forked from huggingface/transformers
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_modeling_dpr.py
292 lines (251 loc) · 10.9 KB
/
test_modeling_dpr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
# coding=utf-8
# Copyright 2020 Huggingface
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from .test_configuration_common import ConfigTester
from .test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
if is_torch_available():
import torch
from transformers import DPRConfig, DPRContextEncoder, DPRQuestionEncoder, DPRReader, DPRReaderTokenizer
from transformers.models.dpr.modeling_dpr import (
DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST,
)
class DPRModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=False,
use_input_mask=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=5,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
projection_dim=0,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
self.projection_dim = projection_dim
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = DPRConfig(
projection_dim=self.projection_dim,
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
initializer_range=self.initializer_range,
)
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def create_and_check_context_encoder(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = DPRContextEncoder(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
result = model(input_ids, token_type_ids=token_type_ids)
result = model(input_ids)
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.projection_dim or self.hidden_size))
def create_and_check_question_encoder(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = DPRQuestionEncoder(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
result = model(input_ids, token_type_ids=token_type_ids)
result = model(input_ids)
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.projection_dim or self.hidden_size))
def create_and_check_reader(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = DPRReader(config=config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
attention_mask=input_mask,
)
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
self.parent.assertEqual(result.relevance_logits.shape, (self.batch_size,))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids}
return config, inputs_dict
@require_torch
class DPRModelTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (
(
DPRContextEncoder,
DPRQuestionEncoder,
DPRReader,
)
if is_torch_available()
else ()
)
test_resize_embeddings = False
test_missing_keys = False # why?
test_pruning = False
test_head_masking = False
def setUp(self):
self.model_tester = DPRModelTester(self)
self.config_tester = ConfigTester(self, config_class=DPRConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_context_encoder_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_context_encoder(*config_and_inputs)
def test_question_encoder_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_question_encoder(*config_and_inputs)
def test_reader_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_reader(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
for model_name in DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = DPRContextEncoder.from_pretrained(model_name)
self.assertIsNotNone(model)
for model_name in DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = DPRContextEncoder.from_pretrained(model_name)
self.assertIsNotNone(model)
for model_name in DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = DPRQuestionEncoder.from_pretrained(model_name)
self.assertIsNotNone(model)
for model_name in DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = DPRReader.from_pretrained(model_name)
self.assertIsNotNone(model)
@require_torch
class DPRModelIntegrationTest(unittest.TestCase):
@slow
def test_inference_no_head(self):
model = DPRQuestionEncoder.from_pretrained("facebook/dpr-question_encoder-single-nq-base", return_dict=False)
model.to(torch_device)
input_ids = torch.tensor(
[[101, 7592, 1010, 2003, 2026, 3899, 10140, 1029, 102]], dtype=torch.long, device=torch_device
) # [CLS] hello, is my dog cute? [SEP]
output = model(input_ids)[0] # embedding shape = (1, 768)
# compare the actual values for a slice.
expected_slice = torch.tensor(
[
[
0.03236253,
0.12753335,
0.16818509,
0.00279786,
0.3896933,
0.24264945,
0.2178971,
-0.02335227,
-0.08481959,
-0.14324117,
]
],
dtype=torch.float,
device=torch_device,
)
self.assertTrue(torch.allclose(output[:, :10], expected_slice, atol=1e-4))
@slow
def test_reader_inference(self):
tokenizer = DPRReaderTokenizer.from_pretrained("facebook/dpr-reader-single-nq-base")
model = DPRReader.from_pretrained("facebook/dpr-reader-single-nq-base")
encoded_inputs = tokenizer(
questions="What is love ?",
titles="Haddaway",
texts="What Is Love is a song recorded by the artist Haddaway",
padding=True,
return_tensors="pt",
)
outputs = model(**encoded_inputs)
# compare the actual values for a slice.
expected_start_logits = torch.tensor(
[[-10.3005, -10.7765, -11.4872, -11.6841, -11.9312, -10.3002, -9.8544, -11.7378, -12.0821, -10.2975]],
dtype=torch.float,
device=torch_device,
)
expected_end_logits = torch.tensor(
[[-11.0684, -11.7041, -11.5397, -10.3465, -10.8791, -6.8443, -11.9959, -11.0364, -10.0096, -6.8405]],
dtype=torch.float,
device=torch_device,
)
self.assertTrue(torch.allclose(outputs.start_logits[:, :10], expected_start_logits, atol=1e-4))
self.assertTrue(torch.allclose(outputs.end_logits[:, :10], expected_end_logits, atol=1e-4))