-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrun.py
194 lines (136 loc) · 6.27 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
from config import FLAGS
from dataset import QA_dataset
import os
from datetime import date,timedelta
import tensorflow as tf
from model.QA_CNN import model_fn
from model.QA_CNN import cnn_model_fn
from model.QA_CNN import cnn_quantum_fn
import evaluation
import pickle
import logging
import shutil
import numpy as np
if FLAGS.model_type == "fnn":
model_params = {
"num_classes":FLAGS.num_classes,
"embedding_size":FLAGS.embedding_size,
"learning_rate":FLAGS.learning_rate,
"trainable":FLAGS.trainable,
"optim_type":FLAGS.optim_type
}
elif FLAGS.model_type == 'cnn':
model_params = {
'query_length' : 40,
'app_name_length': 40,
'trainable': False,
'filter_sizes': [3,4,5],
'num_filters':64,
'optim_type':'adam',
'embedding_size':FLAGS.embedding_size,
'learning_rate':0.001,
'batch_size':64,
"trainable":FLAGS.trainable,
"num_classes":FLAGS.num_classes
}
else:
pass
def prepare():
logger = logging.getLogger('QA')
data_path = FLAGS.data_path
train_file = os.path.join(data_path,'train.txt')
test_file = os.path.join(data_path,'test.txt')
dev_file = os.path.join(data_path,'test.txt')
logger.info('checking the data file')
for dir_path in [FLAGS.vocab_dir,FLAGS.model_dir]:
if not os.path.exists(dir_path):
os.makedirs(dir_path)
data_set = QA_dataset(train_file,dev_file,test_file,FLAGS)
data_set.get_alphabet([data_set.train_set,data_set.test_set])
# with open ('index_to_word','w',encoding = 'utf-8') as fout:
# for index in data_set.index_to_word:
# line = str(index) + '\t' + data_set.index_to_word[index] + '\n'
# fout.write(line)
data_set.process_pairs()
embeddings = data_set.get_embedding(FLAGS.embedding_dir,data_set.word_dict,dim = FLAGS.embedding_size)
print("alphabet size{}:".format(len(data_set.word_dict)))
para = {'embeddings':embeddings}
logger.info('save the embedding')
with open(os.path.join(FLAGS.vocab_dir,'vocab.data'),'wb') as fout:
pickle.dump(para, fout)
logger.info('Done with preparing')
def train():
if FLAGS.dt_dir == "":
FLAGS.dt_dir = (date.today() + timedelta(-1)).strftime('%Y%m%d')
FLAGS.model_dir = FLAGS.model_dir + FLAGS.dt_dir
if FLAGS.clear_existing_model:
print("clear the exist model")
if os.path.exists(FLAGS.model_dir):
shutil.rmtree(FLAGS.model_dir,ignore_errors=True)
logger = logging.getLogger('QA')
logger.info("load vocab")
with open(os.path.join(FLAGS.vocab_dir,'vocab.data'),'rb') as fin:
vocab = pickle.load(fin)
logger.info('loading the dataset')
data_set = QA_dataset(None,None,None,FLAGS)
model_params["vocab_size"] = len(vocab['embeddings'])
model_params["embeddings"] = vocab["embeddings"]
config = tf.estimator.RunConfig().replace(session_config = tf.ConfigProto(device_count={'GPU':0, 'CPU':FLAGS.num_threads}),
log_step_count_steps=FLAGS.log_steps, save_summary_steps = FLAGS.log_steps)
QA_CNN = tf.estimator.Estimator(model_fn = cnn_model_fn, model_dir = FLAGS.model_dir, params = model_params, config=config)
train_spec = tf.estimator.TrainSpec(input_fn=lambda: data_set.input_fn(FLAGS.train_tf_records, num_epochs=FLAGS.num_epochs, batch_size=FLAGS.batch_size,perform_shuffle = True),max_steps = 20000)
eval_spec = tf.estimator.EvalSpec(input_fn=lambda: data_set.input_fn(FLAGS.test_tf_records, num_epochs=1, batch_size=FLAGS.batch_size), steps=None, start_delay_secs=1000, throttle_secs=1200)
tf.estimator.train_and_evaluate(QA_CNN, train_spec, eval_spec)
def predict():
logger = logging.getLogger('QA')
logger.info('load vocab')
data_path = FLAGS.data_path
train_file = os.path.join(data_path,'train.txt')
test_file = os.path.join(data_path,'test.txt')
if FLAGS.dt_dir == "":
FLAGS.dt_dir = (date.today() + timedelta(-1)).strftime('%Y%m%d')
FLAGS.model_dir = FLAGS.model_dir + FLAGS.dt_dir
with open(os.path.join(FLAGS.vocab_dir,'vocab.data'),'rb') as fin:
vocab = pickle.load(fin)
model_params["vocab_size"] = len(vocab['embeddings'])
model_params["embeddings"] = vocab["embeddings"]
data_set = QA_dataset(None,None,test_file,FLAGS)
config = tf.estimator.RunConfig().replace(session_config = tf.ConfigProto(device_count={'GPU':0, 'CPU':FLAGS.num_threads}),
log_step_count_steps=FLAGS.log_steps, save_summary_steps=FLAGS.log_steps)
QA_CNN = tf.estimator.Estimator(model_fn = cnn_model_fn, model_dir=FLAGS.model_dir, params=model_params, config=config)
preds = QA_CNN.predict(input_fn=lambda: data_set.input_fn(FLAGS.test_tf_records, num_epochs=1, batch_size=FLAGS.batch_size), predict_keys=["prob",'score'])
# list_pred = list(map(lambda x:x['prob'],preds))
a = list(map(lambda x:(x['prob'],x['score']),preds))
list_pred, score = zip(*a)
random_pred = np.random.rand(len(data_set.test_set))
print('random:{}\n'.format(evaluation.evaluationBypandas(data_set.test_set,random_pred)))
print(evaluation.evaluationBypandas(data_set.test_set,score))
# data_set.test_set['pred'] = list_pred
print(data_set.test_set.head())
data_set.test_set.to_csv('pred.txt',sep = '\t',index = None,header = None)
def main(_):
logger = logging.getLogger('QA')
logger.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(message)s')
if FLAGS.log_path:
file_handler = logging.FileHandler(FLAGS.log_path)
file_handler.setLevel(logging.INFO)
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
else:
console_handler = logging.StreamHandler()
console_handler.setLevel(logging.INFO)
console_handler.setFormatter(formatter)
logger.addHandler(console_handler)
# os.environ['CUDA_DEVICE_ORDER'] = "PCI_BUS_ID"
# os.environ['CUDA_VISIBLE_DEVICES'] = FLAGS.gpu
if FLAGS.task_type == 'prepare':
prepare()
elif FLAGS.task_type == 'train':
prepare()
train()
elif FLAGS.task_type == 'infer':
predict()
if __name__ == '__main__':
tf.logging.set_verbosity(tf.logging.INFO)
tf.app.run()