forked from huggingface/transformers
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfiguration_prophetnet.py
164 lines (150 loc) · 7.85 KB
/
configuration_prophetnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# coding=utf-8
# Copyright 2020 The Microsoft Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" ProphetNet model configuration """
from .configuration_utils import PretrainedConfig
from .utils import logging
logger = logging.get_logger(__name__)
PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"microsoft/prophetnet-large-uncased": "https://s3.amazonaws.com/models.huggingface.co/bert/microsoft/prophetnet-large-uncased/config.json",
}
class ProphetNetConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a :class:`~transformers.ProphetNetModel`. It is used
to instantiate a ProphetNet model according to the specified arguments, defining the model architecture.
Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model
outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information.
Args:
activation_dropout (:obj:`float`, `optional`, defaults to 0.1):
The dropout ratio for activations inside the fully connected layer.
activation_function (:obj:`str` or :obj:`function`, `optional`, defaults to :obj:`"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string,
:obj:`"gelu"`, :obj:`"relu"`, :obj:`"silu"` and :obj:`"gelu_new"` are supported.
vocab_size (:obj:`int`, `optional`, defaults to 30522):
Vocabulary size of the ProphetNET model. Defines the number of different tokens that can be represented by
the :obj:`inputs_ids` passed when calling :class:`~transformers.ProphetNetModel`.
hidden_size (:obj:`int`, `optional`, defaults to 1024):
Dimensionality of the layers and the pooler layer.
encoder_ffn_dim (:obj:`int`, `optional`, defaults to 4096):
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
num_encoder_layers (:obj:`int`, `optional`, defaults to 12):
Number of encoder layers.
num_encoder_attention_heads (:obj:`int`, `optional`, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
decoder_ffn_dim (:obj:`int`, `optional`, defaults to 4096):
Dimensionality of the ``intermediate`` (often named feed-forward) layer in decoder.
num_decoder_layers (:obj:`int`, `optional`, defaults to 12):
Number of decoder layers.
num_decoder_attention_heads (:obj:`int`, `optional`, defaults to 16):
Number of attention heads for each attention layer in the Transformer decoder.
attention_dropout (:obj:`float`, `optional`, defaults to 0.1):
The dropout ratio for the attention probabilities.
dropout (:obj:`float`, `optional`, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
max_position_embeddings (:obj:`int`, `optional`, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
init_std (:obj:`float`, `optional`, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
add_cross_attention (:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether cross-attention layers should be added to the model.
is_encoder_decoder (:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether this is an encoder/decoder model.
pad_token_id (:obj:`int`, `optional`, defaults to 1)
Padding token id.
bos_token_id (:obj:`int`, `optional`, defaults to 0)
Beginning of stream token id.
eos_token_id (:obj:`int`, `optional`, defaults to 2)
End of stream token id.
ngram (:obj:`int`, `optional`, defaults to 2)
Number of future tokens to predict. Set to 1 to be same as traditional Language model to predict next first
token.
num_buckets (:obj:`int`, `optional`, defaults to 32)
The number of buckets to use for each attention layer. This is for relative position calculation. See the
`T5 paper <see https://arxiv.org/abs/1910.10683>`__ for more details.
relative_max_distance (:obj:`int`, `optional`, defaults to 128)
Relative distances greater than this number will be put into the last same bucket. This is for relative
position calculation. See the `T5 paper <see https://arxiv.org/abs/1910.10683>`__ for more details.
disable_ngram_loss (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether be trained predicting only the next first token.
eps (:obj:`float`, `optional`, defaults to 0.0):
Controls the ``epsilon`` parameter value for label smoothing in the loss calculation. If set to 0, no label
smoothing is performed.
"""
model_type = "prophetnet"
def __init__(
self,
activation_dropout=0.1,
activation_function="gelu",
vocab_size=30522,
hidden_size=1024,
encoder_ffn_dim=4096,
num_encoder_layers=12,
num_encoder_attention_heads=16,
decoder_ffn_dim=4096,
num_decoder_layers=12,
num_decoder_attention_heads=16,
attention_dropout=0.1,
dropout=0.1,
max_position_embeddings=512,
init_std=0.02,
is_encoder_decoder=True,
add_cross_attention=True,
pad_token_id=0,
bos_token_id=1,
eos_token_id=2,
decoder_start_token_id=0,
ngram=2,
num_buckets=32,
relative_max_distance=128,
disable_ngram_loss=False,
eps=0.0,
**kwargs
):
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
is_encoder_decoder=is_encoder_decoder,
add_cross_attention=add_cross_attention,
decoder_start_token_id=decoder_start_token_id,
**kwargs,
)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.encoder_ffn_dim = encoder_ffn_dim
self.num_encoder_layers = num_encoder_layers
self.num_encoder_attention_heads = num_encoder_attention_heads
self.decoder_ffn_dim = decoder_ffn_dim
self.num_decoder_layers = num_decoder_layers
self.num_decoder_attention_heads = num_decoder_attention_heads
self.max_position_embeddings = max_position_embeddings
self.init_std = init_std # Normal(0, this parameter)
self.activation_function = activation_function
# parameters for prophetnet
self.ngram = ngram
self.num_buckets = num_buckets
self.relative_max_distance = relative_max_distance
self.disable_ngram_loss = disable_ngram_loss
self.eps = eps
# 3 Types of Dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.dropout = dropout
@property
def num_attention_heads(self) -> int:
return self.num_encoder_attention_heads
@property
def num_hidden_layers(self) -> int:
return self.num_encoder_layers + self.num_decoder_layers