forked from huggingface/transformers
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfiguration_xlm.py
242 lines (215 loc) · 11.8 KB
/
configuration_xlm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
# coding=utf-8
# Copyright 2019-present, Facebook, Inc and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" XLM configuration """
from .configuration_utils import PretrainedConfig
from .utils import logging
logger = logging.get_logger(__name__)
XLM_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"xlm-mlm-en-2048": "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-en-2048-config.json",
"xlm-mlm-ende-1024": "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-ende-1024-config.json",
"xlm-mlm-enfr-1024": "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-enfr-1024-config.json",
"xlm-mlm-enro-1024": "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-enro-1024-config.json",
"xlm-mlm-tlm-xnli15-1024": "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-tlm-xnli15-1024-config.json",
"xlm-mlm-xnli15-1024": "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-xnli15-1024-config.json",
"xlm-clm-enfr-1024": "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-clm-enfr-1024-config.json",
"xlm-clm-ende-1024": "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-clm-ende-1024-config.json",
"xlm-mlm-17-1280": "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-17-1280-config.json",
"xlm-mlm-100-1280": "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-100-1280-config.json",
}
class XLMConfig(PretrainedConfig):
"""
This is the configuration class to store the configuration of a :class:`~transformers.XLMModel` or a
:class:`~transformers.TFXLMModel`. It is used to instantiate a XLM model according to the specified arguments,
defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration
to that of the `xlm-mlm-en-2048 <https://huggingface.co/xlm-mlm-en-2048>`__ architecture.
Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model
outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information.
Args:
vocab_size (:obj:`int`, `optional`, defaults to 30145):
Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the
:obj:`inputs_ids` passed when calling :class:`~transformers.XLMModel` or :class:`~transformers.TFXLMModel`.
emb_dim (:obj:`int`, `optional`, defaults to 2048):
Dimensionality of the encoder layers and the pooler layer.
n_layer (:obj:`int`, `optional`, defaults to 12):
Number of hidden layers in the Transformer encoder.
n_head (:obj:`int`, `optional`, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
dropout (:obj:`float`, `optional`, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (:obj:`float`, `optional`, defaults to 0.1):
The dropout probability for the attention mechanism
gelu_activation (:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether or not to use `gelu` for the activations instead of `relu`.
sinusoidal_embeddings (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not to use sinusoidal positional embeddings instead of absolute positional embeddings.
causal (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not the model should behave in a causal manner. Causal models use a triangular attention mask in
order to only attend to the left-side context instead if a bidirectional context.
asm (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not to use an adaptive log softmax projection layer instead of a linear layer for the prediction
layer.
n_langs (:obj:`int`, `optional`, defaults to 1):
The number of languages the model handles. Set to 1 for monolingual models.
use_lang_emb (:obj:`bool`, `optional`, defaults to :obj:`True`)
Whether to use language embeddings. Some models use additional language embeddings, see `the multilingual
models page <http://huggingface.co/transformers/multilingual.html#xlm-language-embeddings>`__ for
information on how to use them.
max_position_embeddings (:obj:`int`, `optional`, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
embed_init_std (:obj:`float`, `optional`, defaults to 2048^-0.5):
The standard deviation of the truncated_normal_initializer for initializing the embedding matrices.
init_std (:obj:`int`, `optional`, defaults to 50257):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices except the
embedding matrices.
layer_norm_eps (:obj:`float`, `optional`, defaults to 1e-12):
The epsilon used by the layer normalization layers.
bos_index (:obj:`int`, `optional`, defaults to 0):
The index of the beginning of sentence token in the vocabulary.
eos_index (:obj:`int`, `optional`, defaults to 1):
The index of the end of sentence token in the vocabulary.
pad_index (:obj:`int`, `optional`, defaults to 2):
The index of the padding token in the vocabulary.
unk_index (:obj:`int`, `optional`, defaults to 3):
The index of the unknown token in the vocabulary.
mask_index (:obj:`int`, `optional`, defaults to 5):
The index of the masking token in the vocabulary.
is_encoder(:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether or not the initialized model should be a transformer encoder or decoder as seen in Vaswani et al.
summary_type (:obj:`string`, `optional`, defaults to "first"):
Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.
Has to be one of the following options:
- :obj:`"last"`: Take the last token hidden state (like XLNet).
- :obj:`"first"`: Take the first token hidden state (like BERT).
- :obj:`"mean"`: Take the mean of all tokens hidden states.
- :obj:`"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2).
- :obj:`"attn"`: Not implemented now, use multi-head attention.
summary_use_proj (:obj:`bool`, `optional`, defaults to :obj:`True`):
Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.
Whether or not to add a projection after the vector extraction.
summary_activation (:obj:`str`, `optional`):
Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.
Pass :obj:`"tanh"` for a tanh activation to the output, any other value will result in no activation.
summary_proj_to_labels (:obj:`bool`, `optional`, defaults to :obj:`True`):
Used in the sequence classification and multiple choice models.
Whether the projection outputs should have :obj:`config.num_labels` or :obj:`config.hidden_size` classes.
summary_first_dropout (:obj:`float`, `optional`, defaults to 0.1):
Used in the sequence classification and multiple choice models.
The dropout ratio to be used after the projection and activation.
start_n_top (:obj:`int`, `optional`, defaults to 5):
Used in the SQuAD evaluation script.
end_n_top (:obj:`int`, `optional`, defaults to 5):
Used in the SQuAD evaluation script.
mask_token_id (:obj:`int`, `optional`, defaults to 0):
Model agnostic parameter to identify masked tokens when generating text in an MLM context.
lang_id (:obj:`int`, `optional`, defaults to 1):
The ID of the language used by the model. This parameter is used when generating text in a given language.
Examples::
>>> from transformers import XLMConfig, XLMModel
>>> # Initializing a XLM configuration
>>> configuration = XLMConfig()
>>> # Initializing a model from the configuration
>>> model = XLMModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
"""
model_type = "xlm"
def __init__(
self,
vocab_size=30145,
emb_dim=2048,
n_layers=12,
n_heads=16,
dropout=0.1,
attention_dropout=0.1,
gelu_activation=True,
sinusoidal_embeddings=False,
causal=False,
asm=False,
n_langs=1,
use_lang_emb=True,
max_position_embeddings=512,
embed_init_std=2048 ** -0.5,
layer_norm_eps=1e-12,
init_std=0.02,
bos_index=0,
eos_index=1,
pad_index=2,
unk_index=3,
mask_index=5,
is_encoder=True,
summary_type="first",
summary_use_proj=True,
summary_activation=None,
summary_proj_to_labels=True,
summary_first_dropout=0.1,
start_n_top=5,
end_n_top=5,
mask_token_id=0,
lang_id=0,
pad_token_id=2,
bos_token_id=0,
**kwargs
):
"""Constructs XLMConfig."""
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, **kwargs)
self.vocab_size = vocab_size
self.emb_dim = emb_dim
self.n_layers = n_layers
self.n_heads = n_heads
self.dropout = dropout
self.attention_dropout = attention_dropout
self.gelu_activation = gelu_activation
self.sinusoidal_embeddings = sinusoidal_embeddings
self.causal = causal
self.asm = asm
self.n_langs = n_langs
self.use_lang_emb = use_lang_emb
self.layer_norm_eps = layer_norm_eps
self.bos_index = bos_index
self.eos_index = eos_index
self.pad_index = pad_index
self.unk_index = unk_index
self.mask_index = mask_index
self.is_encoder = is_encoder
self.max_position_embeddings = max_position_embeddings
self.embed_init_std = embed_init_std
self.init_std = init_std
self.summary_type = summary_type
self.summary_use_proj = summary_use_proj
self.summary_activation = summary_activation
self.summary_proj_to_labels = summary_proj_to_labels
self.summary_first_dropout = summary_first_dropout
self.start_n_top = start_n_top
self.end_n_top = end_n_top
self.mask_token_id = mask_token_id
self.lang_id = lang_id
if "n_words" in kwargs:
self.n_words = kwargs["n_words"]
@property
def n_words(self): # For backward compatibility
return self.vocab_size
@n_words.setter
def n_words(self, value): # For backward compatibility
self.vocab_size = value
@property
def hidden_size(self):
return self.emb_dim
@property
def num_attention_heads(self):
return self.n_heads
@property
def num_hidden_layers(self):
return self.n_layers