forked from Lightning-AI/pytorch-lightning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_tpu_spawn.py
104 lines (85 loc) · 3.7 KB
/
test_tpu_spawn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from unittest import mock
from unittest.mock import MagicMock
import pytest
import torch
from torch.utils.data import DataLoader
from pytorch_lightning import Trainer
from pytorch_lightning.strategies import TPUSpawnStrategy
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from tests.helpers.boring_model import BoringModel, RandomDataset
from tests.helpers.dataloaders import CustomNotImplementedErrorDataloader
from tests.helpers.runif import RunIf
from tests.helpers.utils import pl_multi_process_test
class BoringModelNoDataloaders(BoringModel):
def train_dataloader(self):
raise NotImplementedError
def val_dataloader(self):
raise NotImplementedError
def test_dataloader(self):
raise NotImplementedError
def predict_dataloader(self):
raise NotImplementedError
_loader = DataLoader(RandomDataset(32, 64))
_loader_no_len = CustomNotImplementedErrorDataloader(_loader)
@pytest.mark.parametrize(
"train_dataloaders, val_dataloaders, test_dataloaders, predict_dataloaders",
[
(_loader_no_len, None, None, None),
(None, _loader_no_len, None, None),
(None, None, _loader_no_len, None),
(None, None, None, _loader_no_len),
(None, [_loader, _loader_no_len], None, None),
],
)
@mock.patch("pytorch_lightning.strategies.tpu_spawn.xm")
def test_error_iterable_dataloaders_passed_to_fit(
_, tmpdir, train_dataloaders, val_dataloaders, test_dataloaders, predict_dataloaders
):
"""Test that the TPUSpawnStrategy identifies dataloaders with iterable datasets and fails early."""
trainer = Trainer()
model = BoringModelNoDataloaders()
model.trainer = trainer
trainer._data_connector.attach_dataloaders(
model,
train_dataloaders=train_dataloaders,
val_dataloaders=val_dataloaders,
test_dataloaders=test_dataloaders,
predict_dataloaders=predict_dataloaders,
)
with pytest.raises(MisconfigurationException, match="TPUs do not currently support"):
TPUSpawnStrategy(MagicMock()).connect(model)
@mock.patch("pytorch_lightning.strategies.tpu_spawn.xm")
def test_error_process_iterable_dataloader(_):
with pytest.raises(MisconfigurationException, match="TPUs do not currently support"):
TPUSpawnStrategy(MagicMock()).process_dataloader(_loader_no_len)
class BoringModelTPU(BoringModel):
def on_train_start(self) -> None:
assert self.device == torch.device("xla", index=1)
assert os.environ.get("PT_XLA_DEBUG") == "1"
@RunIf(tpu=True)
@pl_multi_process_test
def test_model_tpu_one_core():
"""Tests if device/debug flag is set correctely when training and after teardown for TPUSpawnStrategy."""
trainer = Trainer(tpu_cores=1, fast_dev_run=True, strategy=TPUSpawnStrategy(debug=True))
# assert training strategy attributes for device setting
assert isinstance(trainer.strategy, TPUSpawnStrategy)
assert not trainer.strategy.on_gpu
assert trainer.strategy.on_tpu
assert trainer.strategy.root_device == torch.device("xla", index=1)
model = BoringModelTPU()
trainer.fit(model)
assert "PT_XLA_DEBUG" not in os.environ