Skip to content

Commit

Permalink
Merge pull request USTC-Resource#21 from ustcpetergu/master
Browse files Browse the repository at this point in the history
Add Xianjin Chen's computational methods code
  • Loading branch information
heqin-zhu authored Jun 21, 2020
2 parents 4aef83c + 3add6e4 commit 257b763
Show file tree
Hide file tree
Showing 35 changed files with 1,289 additions and 0 deletions.
53 changes: 53 additions & 0 deletions 计算方法/labs/1/1.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,53 @@
#include <bits/stdc++.h>
using namespace std;
float f(float x)
{
return sqrt(x * x + 4) - 2;
}
float g(float x)
{
return x * x / (sqrt(x * x + 4) + 2);
}

int main(){
// Problem 1
float x;
x = 1.;
for(int i = 0; i < 10; i++) {
x = x / 8;
cout << setiosflags(ios::scientific) << setprecision(12) << x << "\t" << f(x) << "\t" << g(x) << endl;
}
// Problem 2
double arr[] = {4040.045551380452, -2759471.276702747, -31.64291531266504, 2755462.874010974, 0.0000557052996742893};
double res;
// seq
res = 0.;
for(int i = 0; i < 5; i++) {
res += arr[i];
}
cout << setprecision(7) << "Final " << res << endl;
// rev
res = 0.;
for(int i = 4; i >= 0; i--) {
res += arr[i];
}
cout << "Final " << res << endl;
// posi and nega
res = 0.;
res += arr[0];
res += arr[3];
res += arr[4];
res += arr[1];
res += arr[2];
cout << "Final " << res << endl;
// from small to big
res = 0.;
res += arr[4];
res += arr[2];
res += arr[0];
res += arr[3];
res += arr[1];
cout << "Final " << res << endl;
// Real result is 0.
return 0;
}
Binary file added 计算方法/labs/1/1.docx
Binary file not shown.
191 changes: 191 additions & 0 deletions 计算方法/labs/1/cm.nb
Original file line number Diff line number Diff line change
@@ -0,0 +1,191 @@
(* Content-type: application/vnd.wolfram.mathematica *)

(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)

(* CreatedBy='Mathematica 11.3' *)

(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 6052, 183]
NotebookOptionsPosition[ 5168, 158]
NotebookOutlinePosition[ 5533, 174]
CellTagsIndexPosition[ 5490, 171]
WindowFrame->Normal*)

(* Beginning of Notebook Content *)
Notebook[{

Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"X", "=",
RowBox[{"{",
RowBox[{"4040.045551380452", ",",
RowBox[{"-", "2759471.276702747"}], ",",
RowBox[{"-", "31.64291531266504"}], ",", "2755462.874010974", ",",
"0.0000557052996742893"}], "}"}]}], "\n"}]], "Input",
CellChangeTimes->{{3.7602515756829224`*^9, 3.760251609278879*^9}, {
3.7602516900422325`*^9, 3.7602516955699854`*^9}},
CellLabel->"In[8]:=",ExpressionUUID->"27aa795a-19b1-4daa-99c2-798100ecb41b"],

Cell[BoxData[
RowBox[{"{",
RowBox[{"4040.045551380452`", ",",
RowBox[{"-", "2.759471276702747`*^6"}], ",",
RowBox[{"-", "31.64291531266504`"}], ",", "2.755462874010974`*^6", ",",
"0.0000557052996742893`"}], "}"}]], "Output",
CellChangeTimes->{
3.760251609675742*^9, {3.7602516904743037`*^9, 3.7602516960183907`*^9}},
CellLabel->"Out[8]=",ExpressionUUID->"3d644f9c-94d5-4c0c-8f97-2c028531f19d"]
}, Open ]],

Cell[CellGroupData[{

Cell[BoxData[
RowBox[{"Total", "[", "X", "]"}]], "Input",
CellChangeTimes->{{3.7602516142985*^9, 3.760251640514464*^9}},
CellLabel->"In[9]:=",ExpressionUUID->"abc47792-61a2-410c-851a-59cf59a6a8bd"],

Cell[BoxData["0.`"], "Output",
CellChangeTimes->{{3.7602516171608987`*^9, 3.760251640820704*^9}, {
3.7602516932206087`*^9, 3.760251698447276*^9}},
CellLabel->"Out[9]=",ExpressionUUID->"6c2dff50-bcc1-49d8-a108-36311f38843c"]
}, Open ]],

Cell[CellGroupData[{

Cell[BoxData[
RowBox[{"Table", "[",
RowBox[{
RowBox[{
RowBox[{"N", "[",
RowBox[{
RowBox[{
SqrtBox[
RowBox[{
SuperscriptBox["8",
RowBox[{
RowBox[{"-", "2"}], "x"}]], "+", "4"}]], "-", "2"}], ",", "12"}],
"]"}], "//", "ScientificForm"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "1", ",", "10"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.7602543573121824`*^9, 3.7602544343208055`*^9}, {
3.7602545735023885`*^9, 3.7602546673307285`*^9}, {3.7602557112771196`*^9,
3.760255713887948*^9}},
CellLabel->"In[18]:=",ExpressionUUID->"b5a642b5-7013-42a7-bbe5-da126634b54e"],

Cell[BoxData[
RowBox[{"{",
RowBox[{
TagBox[
InterpretationBox[
RowBox[{"\<\"3.90244273517\"\>", "\[Times]",
SuperscriptBox["10", "\<\"-3\"\>"]}],
0.00390244273517467060891934471106027601`12.,
AutoDelete->True],
ScientificForm], ",",
TagBox[
InterpretationBox[
RowBox[{"\<\"6.10342249558\"\>", "\[Times]",
SuperscriptBox["10", "\<\"-5\"\>"]}],
0.00006103422495584600979603589087695134`12.,
AutoDelete->True],
ScientificForm], ",",
TagBox[
InterpretationBox[
RowBox[{"\<\"9.53674089033\"\>", "\[Times]",
SuperscriptBox["10", "\<\"-7\"\>"]}],
9.5367408903268297692056562946873`12.*^-7,
AutoDelete->True],
ScientificForm], ",",
TagBox[
InterpretationBox[
RowBox[{"\<\"1.49011611383\"\>", "\[Times]",
SuperscriptBox["10", "\<\"-8\"\>"]}],
1.490116113833650543233247540347`12.*^-8,
AutoDelete->True],
ScientificForm], ",",
TagBox[
InterpretationBox[
RowBox[{"\<\"2.32830643640\"\>", "\[Times]",
SuperscriptBox["10", "\<\"-10\"\>"]}],
2.3283064364031710175175891639`12.*^-10,
AutoDelete->True],
ScientificForm], ",",
TagBox[
InterpretationBox[
RowBox[{"\<\"3.63797880709\"\>", "\[Times]",
SuperscriptBox["10", "\<\"-12\"\>"]}],
3.63797880708840422920995016`12.*^-12,
AutoDelete->True],
ScientificForm], ",",
TagBox[
InterpretationBox[
RowBox[{"\<\"5.68434188608\"\>", "\[Times]",
SuperscriptBox["10", "\<\"-14\"\>"]}],
5.6843418860807207076123`12.*^-14,
AutoDelete->True],
ScientificForm], ",",
TagBox[
InterpretationBox[
RowBox[{"\<\"8.88178419700\"\>", "\[Times]",
SuperscriptBox["10", "\<\"-16\"\>"]}],
8.8817841970012503512368`12.*^-16,
AutoDelete->True],
ScientificForm], ",",
TagBox[
InterpretationBox[
RowBox[{"\<\"1.38777878078\"\>", "\[Times]",
SuperscriptBox["10", "\<\"-17\"\>"]}],
1.38777878078144567071471472414543575798506`12.*^-17,
AutoDelete->True],
ScientificForm], ",",
TagBox[
InterpretationBox[
RowBox[{"\<\"2.16840434497\"\>", "\[Times]",
SuperscriptBox["10", "\<\"-19\"\>"]}],
2.168404344971008867897356166657654672067`12.*^-19,
AutoDelete->True],
ScientificForm]}], "}"}]], "Output",
CellChangeTimes->{{3.7602546101944413`*^9, 3.7602546675718403`*^9},
3.7602557145470304`*^9},
CellLabel->"Out[18]=",ExpressionUUID->"a7dba732-1b71-4587-bf95-054bd7f929a8"]
}, Open ]]
},
WindowSize->{751, 817},
WindowMargins->{{Automatic, 186}, {-50, Automatic}},
Magnification->1.5,
FrontEndVersion->"11.3 for Microsoft Windows (64-bit) (March 28, 2018)",
StyleDefinitions->"Default.nb"
]
(* End of Notebook Content *)

(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[CellGroupData[{
Cell[580, 22, 478, 10, 131, "Input",ExpressionUUID->"27aa795a-19b1-4daa-99c2-798100ecb41b"],
Cell[1061, 34, 413, 8, 88, "Output",ExpressionUUID->"3d644f9c-94d5-4c0c-8f97-2c028531f19d"]
}, Open ]],
Cell[CellGroupData[{
Cell[1511, 47, 200, 3, 43, "Input",ExpressionUUID->"abc47792-61a2-410c-851a-59cf59a6a8bd"],
Cell[1714, 52, 227, 3, 49, "Output",ExpressionUUID->"6c2dff50-bcc1-49d8-a108-36311f38843c"]
}, Open ]],
Cell[CellGroupData[{
Cell[1978, 60, 652, 18, 114, "Input",ExpressionUUID->"b5a642b5-7013-42a7-bbe5-da126634b54e"],
Cell[2633, 80, 2519, 75, 209, "Output",ExpressionUUID->"a7dba732-1b71-4587-bf95-054bd7f929a8"]
}, Open ]]
}
]
*)

43 changes: 43 additions & 0 deletions 计算方法/labs/2/Lagrange.m
Original file line number Diff line number Diff line change
@@ -0,0 +1,43 @@
format longE
syms x
f = @(x) 1 / (4+x+x.^2);
N = [4, 8, 16, 128];
y = (0:500) / 50 - 5;
polyadd = @(p1, p2) [zeros(1, size(p1,2)-size(p2,2)) p2] + ...
[zeros(1, size(p2,2)-size(p1,2)) p1];

warning('off', 'all')
for k = 1:3
for kk = 1:2
disp(['N = ' num2str(N(k)) ' type' num2str(kk)]);
if kk == 1
xi = -5 + 10/N(k) * (0:N(k));
else
xi = -5 * cos((2 * (0:N(k)) + 1)*pi / (2 * N(k) + 2));
end
p = 0;
for i = 0:N(k)
l = 1;
for j = 0:i-1
l = conv(l, [1, -xi(j+1)] / (xi(i+1) - xi(j+1)));
end
for j = (i+1):N(k)
l = conv(l, [1, -xi(j+1)] / (xi(i+1) - xi(j+1)));
end
p = polyadd(p, f(xi(i+1)) * l);
end
% p is the result Lagrange polynomial
% calculate the max err
err = max(abs(arrayfun(f, y) - polyval(p, y)));
fprintf("Err = %.12e\n", err);
fig = fplot(f, [-5 5]);
hold on
pval = polyval(p, y);
plot(y, pval);
title(['N=' num2str(N(k)) ' type=' num2str(kk)]);
hold off
saveas(fig, ['N' num2str(N(k)) 'type' num2str(kk) '.png']);
clf();
end
end
warning('on', 'all')
Binary file added 计算方法/labs/2/N128type1.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added 计算方法/labs/2/N128type2.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added 计算方法/labs/2/N16type1.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added 计算方法/labs/2/N16type2.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added 计算方法/labs/2/N32type1.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added 计算方法/labs/2/N32type2.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added 计算方法/labs/2/N4type1.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added 计算方法/labs/2/N4type2.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added 计算方法/labs/2/N64type1.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added 计算方法/labs/2/N64type2.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added 计算方法/labs/2/N8type1.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added 计算方法/labs/2/N8type2.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
73 changes: 73 additions & 0 deletions 计算方法/labs/2/report2.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,73 @@
# Lab02 Lagrange插值

**古宜民 PB17000002**

**2019.3.10**

### 1. 计算结果

选取插值节点为均匀节点和Chebyshev点对函数 $ f(x)=\frac {1}{4+x+x^2} $ 进行插值,去插值函数和原函数的最大偏差作为近似误差,取不同插值点数N=4,8,16,计算结果如下:

第一组节点:
N = 4 Err = 6.475332068311e-02
N = 8 Err = 5.156056628632e-02
N = 16 Err = 1.071904436126e-01

第二组节点:
N = 4 Err = 5.437602650073e-02
N = 8 Err = 1.426092606546e-02
N = 16 Err = 8.367272096925e-04

#### 函数图像:

其中蓝色为原函数f,橙色为插值函数。
第一组节点:

![N4type1](.\N4type1.png)

![N8type1](.\N8type1.png)

![N16type1](.\N16type1.png)

第二组节点:

![N4type2](.\N4type2.png)

![N8type2](.\N8type2.png)

![N16type2](.\N16type2.png)

### 2. 程序算法

使用MATLAB。对于给定的N和节点类型,使用两层循环,内层计算插值函数$l_i(x)$,外层计算插值多项式$p(x)=\sum_{i=0}^{n}f(x_i)l_i(x)$。之后在一系列值上计算误差$max\{p(x)-f(x)\}$。

关键代码如下:

```matlab
p = 0;
for i = 0:N(k)
l = 1;
for j = 0:i-1
l = conv(l, [1, -xi(j+1)] / (xi(i+1) - xi(j+1)));
end
for j = (i+1):N(k)
l = conv(l, [1, -xi(j+1)] / (xi(i+1) - xi(j+1)));
end
p = polyadd(p, f(xi(i+1)) * l);
end
% p is the result Lagrange polynomial
% calculate the max err
err = max(abs(arrayfun(f, y) - polyval(p, y)));
```

### 3. 结果分析

对于不同次数的插值函数,可见均匀取插值节点时,在N=8时误差最小,N=4、16时误差较大。N=4时误差来自于次数太低,插值函数不能很好地反应原函数性质,偏差较大;而N=16时误差来自于在定义域边缘处出现了Runge现象,误差很大,而中间区域于原函数符合得很好。取Chebyshev节点时,N=4,8,16误差依次减小,N=16时几乎于原函数完全相同。而若取更大的N值,如N=32,则也出现了误差增大的现象。当N更大时,两种插值函数在定义域边缘处都出现了几个数量级的误差。

![N32type2](.\N32type2.png)

相比之下,取Chebyshev节点的插值性质明显好于取均匀节点。N=16时其与原函数几乎完全符合。并且当N过大时产生的偏差也小于均匀节点。

### 4. 小结

由实验结果可见,插值函数的好坏不仅由插值函数的的次数决定,次数过低拟合不好,过高又会在区间端点附近出现较大误差,必须根据作图结果合理选择。另外插值节点的选择也影响结果,Chebyshev节点在端点附近取点较密,中间取点较为稀疏,能得到比均匀取点更稳定的结果、更小的误差。
Binary file added 计算方法/labs/2/report2.pdf
Binary file not shown.
20 changes: 20 additions & 0 deletions 计算方法/labs/3/Simpson.m
Original file line number Diff line number Diff line change
@@ -0,0 +1,20 @@
function [result] = Simpson(f, a, b, N)
%SIMPSON : Doing Simpson numerical calculus
% f: the function to integral
% a, b: the intetral interval
% N: points number
h = (b - a) / N;
result = f(a) + f(b);
m = N / 2;
pt1 = 0;
for i = 0:m-1
pt1 = pt1 + f(a + (2 * i + 1) * h);
end
result = result + 4 * pt1;
pt2 = 0;
for i = 1:m-1
pt2 = pt2 + f(a + (2 * i) * h);
end
result = result + 2 * pt2;
result = result * h / 3;
end
Loading

0 comments on commit 257b763

Please sign in to comment.