forked from corolla-johnson/mkultra
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainers.py
353 lines (279 loc) · 12.3 KB
/
trainers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
from transformers import Trainer
from transformers import Adafactor
import random
import torch
class WorldInfoTrainer:
def __init__(self, model, tokenizer, optimizer, blocks, max_spacing=0, max_block_size=1024, min_loss=0, repeat_to_fill=True):
self.model = model
self.tokenizer = tokenizer
if optimizer is None:
self.optimizer = Adafactor([model.get_soft_params()])
else:
self.optimizer = optimizer
self.blocks = blocks
self.max_spacing = max_spacing
self.max_block_size = max_block_size
self.min_loss = min_loss
self.repeat_to_fill = repeat_to_fill
self.tokenize_blocks()
def tokenize_blocks(self):
for block in self.blocks:
block['call'] = self.tokenizer(block['call'], return_tensors="pt").input_ids.to(self.model.device)
block['response'] = self.tokenizer(block['response'], return_tensors="pt").input_ids.to(self.model.device)
def arrange_blocks(self):
arranged_blocks = list()
for block in self.blocks:
call = block['call']
response = block['response']
real_max_spacing = min(
self.max_block_size - self.model.learned_embedding.shape[-2] - call.shape[-1] - response.shape[-1],
self.max_spacing)
spacing = random.randint(0, real_max_spacing)
space_ids = torch.randint(low=0, high=len(self.tokenizer), size=(1, spacing)).to(self.model.device)
ignore_len = call.shape[-1] + spacing
# Cat spacing and call first
input_ids = torch.cat([space_ids, call], dim=1)
labels = torch.cat([torch.full((1,ignore_len),-100).to(self.model.device)], dim=1)
if self.repeat_to_fill:
# Cat response until nearly full
while (input_ids.shape[-1] + response.shape[-1]) < self.max_block_size:
input_ids = torch.cat([input_ids, response], dim=1)
labels = torch.cat([labels, response], dim=1)
print(input_ids.shape)
else:
input_ids = torch.cat([input_ids, response], dim=1)
labels = torch.cat([labels, response], dim=1)
arranged_blocks.append((input_ids, labels))
random.shuffle(arranged_blocks)
return arranged_blocks
def train(self, epochs=1):
self.model.train()
steps = 0
total_steps = len(self.blocks) * epochs
for i in range(epochs):
arranged_blocks = self.arrange_blocks()
epoch_loss = 0
for input_ids, labels in arranged_blocks:
self.optimizer.zero_grad()
output = self.model(input_ids=input_ids, labels=labels)
loss = output.loss
loss.backward()
self.optimizer.step()
steps += 1
epoch_loss += loss.item()
epoch_loss /= len(arranged_blocks)
print(f"Epoch {i} loss: {epoch_loss}")
if(epoch_loss < self.min_loss):
return
class SoftPromptTrainer:
def __init__(self,
model=None,
optimizer=None,
project_dir=None,
text_path=None,
block_size=32,
n_tokens=20,
ema_alpha=0.1,
checkpoint_interval=200,
gradient_acc_steps=1,
shuffle_seed=None):
self.model=model
self.optimizer=optimizer
self.project_dir=project_dir
self.text_path=text_path
self.block_size=block_size
self.n_tokens=n_tokens
self.ema_alpha=ema_alpha
self.checkpoint_interval=checkpoint_interval
self.shuffle_seed=shuffle_seed
self.gradient_acc_steps=gradient_acc_steps
self._maybe_create_project_directory()
self.loaded_sp = self._load_latest_checkpoint()
self.tokens = self._get_tokens()
self.blocks = self._get_blocks()
self.block_order = self._get_block_order()
# Initialize soft prompt in model
if self.loaded_sp is None:
model.initialize_soft_prompt(n_tokens=n_tokens)
self.sp_step = 0
self.ema_loss = None
self.eval_loss = None
else:
model.set_soft_prompt(self.loaded_sp)
self.sp_step = self.loaded_sp._metadata['step']
self.ema_loss = self.loaded_sp._metadata['loss']
self.eval_loss = self.loaded_sp._metadata['eval_loss']
def _filename_for_checkpoint(self, step):
return f"{self._project_name()}-step-{step}.json"
def _project_name(self):
import os
return os.path.basename(os.path.normpath(self.project_dir))
def _maybe_create_project_directory(self):
from mkultra.soft_prompt import SoftPrompt
import os
# Look for existing project directory
try:
os.makedirs(self.project_dir)
print(f"Created project directory at {self.project_dir}")
except FileExistsError:
print(f"Found project directory at {self.project_dir}")
def _load_latest_checkpoint(self):
from mkultra.soft_prompt import SoftPrompt
import os
# Look for existing checkpoints
project_files = os.listdir(self.project_dir)
if project_files is not None:
checkpoint_files = [check_file for check_file in project_files if ('-step-' in check_file) ]
if len(checkpoint_files) > 0:
highest_step = max([ int(check_file[check_file.rfind('-step-')+6:-5]) for check_file in checkpoint_files ])
print(f"Loading latest checkpoint: {highest_step}")
return SoftPrompt.from_file( os.path.join(self.project_dir, self._filename_for_checkpoint(highest_step)) )
else:
print("No checkpoints found")
return None
def _get_tokens(self):
import json
import os
from transformers import GPT2TokenizerFast
tokens = None
tokens_path = os.path.join(self.project_dir,"tokens.json")
tokenizer = GPT2TokenizerFast.from_pretrained("gpt2")
# See if we already have a tokens file
try:
with open(tokens_path, 'r', encoding='utf-8') as file:
tokens = json.load(file)
print("Loaded existing tokens.json file")
except FileNotFoundError:
print("No tokens.json exists, creating it...")
# If not, make one from the text path
if tokens is None:
with open(self.text_path, 'r', encoding='utf-8') as file:
text = file.read()
tokens = tokenizer.encode(text)
with open(tokens_path, 'x', encoding='utf-8') as file:
json.dump(tokens, file)
return tokens
def _get_blocks(self):
import math
# Partition tokens into blocks
blocks = list()
num_blocks = math.ceil(len(self.tokens)/self.block_size)
for block_num in range(num_blocks):
start = block_num * self.block_size
end = min(start + self.block_size, len(self.tokens))
blocks.append( self.tokens[start:end] )
return blocks
def _get_block_order(self):
import os
import json
block_order_path = os.path.join(self.project_dir, "block_order.json")
# See if we already have a block_order file
try:
with open(block_order_path, 'r', encoding='utf-8') as file:
block_order = json.load(file)
print("Loaded existing block_order.json file")
except FileNotFoundError:
print("No block_order.json exists, creating it...")
block_order = [*range(len(self.blocks))]
with open(block_order_path, 'x', encoding='utf-8') as file:
json.dump(block_order, file)
return block_order
def train(self, num_training_steps=None):
from tqdm import tqdm
from mkultra.soft_prompt import SoftPrompt
import random
import torch
import os
import json
import math
# Train for one epoch by default
if num_training_steps is None:
num_training_steps = len(self.blocks)
self.model.train()
torch.cuda.empty_cache()
loss_log_path = os.path.join(self.project_dir,"loss_log.csv")
bar = tqdm(total=num_training_steps)
session_step = 0
# If we have a shuffle seed, shuffle beforehand
if self.shuffle_seed is not None:
random.seed(self.shuffle_seed)
self.block_order = [*range(len(self.blocks))]
random.shuffle(self.block_order)
while session_step < num_training_steps:
# Shuffle blocks every epoch
if self.sp_step % len(self.blocks) == 0:
random.shuffle(self.block_order)
with open(os.path.join(self.project_dir, "block_order.json"), 'w', encoding='utf-8') as file:
json.dump(self.block_order, file)
idx = self.sp_step % len(self.blocks)
block = self.blocks[self.block_order[idx]]
input_ids = torch.LongTensor(block).unsqueeze(0).cuda().detach()
# Forward pass and optimize
outputs = self.model(input_ids=input_ids, labels=input_ids)
loss = outputs.loss
loss.backward()
instant_loss = loss.item()
# Gradient accumulation
if (session_step%self.gradient_acc_steps==0) or (session_step == (num_training_steps-1)):
self.optimizer.step()
self.optimizer.zero_grad()
# Discard tensor that was moved to GPU
del input_ids
torch.cuda.empty_cache()
if math.isnan(instant_loss):
raise ValueError(f"NaN loss at step {self.sp_step}")
# Calculate EMA loss
self.ema_loss = self.ema_alpha*instant_loss + (1-self.ema_alpha)*self.ema_loss if self.ema_loss is not None else instant_loss
bar.set_postfix({
"Model Step" : self.sp_step,
"EMA Loss" : self.ema_loss,
})
bar.update(1)
# Save checkpoint every so often
if self.sp_step%self.checkpoint_interval == 0:
sp = SoftPrompt.from_tuning_model(self.model,
{"name" : f"{self._project_name} Step {self.sp_step}",
"step" : self.sp_step,
"loss" : self.ema_loss})
sp.to_file( os.path.join( self.project_dir,self._filename_for_checkpoint(self.sp_step) ) )
with open(loss_log_path, 'a', encoding='utf-8') as file:
file.write(f"{self.sp_step},{self.ema_loss}\n")
session_step += 1
self.sp_step += 1
# Save a checkpoint once done
sp = SoftPrompt.from_tuning_model(self.model,
{"name" : f"{self._project_name} {self.sp_step}",
"step" : self.sp_step,
"loss" : self.ema_loss})
sp.to_file( os.path.join( self.project_dir,self._filename_for_checkpoint(self.sp_step) ) )
def evaluate(self, eval_percentage=0.1):
from tqdm import tqdm
import torch
self.model.eval()
eval_steps = round(eval_percentage * len(self.blocks))
bar = tqdm(total=eval_steps)
session_step = 0
# If we have a shuffle seed, shuffle beforehand
if self.shuffle_seed is not None:
random.seed(self.shuffle_seed-1)
self.block_order = [*range(len(self.blocks))]
random.shuffle(self.block_order)
eval_loss = 0
while session_step < eval_steps:
block = self.blocks[self.block_order[session_step]]
input_ids = torch.LongTensor(block).unsqueeze(0).cuda().detach()
with torch.no_grad():
# Forward pass and optimize
outputs = self.model(input_ids=input_ids, labels=input_ids)
loss = outputs.loss.item()
eval_loss += loss
# Discard tensor that was moved to GPU
del input_ids
torch.cuda.empty_cache()
bar.set_postfix({
"Loss" : loss,
})
bar.update(1)
session_step += 1
eval_loss /= eval_steps
return eval_loss