-
Notifications
You must be signed in to change notification settings - Fork 5
/
datasets.py
251 lines (207 loc) · 9.08 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
# --------------------------------------------------------
# EVA-02: A Visual Representation for Neon Genesis
# Github source: https://github.com/baaivision/EVA/EVA02
# Copyright (c) 2023 Beijing Academy of Artificial Intelligence (BAAI)
# Licensed under The MIT License [see LICENSE for details]
# By Yuxin Fang
#
# Based on EVA: Exploring the Limits of Masked Visual Representation Learning at Scale (https://arxiv.org/abs/2211.07636)
# https://github.com/baaivision/EVA/tree/master/EVA-01
# --------------------------------------------------------'
import os
import math
import torch
import utils
from torchvision import datasets, transforms
from torchvision.transforms import functional as F
from timm.data.constants import \
IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD
from transforms import RandomResizedCropAndInterpolationWithTwoResolution
from timm.data import create_transform
from masking_generator import MaskingGenerator
from dataset_folder import ImageFolder
def map2pixel4peco(x):
return x * 255
class DataAugmentationForEVA(object):
def __init__(self, args):
imagenet_default_mean_and_std = args.imagenet_default_mean_and_std
mean = (0.48145466, 0.4578275, 0.40821073) if not imagenet_default_mean_and_std else IMAGENET_DEFAULT_MEAN
std = (0.26862954, 0.26130258, 0.27577711) if not imagenet_default_mean_and_std else IMAGENET_DEFAULT_STD
self.common_transform = [
transforms.RandomHorizontalFlip(p=0.5),
RandomResizedCropAndInterpolationWithTwoResolution(
size=args.input_size, second_size=args.second_input_size, scale=args.crop_scale, ratio=args.crop_ratio,
interpolation=args.train_interpolation, second_interpolation=args.second_interpolation,
),
]
if args.color_jitter > 0:
self.common_transform = \
[transforms.ColorJitter(args.color_jitter, args.color_jitter, args.color_jitter)] + \
self.common_transform
self.common_transform = transforms.Compose(self.common_transform)
self.patch_transform = [
transforms.ToTensor(),
transforms.Normalize(
mean=mean,
std=std
)
]
self.patch_transform = transforms.Compose(self.patch_transform)
self.visual_token_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(
mean=(0.48145466, 0.4578275, 0.40821073) if 'clip' in args.teacher_type else IMAGENET_INCEPTION_MEAN,
std=(0.26862954, 0.26130258, 0.27577711) if 'clip' in args.teacher_type else IMAGENET_INCEPTION_STD,
),
])
self.masked_position_generator = MaskingGenerator(
args.window_size, num_masking_patches=args.num_mask_patches,
max_num_patches=args.max_mask_patches_per_block,
min_num_patches=args.min_mask_patches_per_block,
)
def __call__(self, image):
for_patches, for_visual_tokens = self.common_transform(image)
return \
self.patch_transform(for_patches), self.visual_token_transform(for_visual_tokens), \
self.masked_position_generator()
def __repr__(self):
repr = "(DataAugmentationForEVA,\n"
repr += " common_transform = %s,\n" % str(self.common_transform)
repr += " patch_transform = %s,\n" % str(self.patch_transform)
repr += " visual_tokens_transform = %s,\n" % str(self.visual_token_transform)
repr += " Masked position generator = %s,\n" % str(self.masked_position_generator)
repr += ")"
return repr
def build_eva_pretraining_dataset(args):
transform = DataAugmentationForEVA(args)
print("Data Aug = %s" % str(transform))
dataset = ImageFolder(args.data_path, transform=transform)
return dataset
def build_dataset(is_train, args):
transform = build_transform(is_train, args)
print("Transform = ")
if isinstance(transform, tuple):
for trans in transform:
print(" - - - - - - - - - - ")
for t in trans.transforms:
print(t)
else:
for t in transform.transforms:
print(t)
print("---------------------------")
if args.data_set == 'CIFAR':
dataset = datasets.CIFAR100(args.data_path, train=is_train, transform=transform)
nb_classes = 100
elif args.data_set == 'IMNET':
root = os.path.join(args.data_path, 'train' if is_train else 'val')
dataset = datasets.ImageFolder(root, transform=transform)
nb_classes = 1000
elif args.data_set == "image_folder":
root = args.data_path if is_train else args.eval_data_path
dataset = ImageFolder(root, transform=transform)
nb_classes = args.nb_classes
assert len(dataset.class_to_idx) == nb_classes
else:
raise NotImplementedError()
assert nb_classes == args.nb_classes
print("Number of the class = %d" % args.nb_classes)
return dataset, nb_classes
def build_val_dataset_for_pt(is_train, args):
transform = build_transform(is_train, args)
print("Transform = ")
if isinstance(transform, tuple):
for trans in transform:
print(" - - - - - - - - - - ")
for t in trans.transforms:
print(t)
else:
for t in transform.transforms:
print(t)
print("---------------------------")
if args.val_data_set == 'CIFAR':
dataset = datasets.CIFAR100(args.data_path, train=is_train, transform=transform)
nb_classes = 100
elif args.val_data_set == 'IMNET':
root = os.path.join(args.val_data_path, 'train' if is_train else 'val')
dataset = datasets.ImageFolder(root, transform=transform)
nb_classes = 1000
elif args.val_data_set == "image_folder":
root = args.data_path if is_train else args.eval_data_path
dataset = ImageFolder(root, transform=transform)
nb_classes = args.nb_classes
assert len(dataset.class_to_idx) == nb_classes
else:
raise NotImplementedError()
return dataset, nb_classes
class RandomResizedCrop(transforms.RandomResizedCrop):
"""
RandomResizedCrop for matching TF/TPU implementation: no for-loop is used.
This may lead to results different with torchvision's version.
Following BYOL's TF code:
https://github.com/deepmind/deepmind-research/blob/master/byol/utils/dataset.py#L206
"""
@staticmethod
def get_params(img, scale, ratio):
width, height = F.get_image_size(img)
area = height * width
target_area = area * torch.empty(1).uniform_(scale[0], scale[1]).item()
log_ratio = torch.log(torch.tensor(ratio))
aspect_ratio = torch.exp(
torch.empty(1).uniform_(log_ratio[0], log_ratio[1])
).item()
w = int(round(math.sqrt(target_area * aspect_ratio)))
h = int(round(math.sqrt(target_area / aspect_ratio)))
w = min(w, width)
h = min(h, height)
i = torch.randint(0, height - h + 1, size=(1,)).item()
j = torch.randint(0, width - w + 1, size=(1,)).item()
return i, j, h, w
def build_transform(is_train, args):
resize_im = args.input_size > 32
imagenet_default_mean_and_std = args.imagenet_default_mean_and_std
mean = (0.48145466, 0.4578275, 0.40821073) if not imagenet_default_mean_and_std else IMAGENET_DEFAULT_MEAN
std = (0.26862954, 0.26130258, 0.27577711) if not imagenet_default_mean_and_std else IMAGENET_DEFAULT_STD
if is_train:
if args.linear_probe:
return transforms.Compose([
RandomResizedCrop(args.input_size, interpolation=3),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=mean, std=std)],
)
# this should always dispatch to transforms_imagenet_train
transform = create_transform(
no_aug=args.no_aug,
input_size=args.input_size,
is_training=True,
color_jitter=args.color_jitter,
auto_augment=args.aa,
interpolation=args.train_interpolation,
re_prob=args.reprob,
re_mode=args.remode,
re_count=args.recount,
mean=mean,
std=std,
scale=args.scale
)
if not resize_im:
# replace RandomResizedCropAndInterpolation with
# RandomCrop
transform.transforms[0] = transforms.RandomCrop(
args.input_size, padding=4)
return transform
t = []
if resize_im:
if args.crop_pct is None:
if args.input_size < 384:
args.crop_pct = 224 / 256
else:
args.crop_pct = 1.0
size = int(args.input_size / args.crop_pct)
t.append(
transforms.Resize(size, interpolation=3), # to maintain same ratio w.r.t. 224 images
)
t.append(transforms.CenterCrop(args.input_size))
t.append(transforms.ToTensor())
t.append(transforms.Normalize(mean, std))
return transforms.Compose(t)