-
Notifications
You must be signed in to change notification settings - Fork 3
/
cs_cvlasso.do
320 lines (258 loc) · 9.37 KB
/
cs_cvlasso.do
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
* certification script for
* lassopack package 1.4.1 27sept2020
* parts of the script use R's glmnet for validation
cscript "cvlasso" adofile cvlasso lasso2 lasso2_p lassoutils
clear all
capture log close
set more off
set rmsg on
program drop _all
log using cs_cvlasso,replace
about
which cvlasso
which lasso2
which lasso2_p
which lassoutils
* data source
* global prostate prostate.data
global prostate https://web.stanford.edu/~hastie/ElemStatLearn/datasets/prostate.data
* program to compare two matrices in terms of avg abs deviation
cap program drop comparemat
program define comparemat , rclass
syntax anything [, tol(real 10e-3)]
local A : word 1 of `0'
local B : word 2 of `0'
tempname Amat Bmat
mat `Amat' = `A'
mat `Bmat' = `B'
local diff=mreldif(`Amat',`Bmat')
di as text "mreldif=`diff'. tolerance = `tol'"
mat list `Amat'
mat list `Bmat'
return scalar mreldif = `diff'
assert `diff'<`tol'
end
set seed 123456
********************************************************************************
*** compare with glmnet ***
********************************************************************************
* load example data
insheet using "$prostate", tab clear
drop if _n==97 // to ensure same size for each fold
global model lpsa lcavol lweight age lbph svi lcp gleason pgg45
* generate fold variable
gen myfid = 1 if _n<=32
replace myfid = 2 if _n>32 & _n<=64
replace myfid = 3 if _n>64
cvlasso $model, foldvar(myfid) lambda(150 15 1.5)
mat L = e(mmspe)
/*
c<-cv.glmnet(X,y,foldid=fid,lambda=c(150, 15, 1.5)/(2*n),keep=TRUE, intercept=TRUE,standardize=TRUE)
> c$cvm # mean-squared prediction error
[1] 2.386518 1.463497 1.484953
> var(predict(c,newx=X,s="lambda.min"))
1
1 0.608541
*/
mat G = ( 2.38651835211576 \ 1.46349718052732 \ 1.48495268875459 )
comparemat L G // compare coeffs
cap drop xb
predict double xb, lopt
sum xb
assert reldif(0.608541,r(Var))<0.001 // compare predicted values
cvlasso $model, foldvar(myfid) lambda(150 15 1.5) prestd
mat L = e(mmspe)
/*
c<-cv.glmnet(X,y,foldid=fid,lambda=c(150, 15, 1.5)/(2*n),keep=TRUE, intercept=TRUE,standardize=TRUE)
> c$cvm # mean-squared prediction error
[1] 2.386518 1.463497 1.484953
> var(predict(c,newx=X,s="lambda.min"))
1
1 0.608541
*/
mat G = ( 2.38651835211576 \ 1.46349718052732 \ 1.48495268875459 )
comparemat L G // compare coeffs
cap drop xb
predict double xb, lopt
sum xb
assert reldif(0.608541,r(Var))<0.001 // compare predicted values
cvlasso $model, foldvar(myfid) lambda(150 15 1.5) unitload
mat L = e(mmspe)
/*
> # cross-validation with intercept & standardisation
> c<-cv.glmnet(X,y,foldid=fid,lambda=c(150, 15, 1.5)/(2*n),keep=TRUE, intercept=TRUE,standardize=FALSE)
> c$cvm # mean-squared prediction error
[1] 2.103697 1.429934 1.427561
> var(predict(c,newx=X,s="lambda.min"))
1
1 0.7840688
*/
mat G = ( 2.10369705382686 \ 1.42993421234064 \ 1.42756055333919 )
comparemat L G // compare coeffs
cap drop xb
predict double xb, lopt
sum xb
assert reldif(0.7840688,r(Var))<0.001 // compare predicted values
cvlasso $model, foldvar(myfid) lambda(150 15 1.5) nocons unitload
mat L = e(mmspe)
/*
> c<-cv.glmnet(X,y,foldid=fid,lambda=c(150, 15, 1.5)/(2*n),keep=TRUE, intercept=FALSE,standardize=FALSE)
> c$cvm # mean-squared prediction error
[1] 1.999806 1.266384 1.246805
> var(predict(c,newx=X,s="lambda.min"))
1
1 0.7919695
*/
mat G = ( 1.99980614859113 \ 1.26638436668758 \ 1.24680539174676 )
comparemat L G // compare coeffs
cap drop xb
predict double xb, lopt
sum xb
assert reldif(0.7919695,r(Var))<0.001 // compare predicted values
cvlasso $model, foldvar(myfid) lambda(150 15 1.5) nocons
mat L = e(mmspe)
/*
c<-cv.glmnet(X,y,foldid=fid,lambda=c(150, 15, 1.5)/(2*n),keep=TRUE, intercept=FALSE,standardize=TRUE)
> c$cvm # mean-squared prediction error
[1] 1.906526 1.232220 1.310531
> var(predict(c,newx=X,s="lambda.min"))
1
1 0.6062457
*/
mat G = ( 1.90652583524832 \ 1.23222044017428 \ 1.31053116174191 )
comparemat L G // compare coeffs
cap drop xb
predict double xb, lopt
sum xb
assert reldif(0.6062457,r(Var))<0.001 // compare predicted values
cvlasso $model, foldvar(myfid) lambda(150 15 1.5) nocons prestd
mat L = e(mmspe)
/*
c<-cv.glmnet(X,y,foldid=fid,lambda=c(150, 15, 1.5)/(2*n),keep=TRUE, intercept=FALSE,standardize=TRUE)
> c$cvm # mean-squared prediction error
[1] 1.906526 1.232220 1.310531
> var(predict(c,newx=X,s="lambda.min"))
1
1 0.6062457
*/
mat G = ( 1.90652583524832 \ 1.23222044017428 \ 1.31053116174191 )
comparemat L G // compare coeffs
cap drop xb
predict double xb, lopt
sum xb
assert reldif(0.6062457,r(Var))<0.001 // compare predicted values
********************************************************************************
*** validate ***
********************************************************************************
* load example data
insheet using "$prostate", tab clear
global model lpsa lcavol lweight age lbph svi lcp gleason pgg45
gen sample = _n<70
foreach type of newlist lopt lse {
local type lse
// check that right beta is used for predict
// also validates that "if" works
cvlasso $model if sample
local mylopt = e(`type')
cap drop myxb
predict double myxb if !sample, xb `type' postres
mat A = e(b)
lasso2 $model if sample, lambda(`mylopt')
cap drop myxb2
predict double myxb2 if !sample, xb
mat B = e(b)
comparemat A B
assert myxb2==myxb
// and now with alpha list
// use lglmnet option
cvlasso $model if sample, alpha(0 0.3 0.7 1) lglmnet
local mylopt = e(`type')
local myalpha = e(alphamin)
cap drop myr
predict double myr if !sample, r `type' postres
mat A = e(b)
lasso2 $model if sample, lambda(`mylopt') alpha(`myalpha') lglmnet
cap drop myr2
predict double myr2 if !sample, r
mat B = e(b)
comparemat A B
assert myr2==myr
}
*
********************************************************************************
*** partial ***
********************************************************************************
* load example data
insheet using "$prostate", tab clear
cvlasso $model, partial(svi) saveest(m)
// make sure that partial works
estimates restore m1
assert "`e(partial)'"=="svi"
********************************************************************************
*** misc options/syntax checks ***
********************************************************************************
// Support for inrange(.) and similar [if] expressions:
cvlasso $model if inrange(age,50,70)
********************************************************************************
*** plotting ***
********************************************************************************
* load example data
insheet using "$prostate", tab clear
cvlasso $model, plotcv
********************************************************************************
*** time-series example with rolling cv ***
********************************************************************************
webuse air2, clear
cvlasso air L(1/12).air, rolling origin(130)
// we should have 144-130=14 folds
assert 14==`e(nfolds)'
cvlasso air L(1/12).air, rolling origin(130) h(2)
// we should have 144-130-1=14 folds
assert 13==`e(nfolds)'
cvlasso air L(1/12).air, rolling origin(130) fixedwin
assert 14==`e(nfolds)'
********************************************************************************
*** panel example
********************************************************************************
use "http://fmwww.bc.edu/ec-p/data/macro/abdata.dta", clear
// FE and noftools options
cvlasso ys l(0/3).k l(0/3).n, fe seed(123)
savedresults save ftools e()
cap noi assert "`e(noftools)'"=="" // will be error if ftools not installed
cvlasso ys l(0/3).k l(0/3).n, fe seed(123) noftools
assert "`e(noftools)'"=="noftools"
savedresults comp ftools e(), exclude(macros: lasso2opt)
********************************************************************************
*** check residuals with fe ***
********************************************************************************
clear
use https://www.stata-press.com/data/r16/nlswork
replace ln_w = . if year == 80
cvlasso ln_w grade age c.age#c.age ttl_exp c.ttl_exp#c.ttl_exp tenure ///
c.tenure#c.tenure 2.race not_smsa south , fe
cvlasso, lse postres ols
local sel = e(selected)
di "`sel'"
predict double uehat , ue noi
predict double ehat , e noi
predict double xbhat , xb noi
predict double xbuhat , xbu noi
predict double uhat , u noi
xtreg ln_w `sel' if e(sample), fe
mat bxtreg = e(b)
predict double uehat_xtreg , ue
predict double ehat_xtreg , e
predict double xbhat_xtreg , xb
predict double xbuhat_xtreg , xbu
predict double uhat_xtreg , u
assert abs(ehat_xtreg-ehat)<10e-8 | (missing(ehat_xtreg) | missing(ehat))
assert abs(uehat_xtreg-uehat)<10e-8 | (missing(uehat_xtreg) | missing(uehat))
assert abs(xbhat_xtreg-xbhat)<10e-8 | (missing(xbhat_xtreg) | missing(xbhat))
assert abs(xbuhat_xtreg-xbuhat)<10e-8 | (missing(xbuhat_xtreg) | missing(xbuhat))
assert abs(uhat_xtreg-uhat)<10e-8 | (missing(uhat_xtreg) | missing(uhat))
********************************************************************************
*** finish ***
********************************************************************************
cap log close
//set more on
set rmsg off