Skip to content

Commit

Permalink
[BUG] Remove duplicated BaseDeepNetworkPyTorch in networks.base (#…
Browse files Browse the repository at this point in the history
…6398)

#### Reference Issues/PRs
Fixes #6391

#### What does this implement/fix? Explain your changes.
Remove duplicated class
  • Loading branch information
luca-miniati authored May 20, 2024
1 parent 5e4a50a commit 2387e12
Showing 1 changed file with 0 additions and 249 deletions.
249 changes: 0 additions & 249 deletions sktime/networks/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,15 +4,7 @@

from abc import ABC, abstractmethod

import numpy as np
import pandas as pd

from sktime.base import BaseObject
from sktime.forecasting.base import BaseForecaster
from sktime.utils.validation._dependencies import _check_soft_dependencies

if _check_soft_dependencies("torch", severity="none"):
import torch


class BaseDeepNetwork(BaseObject, ABC):
Expand All @@ -35,244 +27,3 @@ def build_network(self, input_shape, **kwargs):
output_layer : a keras layer
"""
...


class BaseDeepNetworkPyTorch(BaseForecaster, ABC):
"""Abstract base class for deep learning networks using torch.nn."""

_tags = {
"python_dependencies": "torch",
"y_inner_mtype": "pd.DataFrame",
"capability:insample": False,
"capability:pred_int:insample": False,
"scitype:y": "both",
"ignores-exogeneous-X": True,
}

def __init__(
self,
num_epochs=16,
batch_size=8,
in_channels=1,
individual=False,
criterion_kwargs=None,
optimizer=None,
optimizer_kwargs=None,
lr=0.001,
):
self.num_epochs = num_epochs
self.batch_size = batch_size
self.in_channels = in_channels
self.individual = individual
self.criterion_kwargs = criterion_kwargs
self.optimizer = optimizer
self.optimizer_kwargs = optimizer_kwargs
self.lr = lr

super().__init__()

def _fit(self, y, fh, X=None):
"""Fit the network.
Changes to state:
writes to self._network.state_dict
Parameters
----------
X : iterable-style or map-style dataset
see (https://pytorch.org/docs/stable/data.html) for more information
"""
from sktime.forecasting.base import ForecastingHorizon

# save fh and y for prediction later
if fh.is_relative:
self._fh = fh
else:
fh = fh.to_relative(self.cutoff)
self._fh = fh

self._y = y

if type(fh) is ForecastingHorizon:
self.network = self._build_network(fh._values[-1])
else:
self.network = self._build_network(fh)

if self.criterion:
if self.criterion in self.criterions.keys():
if self.criterion_kwargs:
self._criterion = self.criterions[self.criterion](
**self.criterion_kwargs
)
else:
self._criterion = self.criterions[self.criterion]()
else:
raise TypeError(
f"Please pass one of {self.criterions.keys()} for `criterion`."
)
else:
# default criterion
self._criterion = torch.nn.MSELoss()

if self.optimizer:
if self.optimizer in self.optimizers.keys():
if self.optimizer_kwargs:
self._optimizer = self.optimizers[self.optimizer](
self.network.parameters(), lr=self.lr, **self.optimizer_kwargs
)
else:
self._optimizer = self.optimizers[self.optimizer](
self.network.parameters(), lr=self.lr
)
else:
raise TypeError(
f"Please pass one of {self.optimizers.keys()} for `optimizer`."
)
else:
# default optimizer
self._optimizer = torch.optim.Adam(self.network.parameters(), lr=self.lr)

dataloader = self.build_pytorch_train_dataloader(y)
self.network.train()

for _ in range(self.num_epochs):
for x, y in dataloader:
y_pred = self.network(x)
loss = self._criterion(y_pred, y)
self._optimizer.zero_grad()
loss.backward()
self._optimizer.step()

def _predict(self, X=None, fh=None):
"""Predict with fitted model."""
from torch import cat

if fh is None:
fh = self._fh

if max(fh._values) > self.network.pred_len or min(fh._values) < 0:
raise ValueError(
f"fh of {fh} passed to {self.__class__.__name__} is not "
"within `pred_len`. Please use a fh that aligns with the `pred_len` of "
"the forecaster."
)

if X is None:
dataloader = self.build_pytorch_pred_dataloader(self._y, fh)
else:
dataloader = self.build_pytorch_pred_dataloader(X, fh)

y_pred = []
for x, _ in dataloader:
y_pred.append(self.network(x).detach())
y_pred = cat(y_pred, dim=0).view(-1, y_pred[0].shape[-1]).numpy()
y_pred = y_pred[fh._values.values - 1]
y_pred = pd.DataFrame(
y_pred, columns=self._y.columns, index=fh.to_absolute_index(self.cutoff)
)

return y_pred

def build_pytorch_train_dataloader(self, y):
"""Build PyTorch DataLoader for training."""
from torch.utils.data import DataLoader

if self.custom_dataset_train:
if hasattr(self.custom_dataset_train, "build_dataset") and callable(
self.custom_dataset_train.build_dataset
):
self.custom_dataset_train.build_dataset(y)
dataset = self.custom_dataset_train
else:
raise NotImplementedError(
"Custom Dataset `build_dataset` method is not available. Please "
f"refer to the {self.__class__.__name__}.build_dataset "
"documentation."
)
else:
dataset = PyTorchTrainDataset(
y=y,
seq_len=self.network.seq_len,
fh=self._fh._values[-1],
)

return DataLoader(
dataset,
self.batch_size,
)

def build_pytorch_pred_dataloader(self, y, fh):
"""Build PyTorch DataLoader for prediction."""
from torch.utils.data import DataLoader

if self.custom_dataset_pred:
if hasattr(self.custom_dataset_pred, "build_dataset") and callable(
self.custom_dataset_pred.build_dataset
):
self.custom_dataset_train.build_dataset(y)
dataset = self.custom_dataset_train
else:
raise NotImplementedError(
"Custom Dataset `build_dataset` method is not available. Please"
f"refer to the {self.__class__.__name__}.build_dataset"
"documentation."
)
else:
dataset = PyTorchPredDataset(
y=y[-self.network.seq_len :],
seq_len=self.network.seq_len,
)

return DataLoader(
dataset,
self.batch_size,
)

def get_y_true(self, y):
"""Get y_true values for validation."""
dataloader = self.build_pytorch_pred_dataloader(y)
y_true = [y.flatten().numpy() for _, y in dataloader]
return np.concatenate(y_true, axis=0)


class PyTorchTrainDataset:
"""Dataset for use in sktime deep learning forecasters."""

def __init__(self, y, seq_len, fh):
self.y = y.values
self.seq_len = seq_len
self.fh = fh

def __len__(self):
"""Return length of dataset."""
return len(self.y) - self.seq_len - self.fh + 1

def __getitem__(self, i):
"""Return data point."""
from torch import from_numpy, tensor

return (
tensor(self.y[i : i + self.seq_len]).float(),
from_numpy(self.y[i + self.seq_len : i + self.seq_len + self.fh]).float(),
)


class PyTorchPredDataset:
"""Dataset for use in sktime deep learning forecasters."""

def __init__(self, y, seq_len):
self.y = y.values
self.seq_len = seq_len

def __len__(self):
"""Return length of dataset."""
return 1

def __getitem__(self, i):
"""Return data point."""
from torch import from_numpy, tensor

return (
tensor(self.y[i : i + self.seq_len]).float(),
from_numpy(self.y[i + self.seq_len : i + self.seq_len]).float(),
)

0 comments on commit 2387e12

Please sign in to comment.