-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
BBT007
committed
Apr 11, 2020
0 parents
commit 2633bd2
Showing
275 changed files
with
35,251 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,32 @@ | ||
# 水下目标检测竞赛 | ||
## 代码环境及依赖 | ||
* OS:Ubuntu 16.10 | ||
* GPU: 1 * 32G-V100 | ||
* python:3.7.6 | ||
* pytorch:1.1.0 | ||
* cudatoolkit:10.0.130 | ||
|
||
## 训练 | ||
``` | ||
python tools/train.py configs/cascade_rcnn_dconv_c3-c5_r101_fpn_1x.py --gpus 1 | ||
python tools/train.py configs/cascade_rcnn_dconv_c3-c5_r101_fpn_1x.py --gpus 1 | ||
python tools/train.py configs/cascade_rcnn_dconv_c3-c5_r101_fpn_ms800_2000.py --gpus 1 | ||
``` | ||
|
||
## 预测 | ||
``` | ||
python tools/test.py configs/cascade_rcnn_dcn_x101_64x4d_fpn_1x.py work_dirs/cas_dcn_x101_64x4d_fpn_htc_1x/epoch_4939A.pth --format_only | ||
python tools/test.py configs/cascade_rcnn_dconv_c3-c5_r101_fpn_1x.py work_dirs/cascade_rcnn_dconv_c3-c5_r101_fpn_1x/epoch_4935A.pth --eval bbox | ||
python tools/test.py configs/cascade_rcnn_dconv_c3-c5_r50_fpn_ms800_2000.py work_dirs/cascade_rcnn_dconv_c3-c5_r50_fpn_ms800_2000/epoch_12.pth --eval bbox | ||
``` | ||
|
||
**融合:** | ||
``` | ||
python tools/json_merge.py | ||
``` | ||
**生成提交文件:** | ||
``` | ||
python tools/json2csv.py #结果保存在./data文件夹中 | ||
``` |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,255 @@ | ||
# model settings | ||
model = dict( | ||
type='CascadeRCNN', | ||
num_stages=3, | ||
pretrained=None, | ||
backbone=dict( | ||
type='ResNeXt', | ||
depth=101, | ||
groups=64, | ||
base_width=4, | ||
num_stages=4, | ||
out_indices=(0, 1, 2, 3), | ||
frozen_stages=1, | ||
style='pytorch', | ||
dcn=dict( | ||
type='DCN', | ||
deformable_groups=1, | ||
fallback_on_stride=False), | ||
stage_with_dcn=(False, True, True, True)), | ||
neck=dict( | ||
type='FPN_CARAFE', | ||
in_channels=[256, 512, 1024, 2048], | ||
out_channels=256, | ||
num_outs=5, | ||
start_level=0, | ||
end_level=-1, | ||
norm_cfg=None, | ||
activation=None, | ||
order=('conv', 'norm', 'act'), | ||
upsample_cfg=dict( | ||
type='carafe', | ||
up_kernel=5, | ||
up_group=1, | ||
encoder_kernel=3, | ||
encoder_dilation=1, | ||
compressed_channels=64)), | ||
rpn_head=dict( | ||
type='RPNHead', | ||
in_channels=256, | ||
feat_channels=256, | ||
anchor_scales=[8], | ||
anchor_ratios=[0.5, 1.0, 2.0], | ||
anchor_strides=[4, 8, 16, 32, 64], | ||
target_means=[.0, .0, .0, .0], | ||
target_stds=[1.0, 1.0, 1.0, 1.0], | ||
loss_cls=dict( | ||
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), | ||
loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)), | ||
bbox_roi_extractor=dict( | ||
type='SingleRoIExtractor', | ||
roi_layer=dict(type='RoIAlign', out_size=7, sample_num=2), | ||
out_channels=256, | ||
add_context=True, | ||
featmap_strides=[4, 8, 16, 32]), | ||
bbox_head=[ | ||
dict( | ||
type='SharedFCBBoxHead', | ||
num_fcs=2, | ||
in_channels=256, | ||
fc_out_channels=1024, | ||
roi_feat_size=7, | ||
num_classes=6, | ||
target_means=[0., 0., 0., 0.], | ||
target_stds=[0.1, 0.1, 0.2, 0.2], | ||
reg_class_agnostic=True, | ||
loss_cls=dict( | ||
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), | ||
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), | ||
dict( | ||
type='SharedFCBBoxHead', | ||
num_fcs=2, | ||
in_channels=256, | ||
fc_out_channels=1024, | ||
roi_feat_size=7, | ||
num_classes=6, | ||
target_means=[0., 0., 0., 0.], | ||
target_stds=[0.05, 0.05, 0.1, 0.1], | ||
reg_class_agnostic=True, | ||
loss_cls=dict( | ||
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), | ||
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), | ||
dict( | ||
type='SharedFCBBoxHead', | ||
num_fcs=2, | ||
in_channels=256, | ||
fc_out_channels=1024, | ||
roi_feat_size=7, | ||
num_classes=6, | ||
target_means=[0., 0., 0., 0.], | ||
target_stds=[0.033, 0.033, 0.067, 0.067], | ||
reg_class_agnostic=True, | ||
loss_cls=dict( | ||
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), | ||
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), | ||
]) | ||
# model training and testing settings | ||
train_cfg = dict( | ||
rpn=dict( | ||
assigner=dict( | ||
type='MaxIoUAssigner', | ||
pos_iou_thr=0.7, | ||
neg_iou_thr=0.3, | ||
min_pos_iou=0.3, | ||
ignore_iof_thr=-1), | ||
sampler=dict( | ||
type='RandomSampler', | ||
num=256, | ||
pos_fraction=0.5, | ||
neg_pos_ub=-1, | ||
add_gt_as_proposals=False), | ||
allowed_border=0, | ||
pos_weight=-1, | ||
debug=False), | ||
rpn_proposal=dict( | ||
nms_across_levels=False, | ||
nms_pre=2000, | ||
nms_post=2000, | ||
max_num=2000, | ||
nms_thr=0.7, | ||
min_bbox_size=0), | ||
rcnn=[ | ||
dict( | ||
assigner=dict( | ||
type='MaxIoUAssigner', | ||
pos_iou_thr=0.5, | ||
neg_iou_thr=0.5, | ||
min_pos_iou=0.5, | ||
ignore_iof_thr=-1), | ||
sampler=dict( | ||
type='RandomSampler', | ||
num=512, | ||
pos_fraction=0.25, | ||
neg_pos_ub=-1, | ||
add_gt_as_proposals=True), | ||
pos_weight=-1, | ||
debug=False), | ||
dict( | ||
assigner=dict( | ||
type='MaxIoUAssigner', | ||
pos_iou_thr=0.6, | ||
neg_iou_thr=0.6, | ||
min_pos_iou=0.6, | ||
ignore_iof_thr=-1), | ||
sampler=dict( | ||
type='RandomSampler', | ||
num=512, | ||
pos_fraction=0.25, | ||
neg_pos_ub=-1, | ||
add_gt_as_proposals=True), | ||
pos_weight=-1, | ||
debug=False), | ||
dict( | ||
assigner=dict( | ||
type='MaxIoUAssigner', | ||
pos_iou_thr=0.7, | ||
neg_iou_thr=0.7, | ||
min_pos_iou=0.7, | ||
ignore_iof_thr=-1), | ||
sampler=dict( | ||
type='RandomSampler', | ||
num=512, | ||
pos_fraction=0.25, | ||
neg_pos_ub=-1, | ||
add_gt_as_proposals=True), | ||
pos_weight=-1, | ||
debug=False) | ||
], | ||
stage_loss_weights=[1, 0.5, 0.25]) | ||
test_cfg = dict( | ||
rpn=dict( | ||
nms_across_levels=False, | ||
nms_pre=1000, | ||
nms_post=1000, | ||
max_num=1000, | ||
nms_thr=0.7, | ||
min_bbox_size=0), | ||
rcnn=dict( | ||
score_thr=0.001, nms=dict(type='soft_nms', iou_thr=0.5, min_score=0.001), max_per_img=200)) | ||
# dataset settings | ||
dataset_type = 'CocoDataset' | ||
data_root = '/home/aistudio/work/datasets/water/' | ||
img_norm_cfg = dict( | ||
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) | ||
train_pipeline = [ | ||
dict(type='LoadImageFromFile'), | ||
dict(type='LoadAnnotations', with_bbox=True), | ||
dict(type='Resize', img_scale=[(3840, 800), (3840, 1800)], | ||
multiscale_mode='range', keep_ratio=True), | ||
dict(type='RandomFlip', flip_ratio=0.5), | ||
dict(type='BBoxJitter', min=0.9, max=1.1), | ||
dict(type='Normalize', **img_norm_cfg), | ||
dict(type='Pad', size_divisor=32), | ||
dict(type='DefaultFormatBundle'), | ||
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), | ||
] | ||
test_pipeline = [ | ||
dict(type='LoadImageFromFile'), | ||
dict( | ||
type='MultiScaleFlipAug', | ||
img_scale=[(3840, 800), (3840, 1000), (3840, 1200), (3840, 1400), (3840, 1600), (3840, 1800)], | ||
flip=True, | ||
transforms=[ | ||
dict(type='Resize', keep_ratio=True), | ||
dict(type='RandomFlip'), | ||
dict(type='Normalize', **img_norm_cfg), | ||
dict(type='Pad', size_divisor=32), | ||
dict(type='ImageToTensor', keys=['img']), | ||
dict(type='Collect', keys=['img']), | ||
]) | ||
] | ||
data = dict( | ||
imgs_per_gpu=1, | ||
workers_per_gpu=0, | ||
train=dict( | ||
type=dataset_type, | ||
ann_file=data_root + 'train.json', | ||
img_prefix='/home/aistudio/work/datasets/water/train/image', | ||
pipeline=train_pipeline), | ||
test=dict( | ||
type=dataset_type, | ||
ann_file='./data/test5.json', | ||
img_prefix=data_root + 'test-A-image/', | ||
pipeline=test_pipeline)) | ||
# test=dict( | ||
# type=dataset_type, | ||
# ann_file=data_root + 'val.json', | ||
# img_prefix='/home/aistudio/work/datasets/water/train/image/', | ||
# pipeline=test_pipeline)) | ||
# optimizer | ||
optimizer = dict(type='SGD', lr=1.25e-3, momentum=0.9, weight_decay=0.0001) | ||
optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2)) | ||
# learning policy | ||
lr_config = dict( | ||
policy='step', | ||
warmup='linear', | ||
warmup_iters=500, | ||
warmup_ratio=1.0 / 3, | ||
step=[8, 11]) | ||
checkpoint_config = dict(interval=1) | ||
# yapf:disable | ||
log_config = dict( | ||
interval=50, | ||
hooks=[ | ||
dict(type='TextLoggerHook'), | ||
# dict(type='TensorboardLoggerHook') | ||
]) | ||
# yapf:enable | ||
# runtime settings | ||
total_epochs = 12 | ||
dist_params = dict(backend='nccl') | ||
log_level = 'INFO' | ||
work_dir = './work_dirs/cas_dcn_x101_64x4d_fpn_htc_1x' | ||
load_from = './weights/htc_dconv_c3-c5_mstrain_400_1400_x101_64x4d_fpn_converted.pth' | ||
resume_from = None | ||
workflow = [('train', 1)] |
Oops, something went wrong.