-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathspm_Fpdf.m
114 lines (105 loc) · 3.84 KB
/
spm_Fpdf.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
function f = spm_Fpdf(x,v,w)
% Probability Density Function (PDF) of F (Fisher-Snedecor) distribution
% FORMAT f = spm_Fpdf(x,df)
% FORMAT f = spm_Fpdf(x,v,w)
%
% x - F-variate (F has range [0,Inf) )
% df - Degrees of freedom, concatenated along last dimension
% Eg. Scalar (or column vector) v & w. Then df=[v,w];
% v - Shape parameter 1 / numerator degrees of freedom (v>0)
% w - Shape parameter 2 / denominator degrees of freedom (w>0)
% f - PDF of F-distribution with [v,w] degrees of freedom at points x
%__________________________________________________________________________
%
% spm_Fpdf implements the Probability Density Function of the F-distribution.
%
% Definition:
%--------------------------------------------------------------------------
% The PDF of the F-distribution with degrees of freedom v & w, defined
% for positive integer degrees of freedom v>0 & w>0, and for x in
% [0,Inf) by: (See Evans et al., Ch16)
%
% gamma((v+w)/2) * (v/w)^(v/2) x^(v/2-1)
% f(x) = --------------------------------------------
% gamma(v/2)*gamma(w/2) * (1+(v/w)x)^((v+w)/2)
%
% Variate relationships: (Evans et al., Ch16 & 37)
%--------------------------------------------------------------------------
% The square of a Student's t variate with w degrees of freedom is
% distributed as an F-distribution with [1,w] degrees of freedom.
%
% For X an F-variate with v,w degrees of freedom, w/(w+v*X^2) has
% distributed related to a Beta random variable with shape parameters
% w/2 & v/2.
%
% Algorithm:
%--------------------------------------------------------------------------
% Direct computation using the beta function for
% gamma(v/2)*gamma(w/2) / gamma((v+w)/2) = beta(v/2,w/2)
%
% References:
%--------------------------------------------------------------------------
% Evans M, Hastings N, Peacock B (1993)
% "Statistical Distributions"
% 2nd Ed. Wiley, New York
%
% Abramowitz M, Stegun IA, (1964)
% "Handbook of Mathematical Functions"
% US Government Printing Office
%
% Press WH, Teukolsky SA, Vetterling AT, Flannery BP (1992)
% "Numerical Recipes in C"
% Cambridge
%
%__________________________________________________________________________
% Andrew Holmes
% Copyright (C) 1994-2022 Wellcome Centre for Human Neuroimaging
%-Format arguments, note & check sizes
%--------------------------------------------------------------------------
if nargin<2, error('Insufficient arguments'), end
%-Unpack degrees of freedom v & w from single df parameter (v)
if nargin<3
vs = size(v);
if prod(vs)==2
%-DF is a 2-vector
w = v(2); v = v(1);
elseif vs(end)==2
%-DF has last dimension 2 - unpack v & w
nv = prod(vs);
w = reshape(v(nv/2+1:nv),vs(1:end-1));
v = reshape(v(1:nv/2) ,vs(1:end-1));
else
error('Cannot unpack both df components from single argument')
end
end
%-Check argument sizes
ad = [ndims(x);ndims(v);ndims(w)];
rd = max(ad);
as = [[size(x),ones(1,rd-ad(1))];...
[size(v),ones(1,rd-ad(2))];...
[size(w),ones(1,rd-ad(3))]];
rs = max(as);
xa = prod(as,2)>1;
if sum(xa)>1 && any(any(diff(as(xa,:)),1))
error('non-scalar args must match in size');
end
%-Computation
%--------------------------------------------------------------------------
%-Initialise result to zeros
f = zeros(rs);
%-Only defined for strictly positive v & w. Return NaN if undefined.
md = ( ones(size(x)) & v>0 & w>0 );
if any(~md(:))
f(~md) = NaN;
warning('Returning NaN for out of range arguments');
end
%-Non-zero where defined and x>0
Q = find( md & x>0 );
if isempty(Q), return, end
if xa(1), Qx=Q; else Qx=1; end
if xa(2), Qv=Q; else Qv=1; end
if xa(3), Qw=Q; else Qw=1; end
%-Compute
f(Q) = (v(Qv)./w(Qw)).^(v(Qv)/2) .* x(Qx).^(v(Qv)/2-1) ./ ...
(1+(v(Qv)./w(Qw)).*x(Qx)).^((v(Qv)+w(Qw))/2) ./ ...
beta(v(Qv)/2,w(Qw)/2);