Skip to content

Answering Ambiguous Questions via Iterative Prompting

Notifications You must be signed in to change notification settings

sunnweiwei/AmbigPrompt

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

AmbigPrompt

Code for paper Answering Ambiguous Questions via Iterative Prompting.

AmbigPrompt

Prepare Data

Download the Wikipedia text splitted by 100 words from DPR, put it under data/wikipedia/psgs_w100.tsv, and run the following command to build Wikipedia's redis cache.

python dataset.py

Download NQ and AmbigNQ data from shmsw25/AmbigQA and put it under data/nq and data/ambig

Train Retrieval Model

Training a dense passage retrieval model using luyug/dense

python train_dense.py

Encode the passages and perform passage retrieval using Faiss.

python inference_dense.py

This step obtains QA data that includes the 100 retrieved passages, like data/ambig/dev.json.

Train QA Model

Download the pre-trained checkpoint from facebookresearch/FiD.

Train the prompting model and QA model on multi-answer QA data:

accelerate launch train.py --data_path data/ambig/train.json --save_path out/ambig/model --do_train true --do_eval false

Evaluate the model:

accelerate launch train.py --data_path data/ambig/dev.json --checkpoint out/ambig/model/9.py --do_train false --do_eval true

Pseudo MultiQA Data Construction

Train a span selection baseline using script in shmsw25/AmbigQA. Predict answers on each of the 100 retrieved passages. Detailed scripts and produced datasets coming soon.

Cite

@inproceedings{Sun2023IsCG,
  title={Answering Ambiguous Questions via Iterative Prompting},
  author={Weiwei Sun and Hengyi Cai and Hongshen Chen and Pengjie Ren and Zhumin Chen and Maarten de Rijke and Zhaochun Ren},
  booktitle={ACL},
  year={2023},
}

About

Answering Ambiguous Questions via Iterative Prompting

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages