forked from mkshing/svdiff-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
inference.py
143 lines (130 loc) · 6.32 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import argparse
import os
from tqdm import tqdm
import random
import torch
import huggingface_hub
from transformers import CLIPTextModel
from diffusers import StableDiffusionPipeline
from diffusers.utils import is_xformers_available
from svdiff_pytorch import load_unet_for_svdiff, load_text_encoder_for_svdiff, SCHEDULER_MAPPING, image_grid
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--pretrained_model_name_or_path", type=str, help="pretrained model name or path")
parser.add_argument("--spectral_shifts_ckpt", type=str, help="path to spectral_shifts.safetensors")
# diffusers config
parser.add_argument("--prompt", type=str, nargs="?", default="a photo of *s", help="the prompt to render")
parser.add_argument("--num_inference_steps", type=int, default=50, help="number of sampling steps")
parser.add_argument("--guidance_scale", type=float, default=7.5, help="unconditional guidance scale")
parser.add_argument("--num_images_per_prompt", type=int, default=1, help="number of images per prompt")
parser.add_argument("--height", type=int, default=512, help="image height, in pixel space",)
parser.add_argument("--width", type=int, default=512, help="image width, in pixel space",)
parser.add_argument("--seed", type=str, default="random_seed", help="the seed (for reproducible sampling)")
parser.add_argument("--scheduler_type", type=str, choices=["ddim", "plms", "lms", "euler", "euler_ancestral", "dpm_solver++"], default="ddim", help="diffusion scheduler type")
parser.add_argument("--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers.")
parser.add_argument("--spectral_shifts_scale", type=float, default=1.0, help="scaling spectral shifts")
parser.add_argument("--fp16", action="store_true", help="fp16 inference")
args = parser.parse_args()
return args
def load_text_encoder(pretrained_model_name_or_path, spectral_shifts_ckpt, device, fp16=False):
if os.path.isdir(spectral_shifts_ckpt):
spectral_shifts_ckpt = os.path.join(spectral_shifts_ckpt, "spectral_shifts_te.safetensors")
elif not os.path.exists(spectral_shifts_ckpt):
# download from hub
hf_hub_kwargs = {} if hf_hub_kwargs is None else hf_hub_kwargs
try:
spectral_shifts_ckpt = huggingface_hub.hf_hub_download(spectral_shifts_ckpt, filename="spectral_shifts_te.safetensors", **hf_hub_kwargs)
except huggingface_hub.utils.EntryNotFoundError:
return CLIPTextModel.from_pretrained(pretrained_model_name_or_path, subfolder="text_encoder", torch_dtype=torch.float16 if fp16 else None).to(device)
if not os.path.exists(spectral_shifts_ckpt):
return CLIPTextModel.from_pretrained(pretrained_model_name_or_path, subfolder="text_encoder", torch_dtype=torch.float16 if fp16 else None).to(device)
text_encoder = load_text_encoder_for_svdiff(
pretrained_model_name_or_path=pretrained_model_name_or_path,
spectral_shifts_ckpt=spectral_shifts_ckpt,
subfolder="text_encoder",
)
# first perform svd and cache
for module in text_encoder.modules():
if hasattr(module, "perform_svd"):
module.perform_svd()
if fp16:
text_encoder = text_encoder.to(device, dtype=torch.float16)
return text_encoder
def main():
args = parse_args()
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"device: {device}")
# load unet
unet = load_unet_for_svdiff(args.pretrained_model_name_or_path, spectral_shifts_ckpt=args.spectral_shifts_ckpt, subfolder="unet")
unet = unet.to(device)
# first perform svd and cache
for module in unet.modules():
if hasattr(module, "perform_svd"):
module.perform_svd()
if args.fp16:
unet = unet.to(device, dtype=torch.float16)
text_encoder = load_text_encoder(
pretrained_model_name_or_path=args.pretrained_model_name_or_path,
spectral_shifts_ckpt=args.spectral_shifts_ckpt,
fp16=args.fp16,
device=device
)
# load pipe
pipe = StableDiffusionPipeline.from_pretrained(
args.pretrained_model_name_or_path,
unet=unet,
text_encoder=text_encoder,
requires_safety_checker=False,
safety_checker=None,
feature_extractor=None,
scheduler=SCHEDULER_MAPPING[args.scheduler_type].from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler"),
torch_dtype=torch.float16 if args.fp16 else None,
)
if args.enable_xformers_memory_efficient_attention:
assert is_xformers_available()
pipe.enable_xformers_memory_efficient_attention()
print("Using xformers!")
try:
import tomesd
tomesd.apply_patch(pipe, ratio=0.5)
print("Using tomesd!")
except:
pass
pipe = pipe.to(device)
print("loaded pipeline")
# run!
if pipe.unet.conv_out.scale != args.spectral_shifts_scale:
for module in pipe.unet.modules():
if hasattr(module, "set_scale"):
module.set_scale(scale=args.spectral_shifts_scale)
if not isinstance(pipe.text_encoder, CLIPTextModel):
for module in pipe.text_encoder.modules():
if hasattr(module, "set_scale"):
module.set_scale(scale=args.spectral_shifts_scale)
print(f"Set spectral_shifts_scale to {args.spectral_shifts_scale}!")
if args.seed == "random_seed":
random.seed()
seed = random.randint(0, 2**32)
else:
seed = int(args.seed)
generator = torch.Generator(device=device).manual_seed(seed)
print(f"seed: {seed}")
prompts = args.prompt.split("::")
all_images = []
for prompt in tqdm(prompts):
with torch.autocast(device), torch.inference_mode():
images = pipe(
prompt,
num_inference_steps=args.num_inference_steps,
guidance_scale=args.guidance_scale,
generator=generator,
num_images_per_prompt=args.num_images_per_prompt,
height=args.height,
width=args.width,
).images
all_images.extend(images)
grid_image = image_grid(all_images, len(prompts), args.num_images_per_prompt)
grid_image.save("grid.png")
print("DONE! See `grid.png` for the results!")
if __name__ == '__main__':
main()