Skip to content

Commit

Permalink
Merge pull request #293 from stocnet/develop
Browse files Browse the repository at this point in the history
v1.3.3
  • Loading branch information
jhollway authored Mar 7, 2024
2 parents 4082e57 + a484ecd commit d58d036
Show file tree
Hide file tree
Showing 23 changed files with 454 additions and 57 deletions.
6 changes: 3 additions & 3 deletions DESCRIPTION
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
Package: migraph
Title: Many Network Measures, Motifs, Members, and Models
Version: 1.3.2
Date: 2024-01-25
Version: 1.3.3
Date: 2024-03-06
Description: A set of tools for analysing multimodal networks.
It includes functions for measuring
centrality, centralization, cohesion, closure, constraint and diversity,
Expand All @@ -18,7 +18,7 @@ License: MIT + file LICENSE
Language: en-GB
Encoding: UTF-8
LazyData: true
RoxygenNote: 7.3.0
RoxygenNote: 7.3.1
Depends:
R (>= 3.6.0),
manynet
Expand Down
3 changes: 3 additions & 0 deletions NAMESPACE
Original file line number Diff line number Diff line change
Expand Up @@ -136,6 +136,9 @@ export(node_automorphic_equivalence)
export(node_betweenness)
export(node_bridges)
export(node_brokerage_census)
export(node_brokering)
export(node_brokering_activity)
export(node_brokering_exclusivity)
export(node_closeness)
export(node_components)
export(node_constraint)
Expand Down
22 changes: 22 additions & 0 deletions NEWS.md
Original file line number Diff line number Diff line change
@@ -1,3 +1,25 @@
# migraph 1.3.3

2024-01-25

## Measures

- Added `node_brokering_activity()` and `node_brokering_exclusivity()` from Hamilton et al (2020)
- `node_degree()` now returns strength centrality (alpha = 1) for weighted networks by default
- `node_redundancy()` now works for weighted onemode and twomode networks (closed #292)
- Matrix operations bring an approximately sixfold speed increase compared to vapply
- `node_effsize()` now works for weighted onemode and twomode networks
- Matrix operations bring an approximately sixfold speed increase compared to vapply
- `network_equivalency()` now normalises weighted twomode networks (closed #291)

## Members

- Added `node_brokering()` for identifying brokering roles from brokering activity and exclusivity
- `node_roulette()` now optimises group diversity based on historical interactions (Lai and Hao 2016)
- Added more documentation about maximally diverse grouping problem
- Matrix operations bring an approximately threefold speed increase compared to vapply
- Perturbation helpers can be used also for blockmodelling (closed #38)

# migraph 1.3.2

2024-01-25
Expand Down
4 changes: 2 additions & 2 deletions R/measure_centrality.R
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@
#' or weighted degree/strength of nodes in a weighted network;
#' there are several related shortcut functions:
#' - `node_deg()` returns the unnormalised results.
#' - `node_indegree()` returns the `direction = 'out'` results.
#' - `node_indegree()` returns the `direction = 'in'` results.
#' - `node_outdegree()` returns the `direction = 'out'` results.
#' - `node_multidegree()` measures the ratio between types of ties in a multiplex network.
#' - `node_posneg()` measures the PN (positive-negative) centrality of a signed network.
Expand Down Expand Up @@ -90,7 +90,7 @@ NULL
#' @rdname degree_centrality
#' @importFrom manynet as_igraph
#' @export
node_degree <- function (.data, normalized = TRUE, alpha = 0,
node_degree <- function (.data, normalized = TRUE, alpha = 1,
direction = c("all","out","in")){

if(missing(.data)) {expect_nodes(); .data <- .G()}
Expand Down
7 changes: 6 additions & 1 deletion R/measure_closure.R
Original file line number Diff line number Diff line change
Expand Up @@ -80,7 +80,11 @@ node_transitivity <- function(.data) {
.data)
}

#' @rdname closure
#' @rdname closure
#' @section Equivalency:
#' The `network_equivalency()` function calculates the Robins and Alexander (2004)
#' clustering coefficient for two-mode networks.
#' Note that for weighted two-mode networks, the result is divided by the average tie weight.
#' @examples
#' network_equivalency(ison_southern_women)
#' @export
Expand All @@ -96,6 +100,7 @@ network_equivalency <- function(.data) {
sum(twopaths *
(matrix(indegrees, c, c) - twopaths)))
if (is.nan(output)) output <- 1
if(manynet::is_weighted(.data)) output <- output / mean(mat[mat>0])
} else stop("This function expects a two-mode network")
make_network_measure(output, .data)
}
Expand Down
66 changes: 50 additions & 16 deletions R/measure_holes.R
Original file line number Diff line number Diff line change
Expand Up @@ -62,39 +62,73 @@ node_bridges <- function(.data){
#' Borgatti, Steven. 1997.
#' “\href{http://www.analytictech.com/connections/v20(1)/holes.htm}{Structural Holes: Unpacking Burt’s Redundancy Measures}”
#' _Connections_ 20(1):35-38.
#'
#' Burchard, Jake, and Benjamin Cornwell. 2018.
#' “Structural Holes and Bridging in Two-Mode Networks.”
#' _Social Networks_ 55:11–20.
#' \doi{10.1016/j.socnet.2018.04.001.}
#' @examples
#' node_redundancy(ison_adolescents)
#' node_redundancy(ison_southern_women)
#' @export
node_redundancy <- function(.data){
g <- manynet::as_igraph(.data)
.inc <- NULL
out <- vapply(igraph::V(g), function(ego){
n = igraph::neighbors(g, ego)
t = length(igraph::E(g)[.inc(n) & !.inc(ego)])
n = length(n)
2 * t / n
}, FUN.VALUE = numeric(1))
if(manynet::is_twomode(.data)){
mat <- manynet::as_matrix(.data)
out <- c(.redund2(mat), .redund2(t(mat)))
} else {
out <- .redund(manynet::as_matrix(.data))
}
make_node_measure(out, .data)
}

.redund <- function(.mat){
n <- nrow(.mat)
qs <- .twopath_matrix(.mat > 0)
piq <- .mat/rowSums(.mat)
mjq <- .mat/matrix(do.call("pmax",data.frame(.mat)),n,n)
out <- rowSums(qs * piq * mjq)
out
}

.redund2 <- function(.mat){
sigi <- .mat %*% t(.mat)
diag(sigi) <- 0
vapply(seq.int(nrow(sigi)),
function(x){
xvec <- sigi[x,] #> 0
if(manynet::is_weighted(.mat)){
wt <- colMeans((.mat[x,] > 0 * t(.mat[xvec > 0,])) * t(.mat[xvec > 0,]) + .mat[x,]) * 2
} else wt <- 1
sum(colSums(xvec > 0 & t(sigi[xvec > 0,])) * xvec[xvec > 0] /
(sum(xvec) * wt))
}, FUN.VALUE = numeric(1))
}

#' @rdname holes
#' @examples
#' node_effsize(ison_adolescents)
#' node_effsize(ison_southern_women)
#' @export
node_effsize <- function(.data){
g <- manynet::as_igraph(.data)
.inc <- NULL
out <- vapply(igraph::V(g), function(ego){
n = igraph::neighbors(g, ego)
t = length(igraph::E(g)[.inc(n) & !.inc(ego)])
n = length(n)
n - 2 * t / n
}, FUN.VALUE = numeric(1))
if(manynet::is_twomode(.data)){
mat <- manynet::as_matrix(.data)
out <- c(rowSums(manynet::as_matrix(manynet::to_mode1(.data))>0),
rowSums(manynet::as_matrix(manynet::to_mode2(.data))>0)) - node_redundancy(.data)
} else {
mat <- manynet::as_matrix(.data)
out <- rowSums(mat>0) - .redund(mat)
}
make_node_measure(out, .data)
}

.twopath_matrix <- function(.data){
.data <- manynet::as_matrix(.data)
qs <- .data %*% t(.data)
diag(qs) <- 0
qs
}


#' @rdname holes
#' @examples
#' node_efficiency(ison_adolescents)
Expand Down
128 changes: 128 additions & 0 deletions R/member_cliques.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,128 @@
#' Clique partitioning algorithms
#'
#' @description
#' These functions create a vector of nodes' memberships in
#' cliques:
#'
#' - `node_roulette()` assigns nodes to maximally diverse groups.
#'
#' @section Maximally diverse grouping problem:
#' This well known computational problem is a NP-hard problem
#' with a number of relevant applications,
#' including the formation of groups of students that have encountered
#' each other least or least recently.
#' Essentially, the aim is to return a membership of nodes in cliques
#' that minimises the sum of their previous (weighted) ties:
#'
#' \deqn{\sum_{g=1}^{m} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} x_{ij} y_{ig} y_{jg}}
#'
#' where \eqn{y_{ig} = 1} if node \eqn{i} is in group \eqn{g}, and 0 otherwise.
#'
#' \eqn{x_{ij}} is the existing network data.
#' If this is an empty network, the function will just return cliques.
#' To run this repeatedly, one can join a clique network of the membership result
#' with the original network, using this as the network data for the next round.
#'
#' A form of the Lai and Hao (2016) iterated maxima search (IMS) is used here.
#' This performs well for small and moderately sized networks.
#' It includes both weak and strong perturbations to an initial solution
#' to ensure that a robust solution from the broader state space is identified.
#' The user is referred to Lai and Hao (2016) and Lai et al (2021) for more details.
#' @inheritParams cohesion
#' @name cliques
#' @family memberships
NULL

#' @rdname cliques
#' @param num_groups An integer indicating the number of groups desired.
#' @param group_size An integer indicating the desired size of most of the groups.
#' Note that if the number of nodes is not divisible into groups of equal size,
#' there may be some larger or smaller groups.
#' @param times An integer of the number of search iterations the algorithm should complete.
#' By default this is the number of nodes in the network multiplied by the number of groups.
#' This heuristic may be insufficient for small networks and numbers of groups,
#' and burdensome for large networks and numbers of groups, but can be overwritten.
#' At every 10th iteration, a stronger perturbation of a number of successive changes,
#' approximately the number of nodes divided by the number of groups,
#' will take place irrespective of whether it improves the objective function.
#' @references
#' Lai, Xiangjing, and Jin-Kao Hao. 2016.
#' “Iterated Maxima Search for the Maximally Diverse Grouping Problem.”
#' _European Journal of Operational Research_ 254(3):780–800.
#' \doi{10.1016/j.ejor.2016.05.018}.
#'
#' Lai, Xiangjing, Jin-Kao Hao, Zhang-Hua Fu, and Dong Yue. 2021.
#' “Neighborhood Decomposition Based Variable Neighborhood Search and Tabu Search for Maximally Diverse Grouping.”
#' _European Journal of Operational Research_ 289(3):1067–86.
#' \doi{10.1016/j.ejor.2020.07.048}.
#' @export
node_roulette <- function(.data, num_groups, group_size, times = NULL){
if(missing(num_groups) & missing(group_size)){
stop(paste("Either `num_groups` must indicate number of groups desired",
"or `group_size` must indicate the desired average size of groups."))
}
n <- manynet::network_nodes(.data)
my_vec <- sample(seq.int(n))
# Initial partition
if(!missing(num_groups)){
out <- cut(seq_along(my_vec), num_groups, labels = FALSE)[my_vec]
} else {
out <- ceiling(seq_along(my_vec) / group_size)[my_vec]
}
if(is.null(times)) times <- n * max(out)
# Get fitness
mat <- manynet::as_matrix(.data)
fit <- sum(.to_cliques(out) * mat)
soln <- out
for(t in seq.int(times)){
soln <- .weakPerturb(soln)
new_fit <- sum(.to_cliques(soln) * mat)
if(new_fit < fit){
out <- soln
fit <- new_fit
}
if(t %% 10) soln <- .strongPerturb(soln)
}
make_node_member(out, .data)
}

.to_cliques <- function(member){
(member == t(matrix(member, length(member), length(member))))*1
}

.weakPerturb <- function(soln){
gsizes <- table(soln)
evens <- all(gsizes == max(gsizes))
if(evens){
soln <- .swapMove(soln)
} else {
if(stats::runif(1)<0.5) soln <- .swapMove(soln) else
soln <- .oneMove(soln)
}
soln
}

.swapMove <- function(soln){
from <- sample(seq.int(length(soln)), 1)
to <- sample(which(soln != soln[from]), 1)
soln[c(to,from)] <- soln[c(from,to)]
soln
}

.oneMove <- function(soln){
gsizes <- table(soln)
maxg <- which(gsizes == max(gsizes))
from <- sample(which(soln %in% maxg), 1)
soln[from] <- sample(which(gsizes != max(gsizes)), 1)
soln
}

.strongPerturb <- function(soln, strength = 1){
times <- ceiling(strength * length(soln)/max(soln))
for (t in seq.int(times)){
soln <- .weakPerturb(soln)
}
soln
}


18 changes: 0 additions & 18 deletions R/member_components.R
Original file line number Diff line number Diff line change
Expand Up @@ -62,23 +62,5 @@ node_strong_components <- function(.data){
.data)
}

#' @rdname components
#' @param num_groups An integer indicating the number of groups desired
#' @param group_size An integer indicating the desired size of most of the groups
#' @export
node_roulette <- function(.data, num_groups, group_size){
if(missing(num_groups) & missing(group_size)){
stop(paste("Either `num_groups` must indicate number of groups desired",
"or `group_size` must indicate the desired average size of groups."))
}
n <- manynet::network_nodes(.data)
my_vec <- sample(seq.int(n))
if(!missing(num_groups)){
out <- cut(seq_along(my_vec), num_groups, labels = FALSE)[my_vec]
} else {
out <- ceiling(seq_along(my_vec) / group_size)[my_vec]
}
make_node_member(out, .data)
}


Loading

0 comments on commit d58d036

Please sign in to comment.