-
Notifications
You must be signed in to change notification settings - Fork 115
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
add image to image vae compile demo #406
Changes from 1 commit
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
- Loading branch information
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,119 @@ | ||
import argparse | ||
|
||
from diffusers import ( | ||
StableDiffusionControlNetImg2ImgPipeline, | ||
ControlNetModel, | ||
UniPCMultistepScheduler, | ||
) | ||
|
||
from diffusers.utils import load_image | ||
import numpy as np | ||
import torch | ||
|
||
import cv2 | ||
from PIL import Image | ||
|
||
parser = argparse.ArgumentParser() | ||
parser.add_argument("--base", type=str, default="stabilityai/sd-turbo") | ||
parser.add_argument("--controlnet", type=str, default="thibaud/controlnet-sd21-canny-diffusers") | ||
parser.add_argument( | ||
"--input_image", | ||
type=str, | ||
default="https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png", | ||
) | ||
parser.add_argument( | ||
"--prompt", type=str, default="chinese painting style women", | ||
) | ||
parser.add_argument("--height", type=int, default=512) | ||
parser.add_argument("--width", type=int, default=512) | ||
parser.add_argument("--n_steps", type=int, default=7) | ||
parser.add_argument( | ||
"--saved_image", type=str, required=False, default="i2i_controlnet-out.png" | ||
) | ||
parser.add_argument("--seed", type=int, default=1) | ||
parser.add_argument("--warmup", type=int, default=1) | ||
parser.add_argument("--run", type=int, default=3) | ||
parser.add_argument( | ||
"--compile_unet", type=(lambda x: str(x).lower() in ["true", "1", "yes"]), default=True | ||
) | ||
parser.add_argument( | ||
"--compile_vae", type=(lambda x: str(x).lower() in ["true", "1", "yes"]), default=True | ||
) | ||
parser.add_argument( | ||
"--compile_ctrlnet", | ||
type=(lambda x: str(x).lower() in ["true", "1", "yes"]), | ||
default=True, | ||
) | ||
args = parser.parse_args() | ||
|
||
# load an image | ||
image = load_image(args.input_image) | ||
image = np.array(image) | ||
|
||
# get canny image | ||
image = cv2.Canny(image, 100, 200) | ||
image = image[:, :, None] | ||
image = np.concatenate([image, image, image], axis=2) | ||
canny_image = Image.fromarray(image) | ||
|
||
# load control net and stable diffusion | ||
# reference: https://huggingface.co/docs/diffusers/main/en/api/pipelines/controlnet | ||
controlnet = ControlNetModel.from_pretrained(args.controlnet, torch_dtype=torch.float16) | ||
pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained( | ||
args.base, controlnet=controlnet, torch_dtype=torch.float16 | ||
) | ||
|
||
# speed up diffusion process with faster scheduler | ||
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) | ||
pipe.to("cuda") | ||
|
||
if args.compile_unet: | ||
from onediff.infer_compiler import oneflow_compile | ||
pipe.unet = oneflow_compile(pipe.unet) | ||
|
||
if args.compile_vae: | ||
from onediff.infer_compiler import oneflow_compile | ||
#pipe.vae = oneflow_compile(pipe.vae) | ||
# ImageToImage has encoder and decoder, so we need to compile them seperately. | ||
strint marked this conversation as resolved.
Show resolved
Hide resolved
strint marked this conversation as resolved.
Show resolved
Hide resolved
|
||
pipe.vae.encoder = oneflow_compile(pipe.vae.encoder) | ||
pipe.vae.decoder = oneflow_compile(pipe.vae.decoder) | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. compile the encoder and decoder separately There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. is there an automatic way to detect and report the cause of inappropriately compiling encoder and decoder together? There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
Yes, we are working on it in another PR: directly compile the full vae. |
||
|
||
if args.compile_ctrlnet: | ||
from onediff.infer_compiler import oneflow_compile | ||
pipe.controlnet = oneflow_compile(pipe.controlnet) | ||
|
||
|
||
# generate image | ||
generator = torch.manual_seed(args.seed) | ||
|
||
print("Warmup") | ||
for i in range(args.warmup): | ||
images = pipe( | ||
args.prompt, | ||
height=args.height, | ||
width=args.width, | ||
num_inference_steps=args.n_steps, | ||
generator=generator, | ||
image=image, | ||
control_image=canny_image, | ||
).images | ||
|
||
print("Run") | ||
from tqdm import tqdm | ||
import time | ||
for i in tqdm(range(args.run), desc="Pipe processing", unit="i"): | ||
start_t = time.time() | ||
image = pipe( | ||
args.prompt, | ||
height=args.height, | ||
width=args.width, | ||
num_inference_steps=args.n_steps, | ||
generator=generator, | ||
image=image, | ||
control_image=canny_image, | ||
).images[0] | ||
torch.cuda.synchronize() | ||
end_t = time.time() | ||
print(f"e2e {i} ) elapsed: {end_t - start_t} s") | ||
|
||
image.save(f"{i=}th_{args.saved_image}.png") |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Related work takes my time: #394
But it's not trivial to compile the encode and decode in one graph.