Skip to content

Commit

Permalink
first commit
Browse files Browse the repository at this point in the history
  • Loading branch information
BBT007 committed Apr 11, 2020
0 parents commit 2633bd2
Show file tree
Hide file tree
Showing 275 changed files with 35,251 additions and 0 deletions.
32 changes: 32 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,32 @@
# 水下目标检测竞赛
## 代码环境及依赖
* OS:Ubuntu 16.10
* GPU: 1 * 32G-V100
* python:3.7.6
* pytorch:1.1.0
* cudatoolkit:10.0.130

## 训练
```
python tools/train.py configs/cascade_rcnn_dconv_c3-c5_r101_fpn_1x.py --gpus 1
python tools/train.py configs/cascade_rcnn_dconv_c3-c5_r101_fpn_1x.py --gpus 1
python tools/train.py configs/cascade_rcnn_dconv_c3-c5_r101_fpn_ms800_2000.py --gpus 1
```

## 预测
```
python tools/test.py configs/cascade_rcnn_dcn_x101_64x4d_fpn_1x.py work_dirs/cas_dcn_x101_64x4d_fpn_htc_1x/epoch_4939A.pth --format_only
python tools/test.py configs/cascade_rcnn_dconv_c3-c5_r101_fpn_1x.py work_dirs/cascade_rcnn_dconv_c3-c5_r101_fpn_1x/epoch_4935A.pth --eval bbox
python tools/test.py configs/cascade_rcnn_dconv_c3-c5_r50_fpn_ms800_2000.py work_dirs/cascade_rcnn_dconv_c3-c5_r50_fpn_ms800_2000/epoch_12.pth --eval bbox
```

**融合:**
```
python tools/json_merge.py
```
**生成提交文件:**
```
python tools/json2csv.py #结果保存在./data文件夹中
```
255 changes: 255 additions & 0 deletions configs/cascade_rcnn_dcn_x101_64x4d_fpn_1x.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,255 @@
# model settings
model = dict(
type='CascadeRCNN',
num_stages=3,
pretrained=None,
backbone=dict(
type='ResNeXt',
depth=101,
groups=64,
base_width=4,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
style='pytorch',
dcn=dict(
type='DCN',
deformable_groups=1,
fallback_on_stride=False),
stage_with_dcn=(False, True, True, True)),
neck=dict(
type='FPN_CARAFE',
in_channels=[256, 512, 1024, 2048],
out_channels=256,
num_outs=5,
start_level=0,
end_level=-1,
norm_cfg=None,
activation=None,
order=('conv', 'norm', 'act'),
upsample_cfg=dict(
type='carafe',
up_kernel=5,
up_group=1,
encoder_kernel=3,
encoder_dilation=1,
compressed_channels=64)),
rpn_head=dict(
type='RPNHead',
in_channels=256,
feat_channels=256,
anchor_scales=[8],
anchor_ratios=[0.5, 1.0, 2.0],
anchor_strides=[4, 8, 16, 32, 64],
target_means=[.0, .0, .0, .0],
target_stds=[1.0, 1.0, 1.0, 1.0],
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)),
bbox_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', out_size=7, sample_num=2),
out_channels=256,
add_context=True,
featmap_strides=[4, 8, 16, 32]),
bbox_head=[
dict(
type='SharedFCBBoxHead',
num_fcs=2,
in_channels=256,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=6,
target_means=[0., 0., 0., 0.],
target_stds=[0.1, 0.1, 0.2, 0.2],
reg_class_agnostic=True,
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)),
dict(
type='SharedFCBBoxHead',
num_fcs=2,
in_channels=256,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=6,
target_means=[0., 0., 0., 0.],
target_stds=[0.05, 0.05, 0.1, 0.1],
reg_class_agnostic=True,
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)),
dict(
type='SharedFCBBoxHead',
num_fcs=2,
in_channels=256,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=6,
target_means=[0., 0., 0., 0.],
target_stds=[0.033, 0.033, 0.067, 0.067],
reg_class_agnostic=True,
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)),
])
# model training and testing settings
train_cfg = dict(
rpn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.3,
min_pos_iou=0.3,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=256,
pos_fraction=0.5,
neg_pos_ub=-1,
add_gt_as_proposals=False),
allowed_border=0,
pos_weight=-1,
debug=False),
rpn_proposal=dict(
nms_across_levels=False,
nms_pre=2000,
nms_post=2000,
max_num=2000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=[
dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.5,
min_pos_iou=0.5,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True),
pos_weight=-1,
debug=False),
dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.6,
neg_iou_thr=0.6,
min_pos_iou=0.6,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True),
pos_weight=-1,
debug=False),
dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.7,
min_pos_iou=0.7,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True),
pos_weight=-1,
debug=False)
],
stage_loss_weights=[1, 0.5, 0.25])
test_cfg = dict(
rpn=dict(
nms_across_levels=False,
nms_pre=1000,
nms_post=1000,
max_num=1000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=dict(
score_thr=0.001, nms=dict(type='soft_nms', iou_thr=0.5, min_score=0.001), max_per_img=200))
# dataset settings
dataset_type = 'CocoDataset'
data_root = '/home/aistudio/work/datasets/water/'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(type='Resize', img_scale=[(3840, 800), (3840, 1800)],
multiscale_mode='range', keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='BBoxJitter', min=0.9, max=1.1),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=[(3840, 800), (3840, 1000), (3840, 1200), (3840, 1400), (3840, 1600), (3840, 1800)],
flip=True,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
data = dict(
imgs_per_gpu=1,
workers_per_gpu=0,
train=dict(
type=dataset_type,
ann_file=data_root + 'train.json',
img_prefix='/home/aistudio/work/datasets/water/train/image',
pipeline=train_pipeline),
test=dict(
type=dataset_type,
ann_file='./data/test5.json',
img_prefix=data_root + 'test-A-image/',
pipeline=test_pipeline))
# test=dict(
# type=dataset_type,
# ann_file=data_root + 'val.json',
# img_prefix='/home/aistudio/work/datasets/water/train/image/',
# pipeline=test_pipeline))
# optimizer
optimizer = dict(type='SGD', lr=1.25e-3, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
# learning policy
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=1.0 / 3,
step=[8, 11])
checkpoint_config = dict(interval=1)
# yapf:disable
log_config = dict(
interval=50,
hooks=[
dict(type='TextLoggerHook'),
# dict(type='TensorboardLoggerHook')
])
# yapf:enable
# runtime settings
total_epochs = 12
dist_params = dict(backend='nccl')
log_level = 'INFO'
work_dir = './work_dirs/cas_dcn_x101_64x4d_fpn_htc_1x'
load_from = './weights/htc_dconv_c3-c5_mstrain_400_1400_x101_64x4d_fpn_converted.pth'
resume_from = None
workflow = [('train', 1)]
Loading

0 comments on commit 2633bd2

Please sign in to comment.