motion_tailing'] = motion_tailing
return return_dict
def main():
# parse options
cfg = parse_args(phase="demo") # parse config file
cfg.FOLDER = cfg.TEST.FOLDER
# create logger
logger = create_logger(cfg, phase="test")
task = cfg.DEMO.TASK
text = None
output_dir = Path(
os.path.join(
cfg.FOLDER, str(cfg.model.target.split('.')[-2]), str(cfg.NAME), "samples_" + cfg.TIME
)
)
output_dir.mkdir(parents=True, exist_ok=True)
logger.info(OmegaConf.to_yaml(cfg))
# set seed
pl.seed_everything(cfg.SEED_VALUE)
# gpu setting
if cfg.ACCELERATOR == "gpu":
os.environ["CUDA_VISIBLE_DEVICES"] = ",".join(
str(x) for x in cfg.DEVICE)
device = torch.device("cuda")
# Dataset
datamodule = build_data(cfg)
logger.info("datasets module {} initialized".format("".join(
cfg.DATASET.target.split('.')[-2])))
# create model
total_time = time.time()
model = build_model(cfg, datamodule)
logger.info("model {} loaded".format(cfg.model.target))
# loading state dict
if cfg.TEST.CHECKPOINTS:
logger.info("Loading checkpoints from {}".format(cfg.TEST.CHECKPOINTS))
state_dict = torch.load(cfg.TEST.CHECKPOINTS,
map_location="cpu")["state_dict"]
model.load_state_dict(state_dict)
else:
logger.warning(
"No checkpoints provided, using random initialized model")
model.to(device)
if cfg.DEMO.EXAMPLE:
# Check txt file input
# load txt
return_dict = load_example_input(cfg.DEMO.EXAMPLE, task, model)
text, in_joints = return_dict['text'], return_dict['motion_joints']
batch_size = 64
if text:
for b in tqdm(range(len(text) // batch_size + 1)):
text_batch = text[b * batch_size:(b + 1) * batch_size]
in_joints_batch = in_joints[b * batch_size:(b + 1) * batch_size]
batch = {
"length":
return_dict["motion_lengths"][b * batch_size:(b + 1) *
batch_size],
"text":
text_batch
}
if 'motion_head' in return_dict:
batch["motion"] = return_dict['motion_head'][b *
batch_size:(b +
1) *
batch_size]
if 'motion_heading' in return_dict:
batch["motion_heading"] = return_dict['motion_heading'][
b * batch_size:(b + 1) * batch_size]
if 'motion_tailing' in return_dict:
batch["motion_tailing"] = return_dict['motion_tailing'][
b * batch_size:(b + 1) * batch_size]
outputs = model(batch, task=cfg.model.params.task)
logger.info('Model forward finished! Start saving results...')
joints = outputs["joints"]
lengths = outputs["length"]
output_texts = outputs["texts"]
for i in range(len(joints)):
xyz = joints[i][:lengths[i]]
xyz = xyz[None]
try:
xyz = xyz.detach().cpu().numpy()
xyz_in = in_joints_batch[i][None].detach().cpu().numpy()
except:
xyz = xyz.detach().numpy()
xyz_in = in_joints[i][None].detach().numpy()
id = b * batch_size + i
np.save(os.path.join(output_dir, f'{id}_out.npy'), xyz)
np.save(os.path.join(output_dir, f'{id}_in.npy'), xyz_in)
with open(os.path.join(output_dir, f'{id}_in.txt'), 'w') as f:
f.write(text_batch[i])
with open(os.path.join(output_dir, f'{id}_out.txt'), 'w') as f:
f.write(output_texts[i])
# pose_vis = plot_3d.draw_to_batch(xyz_in, [''], [os.path.join(output_dir, f'{i}_in.gif')])
# pose_vis = plot_3d.draw_to_batch(xyz, [''], [os.path.join(output_dir, f'{i}_out.gif')])
total_time = time.time() - total_time
logger.info(
f'Total time spent: {total_time:.2f} seconds (including model loading time and exporting time).'
)
logger.info(f"Testing done, the npy are saved to {output_dir}")
if __name__ == "__main__":
main()