Base (i.e., lower-level) statistical functions.
var stats = require( '@stdlib/stats/base' );
Namespace containing "base" (i.e., lower-level) statistical functions.
var ns = stats;
// returns {...}
The namespace contains the following sub-namespaces:
dists
: base (i.e., lower-level) probability distribution modules.
The namespace contains the following statistical functions:
cumax( N, x, strideX, y, strideY )
: calculate the cumulative maximum of a strided array.cumaxabs( N, x, strideX, y, strideY )
: calculate the cumulative maximum absolute value of a strided array.cumin( N, x, strideX, y, strideY )
: calculate the cumulative minimum of a strided array.cuminabs( N, x, strideX, y, strideY )
: calculate the cumulative minimum absolute value of a strided array.dcumax( N, x, strideX, y, strideY )
: calculate the cumulative maximum of double-precision floating-point strided array elements.dcumaxabs( N, x, strideX, y, strideY )
: calculate the cumulative maximum absolute value of double-precision floating-point strided array elements.dcumin( N, x, strideX, y, strideY )
: calculate the cumulative minimum of double-precision floating-point strided array elements.dcuminabs( N, x, strideX, y, strideY )
: calculate the cumulative minimum absolute value of double-precision floating-point strided array elements.dmax( N, x, stride )
: calculate the maximum value of a double-precision floating-point strided array.dmaxabs( N, x, stride )
: calculate the maximum absolute value of a double-precision floating-point strided array.dmaxabssorted( N, x, stride )
: calculate the maximum absolute value of a sorted double-precision floating-point strided array.dmaxsorted( N, x, stride )
: calculate the maximum value of a sorted double-precision floating-point strided array.dmean( N, x, stride )
: calculate the arithmetic mean of a double-precision floating-point strided array.dmeankbn( N, x, stride )
: calculate the arithmetic mean of a double-precision floating-point strided array using an improved Kahan–Babuška algorithm.dmeankbn2( N, x, stride )
: calculate the arithmetic mean of a double-precision floating-point strided array using a second-order iterative Kahan–Babuška algorithm.dmeanli( N, x, stride )
: calculate the arithmetic mean of a double-precision floating-point strided array using a one-pass trial mean algorithm.dmeanlipw( N, x, stride )
: calculate the arithmetic mean of a double-precision floating-point strided array using a one-pass trial mean algorithm with pairwise summation.dmeanors( N, x, stride )
: calculate the arithmetic mean of a double-precision floating-point strided array using ordinary recursive summation.dmeanpn( N, x, stride )
: calculate the arithmetic mean of a double-precision floating-point strided array using a two-pass error correction algorithm.dmeanpw( N, x, stride )
: calculate the arithmetic mean of a double-precision floating-point strided array using pairwise summation.dmeanstdev( N, correction, x, strideX, out, strideOut )
: calculate the mean and standard deviation of a double-precision floating-point strided array.dmeanstdevpn( N, correction, x, strideX, out, strideOut )
: calculate the mean and standard deviation of a double-precision floating-point strided array using a two-pass algorithm.dmeanvar( N, correction, x, strideX, out, strideOut )
: calculate the mean and variance of a double-precision floating-point strided array.dmeanvarpn( N, correction, x, strideX, out, strideOut )
: calculate the mean and variance of a double-precision floating-point strided array using a two-pass algorithm.dmeanwd( N, x, stride )
: calculate the arithmetic mean of a double-precision floating-point strided array using Welford's algorithm.dmediansorted( N, x, stride )
: calculate the median value of a sorted double-precision floating-point strided array.dmidrange( N, x, stride )
: calculate the mid-range of a double-precision floating-point strided array.dmin( N, x, stride )
: calculate the minimum value of a double-precision floating-point strided array.dminabs( N, x, stride )
: calculate the minimum absolute value of a double-precision floating-point strided array.dminsorted( N, x, stride )
: calculate the minimum value of a sorted double-precision floating-point strided array.dmskmax( N, x, strideX, mask, strideMask )
: calculate the maximum value of a double-precision floating-point strided array according to a mask.dmskmin( N, x, strideX, mask, strideMask )
: calculate the minimum value of a double-precision floating-point strided array according to a mask.dmskrange( N, x, strideX, mask, strideMask )
: calculate the range of a double-precision floating-point strided array according to a mask.dnanmax( N, x, stride )
: calculate the maximum value of a double-precision floating-point strided array, ignoringNaN
values.dnanmaxabs( N, x, stride )
: calculate the maximum absolute value of a double-precision floating-point strided array, ignoringNaN
values.dnanmean( N, x, stride )
: calculate the arithmetic mean of a double-precision floating-point strided array, ignoringNaN
values.dnanmeanors( N, x, stride )
: calculate the arithmetic mean of a double-precision floating-point strided array, ignoringNaN
values and using ordinary recursive summation.dnanmeanpn( N, x, stride )
: calculate the arithmetic mean of a double-precision floating-point strided array, ignoringNaN
values and using a two-pass error correction algorithm.dnanmeanpw( N, x, stride )
: calculate the arithmetic mean of a double-precision floating-point strided array, ignoringNaN
values and using pairwise summation.dnanmeanwd( N, x, stride )
: calculate the arithmetic mean of a double-precision floating-point strided array, using Welford's algorithm and ignoringNaN
values.dnanmin( N, x, stride )
: calculate the minimum value of a double-precision floating-point strided array, ignoringNaN
values.dnanminabs( N, x, stride )
: calculate the minimum absolute value of a double-precision floating-point strided array, ignoringNaN
values.dnanmskmax( N, x, strideX, mask, strideMask )
: calculate the maximum value of a double-precision floating-point strided array according to a mask, ignoringNaN
values.dnanmskmin( N, x, strideX, mask, strideMask )
: calculate the minimum value of a double-precision floating-point strided array according to a mask, ignoringNaN
values.dnanmskrange( N, x, strideX, mask, strideMask )
: calculate the range of a double-precision floating-point strided array according to a mask, ignoringNaN
values.dnanrange( N, x, stride )
: calculate the range of a double-precision floating-point strided array, ignoringNaN
values.dnanstdev( N, correction, x, stride )
: calculate the standard deviation of a double-precision floating-point strided array ignoringNaN
values.dnanstdevch( N, correction, x, stride )
: calculate the standard deviation of a double-precision floating-point strided array ignoringNaN
values and using a one-pass trial mean algorithm.dnanstdevpn( N, correction, x, stride )
: calculate the standard deviation of a double-precision floating-point strided array ignoringNaN
values and using a two-pass algorithm.dnanstdevtk( N, correction, x, stride )
: calculate the standard deviation of a double-precision floating-point strided array ignoringNaN
values and using a one-pass textbook algorithm.dnanstdevwd( N, correction, x, stride )
: calculate the standard deviation of a double-precision floating-point strided array ignoringNaN
values and using Welford's algorithm.dnanstdevyc( N, correction, x, stride )
: calculate the standard deviation of a double-precision floating-point strided array ignoringNaN
values and using a one-pass algorithm proposed by Youngs and Cramer.dnanvariance( N, correction, x, stride )
: calculate the variance of a double-precision floating-point strided array ignoringNaN
values.dnanvariancech( N, correction, x, stride )
: calculate the variance of a double-precision floating-point strided array ignoringNaN
values and using a one-pass trial mean algorithm.dnanvariancepn( N, correction, x, stride )
: calculate the variance of a double-precision floating-point strided array ignoringNaN
values and using a two-pass algorithm.dnanvariancetk( N, correction, x, stride )
: calculate the variance of a double-precision floating-point strided array ignoringNaN
values and using a one-pass textbook algorithm.dnanvariancewd( N, correction, x, stride )
: calculate the variance of a double-precision floating-point strided array ignoringNaN
values and using Welford's algorithm.dnanvarianceyc( N, correction, x, stride )
: calculate the variance of a double-precision floating-point strided array ignoringNaN
values and using a one-pass algorithm proposed by Youngs and Cramer.drange( N, x, stride )
: calculate the range of a double-precision floating-point strided array.dsem( N, correction, x, stride )
: calculate the standard error of the mean of a double-precision floating-point strided array.dsemch( N, correction, x, stride )
: calculate the standard error of the mean of a double-precision floating-point strided array using a one-pass trial mean algorithm.dsempn( N, correction, x, stride )
: calculate the standard error of the mean of a double-precision floating-point strided array using a two-pass algorithm.dsemtk( N, correction, x, stride )
: calculate the standard error of the mean of a double-precision floating-point strided array using a one-pass textbook algorithm.dsemwd( N, correction, x, stride )
: calculate the standard error of the mean of a double-precision floating-point strided array using Welford's algorithm.dsemyc( N, correction, x, stride )
: calculate the standard error of the mean of a double-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer.dsmean( N, x, stride )
: calculate the arithmetic mean of a single-precision floating-point strided array using extended accumulation and returning an extended precision result.dsmeanors( N, x, stride )
: calculate the arithmetic mean of a single-precision floating-point strided array using ordinary recursive summation with extended accumulation and returning an extended precision result.dsmeanpn( N, x, stride )
: calculate the arithmetic mean of a single-precision floating-point strided array using a two-pass error correction algorithm with extended accumulation and returning an extended precision result.dsmeanpw( N, x, stride )
: calculate the arithmetic mean of a single-precision floating-point strided array using pairwise summation with extended accumulation and returning an extended precision result.dsmeanwd( N, x, stride )
: calculate the arithmetic mean of a single-precision floating-point strided array using Welford's algorithm with extended accumulation and returning an extended precision result.dsnanmean( N, x, stride )
: calculate the arithmetic mean of a single-precision floating-point strided array, ignoringNaN
values, using extended accumulation, and returning an extended precision result.dsnanmeanors( N, x, stride )
: calculate the arithmetic mean of a single-precision floating-point strided array, ignoringNaN
values, using ordinary recursive summation with extended accumulation, and returning an extended precision result.dsnanmeanpn( N, x, stride )
: calculate the arithmetic mean of a single-precision floating-point strided array, ignoringNaN
values, using a two-pass error correction algorithm with extended accumulation, and returning an extended precision result.dsnanmeanwd( N, x, stride )
: calculate the arithmetic mean of a single-precision floating-point strided array, ignoringNaN
values, using Welford's algorithm with extended accumulation, and returning an extended precision result.dstdev( N, correction, x, stride )
: calculate the standard deviation of a double-precision floating-point strided array.dstdevch( N, correction, x, stride )
: calculate the standard deviation of a double-precision floating-point strided array using a one-pass trial mean algorithm.dstdevpn( N, correction, x, stride )
: calculate the standard deviation of a double-precision floating-point strided array using a two-pass algorithm.dstdevtk( N, correction, x, stride )
: calculate the standard deviation of a double-precision floating-point strided array using a one-pass textbook algorithm.dstdevwd( N, correction, x, stride )
: calculate the standard deviation of a double-precision floating-point strided array using Welford's algorithm.dstdevyc( N, correction, x, stride )
: calculate the standard deviation of a double-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer.dsvariance( N, correction, x, stride )
: calculate the variance of a single-precision floating-point strided array using extended accumulation and returning an extended precision result.dsvariancepn( N, correction, x, stride )
: calculate the variance of a single-precision floating-point strided array using a two-pass algorithm with extended accumulation and returning an extended precision result.dvariance( N, correction, x, stride )
: calculate the variance of a double-precision floating-point strided array.dvariancech( N, correction, x, stride )
: calculate the variance of a double-precision floating-point strided array using a one-pass trial mean algorithm.dvariancepn( N, correction, x, stride )
: calculate the variance of a double-precision floating-point strided array using a two-pass algorithm.dvariancetk( N, correction, x, stride )
: calculate the variance of a double-precision floating-point strided array using a one-pass textbook algorithm.dvariancewd( N, correction, x, stride )
: calculate the variance of a double-precision floating-point strided array using Welford's algorithm.dvarianceyc( N, correction, x, stride )
: calculate the variance of a double-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer.dvarm( N, mean, correction, x, stride )
: calculate the variance of a double-precision floating-point strided array provided a known mean.dvarmpn( N, mean, correction, x, stride )
: calculate the variance of a double-precision floating-point strided array provided a known mean and using Neely's correction algorithm.dvarmtk( N, mean, correction, x, stride )
: calculate the variance of a double-precision floating-point strided array provided a known mean and using a one-pass textbook algorithm.maxBy( N, x, stride, clbk[, thisArg] )
: calculate the maximum value of a strided array via a callback function.max( N, x, stride )
: calculate the maximum value of a strided array.maxabs( N, x, stride )
: calculate the maximum absolute value of a strided array.maxsorted( N, x, stride )
: calculate the maximum value of a sorted strided array.mean( N, x, stride )
: calculate the arithmetic mean of a strided array.meankbn( N, x, stride )
: calculate the arithmetic mean of a strided array using an improved Kahan–Babuška algorithm.meankbn2( N, x, stride )
: calculate the arithmetic mean of a strided array using a second-order iterative Kahan–Babuška algorithm.meanors( N, x, stride )
: calculate the arithmetic mean of a strided array using ordinary recursive summation.meanpn( N, x, stride )
: calculate the arithmetic mean of a strided array using a two-pass error correction algorithm.meanpw( N, x, stride )
: calculate the arithmetic mean of a strided array using pairwise summation.meanwd( N, x, stride )
: calculate the arithmetic mean of a strided array using Welford's algorithm.mediansorted( N, x, stride )
: calculate the median value of a sorted strided array.minBy( N, x, stride, clbk[, thisArg] )
: calculate the minimum value of a strided array via a callback function.min( N, x, stride )
: calculate the minimum value of a strided array.minabs( N, x, stride )
: calculate the minimum absolute value of a strided array.minsorted( N, x, stride )
: calculate the minimum value of a sorted strided array.mskmax( N, x, strideX, mask, strideMask )
: calculate the maximum value of a strided array according to a mask.mskmin( N, x, strideX, mask, strideMask )
: calculate the minimum value of a strided array according to a mask.mskrange( N, x, strideX, mask, strideMask )
: calculate the range of a strided array according to a mask.nanmaxBy( N, x, stride, clbk[, thisArg] )
: calculate the maximum value of a strided array via a callback function, ignoringNaN
values.nanmax( N, x, stride )
: calculate the maximum value of a strided array, ignoringNaN
values.nanmaxabs( N, x, stride )
: calculate the maximum absolute value of a strided array, ignoringNaN
values.nanmean( N, x, stride )
: calculate the arithmetic mean of a strided array, ignoringNaN
values.nanmeanors( N, x, stride )
: calculate the arithmetic mean of a strided array, ignoringNaN
values and using ordinary recursive summation.nanmeanpn( N, x, stride )
: calculate the arithmetic mean of a strided array, ignoringNaN
values and using a two-pass error correction algorithm.nanmeanwd( N, x, stride )
: calculate the arithmetic mean of a strided array, ignoringNaN
values and using Welford's algorithm.nanminBy( N, x, stride, clbk[, thisArg] )
: calculate the minimum value of a strided array via a callback function, ignoringNaN
values.nanmin( N, x, stride )
: calculate the minimum value of a strided array, ignoringNaN
values.nanminabs( N, x, stride )
: calculate the minimum absolute value of a strided array, ignoringNaN
values.nanmskmax( N, x, strideX, mask, strideMask )
: calculate the maximum value of a strided array according to a mask, ignoringNaN
values.nanmskmin( N, x, strideX, mask, strideMask )
: calculate the minimum value of a strided array according to a mask, ignoringNaN
values.nanmskrange( N, x, strideX, mask, strideMask )
: calculate the range of a strided array according to a mask, ignoringNaN
values.nanrangeBy( N, x, stride, clbk[, thisArg] )
: calculate the range of a strided array via a callback function, ignoringNaN
values.nanrange( N, x, stride )
: calculate the range of a strided array, ignoringNaN
values.nanstdev( N, correction, x, stride )
: calculate the standard deviation of a strided array ignoringNaN
values.nanstdevch( N, correction, x, stride )
: calculate the standard deviation of a strided array ignoringNaN
values and using a one-pass trial mean algorithm.nanstdevpn( N, correction, x, stride )
: calculate the standard deviation of a strided array ignoringNaN
values and using a two-pass algorithm.nanstdevtk( N, correction, x, stride )
: calculate the standard deviation of a strided array ignoringNaN
values and using a one-pass textbook algorithm.nanstdevwd( N, correction, x, stride )
: calculate the standard deviation of a strided array ignoringNaN
values and using Welford's algorithm.nanstdevyc( N, correction, x, stride )
: calculate the standard deviation of a strided array ignoringNaN
values and using a one-pass algorithm proposed by Youngs and Cramer.nanvariance( N, correction, x, stride )
: calculate the variance of a strided array ignoringNaN
values.nanvariancech( N, correction, x, stride )
: calculate the variance of a strided array ignoringNaN
values and using a one-pass trial mean algorithm.nanvariancepn( N, correction, x, stride )
: calculate the variance of a strided array ignoringNaN
values and using a two-pass algorithm.nanvariancetk( N, correction, x, stride )
: calculate the variance of a strided array ignoringNaN
values and using a one-pass textbook algorithm.nanvariancewd( N, correction, x, stride )
: calculate the variance of a strided array ignoringNaN
values and using Welford's algorithm.nanvarianceyc( N, correction, x, stride )
: calculate the variance of a strided array ignoringNaN
values and using a one-pass algorithm proposed by Youngs and Cramer.rangeBy( N, x, stride, clbk[, thisArg] )
: calculate the range of a strided array via a callback function.range( N, x, stride )
: calculate the range of a strided array.scumax( N, x, strideX, y, strideY )
: calculate the cumulative maximum of single-precision floating-point strided array elements.scumaxabs( N, x, strideX, y, strideY )
: calculate the cumulative maximum absolute value of single-precision floating-point strided array elements.scumin( N, x, strideX, y, strideY )
: calculate the cumulative minimum of single-precision floating-point strided array elements.scuminabs( N, x, strideX, y, strideY )
: calculate the cumulative minimum absolute value of single-precision floating-point strided array elements.sdsmean( N, x, stride )
: calculate the arithmetic mean of a single-precision floating-point strided array using extended accumulation.sdsmeanors( N, x, stride )
: calculate the arithmetic mean of a single-precision floating-point strided array using ordinary recursive summation with extended accumulation.sdsnanmean( N, x, stride )
: calculate the arithmetic mean of a single-precision floating-point strided array, ignoringNaN
values and using extended accumulation.sdsnanmeanors( N, x, stride )
: calculate the arithmetic mean of a single-precision floating-point strided array, ignoringNaN
values and using ordinary recursive summation with extended accumulation.smax( N, x, stride )
: calculate the maximum value of a single-precision floating-point strided array.smaxabs( N, x, stride )
: calculate the maximum absolute value of a single-precision floating-point strided array.smaxabssorted( N, x, stride )
: calculate the maximum absolute value of a sorted single-precision floating-point strided array.smaxsorted( N, x, stride )
: calculate the maximum value of a sorted single-precision floating-point strided array.smean( N, x, stride )
: calculate the arithmetic mean of a single-precision floating-point strided array.smeankbn( N, x, stride )
: calculate the arithmetic mean of a single-precision floating-point strided array using an improved Kahan–Babuška algorithm.smeankbn2( N, x, stride )
: calculate the arithmetic mean of a single-precision floating-point strided array using a second-order iterative Kahan–Babuška algorithm.smeanli( N, x, stride )
: calculate the arithmetic mean of a single-precision floating-point strided array using a one-pass trial mean algorithm.smeanlipw( N, x, stride )
: calculate the arithmetic mean of a single-precision floating-point strided array using a one-pass trial mean algorithm with pairwise summation.smeanors( N, x, stride )
: calculate the arithmetic mean of a single-precision floating-point strided array using ordinary recursive summation.smeanpn( N, x, stride )
: calculate the arithmetic mean of a single-precision floating-point strided array using a two-pass error correction algorithm.smeanpw( N, x, stride )
: calculate the arithmetic mean of a single-precision floating-point strided array using pairwise summation.smeanwd( N, x, stride )
: calculate the arithmetic mean of a single-precision floating-point strided array using Welford's algorithm.smediansorted( N, x, stride )
: calculate the median value of a sorted single-precision floating-point strided array.smidrange( N, x, stride )
: calculate the mid-range of a single-precision floating-point strided array.smin( N, x, stride )
: calculate the minimum value of a single-precision floating-point strided array.sminabs( N, x, stride )
: calculate the minimum absolute value of a single-precision floating-point strided array.sminsorted( N, x, stride )
: calculate the minimum value of a sorted single-precision floating-point strided array.smskmax( N, x, strideX, mask, strideMask )
: calculate the maximum value of a single-precision floating-point strided array according to a mask.smskmin( N, x, strideX, mask, strideMask )
: calculate the minimum value of a single-precision floating-point strided array according to a mask.smskrange( N, x, strideX, mask, strideMask )
: calculate the range of a single-precision floating-point strided array according to a mask.snanmax( N, x, stride )
: calculate the maximum value of a single-precision floating-point strided array, ignoringNaN
values.snanmaxabs( N, x, stride )
: calculate the maximum absolute value of a single-precision floating-point strided array, ignoringNaN
values.snanmean( N, x, stride )
: calculate the arithmetic mean of a single-precision floating-point strided array, ignoringNaN
values.snanmeanors( N, x, stride )
: calculate the arithmetic mean of a single-precision floating-point strided array, ignoringNaN
values and using ordinary recursive summation.snanmeanpn( N, x, stride )
: calculate the arithmetic mean of a single-precision floating-point strided array, ignoringNaN
values and using a two-pass error correction algorithm.snanmeanwd( N, x, stride )
: calculate the arithmetic mean of a single-precision floating-point strided array, ignoringNaN
values and using Welford's algorithm.snanmin( N, x, stride )
: calculate the minimum value of a single-precision floating-point strided array, ignoringNaN
values.snanminabs( N, x, stride )
: calculate the minimum absolute value of a single-precision floating-point strided array, ignoringNaN
values.snanmskmax( N, x, strideX, mask, strideMask )
: calculate the maximum value of a single-precision floating-point strided array according to a mask, ignoringNaN
values.snanmskmin( N, x, strideX, mask, strideMask )
: calculate the minimum value of a single-precision floating-point strided array according to a mask, ignoringNaN
values.snanmskrange( N, x, strideX, mask, strideMask )
: calculate the range of a single-precision floating-point strided array according to a mask, ignoringNaN
values.snanrange( N, x, stride )
: calculate the range of a single-precision floating-point strided array, ignoringNaN
values.snanstdev( N, correction, x, stride )
: calculate the standard deviation of a single-precision floating-point strided array ignoringNaN
values.snanstdevch( N, correction, x, stride )
: calculate the standard deviation of a single-precision floating-point strided array ignoringNaN
values and using a one-pass trial mean algorithm.snanstdevpn( N, correction, x, stride )
: calculate the standard deviation of a single-precision floating-point strided array ignoringNaN
values and using a two-pass algorithm.snanstdevtk( N, correction, x, stride )
: calculate the standard deviation of a single-precision floating-point strided array ignoringNaN
values and using a one-pass textbook algorithm.snanstdevwd( N, correction, x, stride )
: calculate the standard deviation of a single-precision floating-point strided array ignoringNaN
values and using Welford's algorithm.snanstdevyc( N, correction, x, stride )
: calculate the standard deviation of a single-precision floating-point strided array ignoringNaN
values and using a one-pass algorithm proposed by Youngs and Cramer.snanvariance( N, correction, x, stride )
: calculate the variance of a single-precision floating-point strided array ignoringNaN
values.snanvariancech( N, correction, x, stride )
: calculate the variance of a single-precision floating-point strided array ignoringNaN
values and using a one-pass trial mean algorithm.snanvariancepn( N, correction, x, stride )
: calculate the variance of a single-precision floating-point strided array ignoringNaN
values and using a two-pass algorithm.snanvariancetk( N, correction, x, stride )
: calculate the variance of a single-precision floating-point strided array ignoringNaN
values and using a one-pass textbook algorithm.snanvariancewd( N, correction, x, stride )
: calculate the variance of a single-precision floating-point strided array ignoringNaN
values and using Welford's algorithm.snanvarianceyc( N, correction, x, stride )
: calculate the variance of a single-precision floating-point strided array ignoringNaN
values and using a one-pass algorithm proposed by Youngs and Cramer.srange( N, x, stride )
: calculate the range of a single-precision floating-point strided array.sstdev( N, correction, x, stride )
: calculate the standard deviation of a single-precision floating-point strided array.sstdevch( N, correction, x, stride )
: calculate the standard deviation of a single-precision floating-point strided array using a one-pass trial mean algorithm.sstdevpn( N, correction, x, stride )
: calculate the standard deviation of a single-precision floating-point strided array using a two-pass algorithm.sstdevtk( N, correction, x, stride )
: calculate the standard deviation of a single-precision floating-point strided array using a one-pass textbook algorithm.sstdevwd( N, correction, x, stride )
: calculate the standard deviation of a single-precision floating-point strided array using Welford's algorithm.sstdevyc( N, correction, x, stride )
: calculate the standard deviation of a single-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer.stdev( N, correction, x, stride )
: calculate the standard deviation of a strided array.stdevch( N, correction, x, stride )
: calculate the standard deviation of a strided array using a one-pass trial mean algorithm.stdevpn( N, correction, x, stride )
: calculate the standard deviation of a strided array using a two-pass algorithm.stdevtk( N, correction, x, stride )
: calculate the standard deviation of a strided array using a one-pass textbook algorithm.stdevwd( N, correction, x, stride )
: calculate the standard deviation of a strided array using Welford's algorithm.stdevyc( N, correction, x, stride )
: calculate the standard deviation of a strided array using a one-pass algorithm proposed by Youngs and Cramer.svariance( N, correction, x, stride )
: calculate the variance of a single-precision floating-point strided array.svariancech( N, correction, x, stride )
: calculate the variance of a single-precision floating-point strided array using a one-pass trial mean algorithm.svariancepn( N, correction, x, stride )
: calculate the variance of a single-precision floating-point strided array using a two-pass algorithm.svariancetk( N, correction, x, stride )
: calculate the variance of a single-precision floating-point strided array using a one-pass textbook algorithm.svariancewd( N, correction, x, stride )
: calculate the variance of a single-precision floating-point strided array using Welford's algorithm.svarianceyc( N, correction, x, stride )
: calculate the variance of a single-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer.variance( N, correction, x, stride )
: calculate the variance of a strided array.variancech( N, correction, x, stride )
: calculate the variance of a strided array using a one-pass trial mean algorithm.variancepn( N, correction, x, stride )
: calculate the variance of a strided array using a two-pass algorithm.variancetk( N, correction, x, stride )
: calculate the variance of a strided array using a one-pass textbook algorithm.variancewd( N, correction, x, stride )
: calculate the variance of a strided array using Welford's algorithm.varianceyc( N, correction, x, stride )
: calculate the variance of a strided array using a one-pass algorithm proposed by Youngs and Cramer.
var objectKeys = require( '@stdlib/utils/keys' );
var ns = require( '@stdlib/stats/base' );
console.log( objectKeys( ns ) );