Skip to content

Commit

Permalink
updated docs
Browse files Browse the repository at this point in the history
  • Loading branch information
dusty-nv committed Jul 15, 2020
1 parent 8ca5955 commit bb95c59
Show file tree
Hide file tree
Showing 2 changed files with 13 additions and 16 deletions.
20 changes: 10 additions & 10 deletions docs/segnet-camera-2.md
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
<img src="https://github.com/dusty-nv/jetson-inference/raw/master/docs/images/deep-vision-header.jpg">
<img src="https://github.com/dusty-nv/jetson-inference/raw/master/docs/images/deep-vision-header.jpg" width="100%">
<p align="right"><sup><a href="segnet-console-2.md">Back</a> | <a href="pytorch-transfer-learning.md">Next</a> | </sup><a href="../README.md#hello-ai-world"><sup>Contents</sup></a>
<br/>
<sup>Semantic Segmentation</sup></s></p>
Expand All @@ -24,19 +24,17 @@ Below are some typical scenarios for launching the program - see [this table](se
#### C++

``` bash
# set --network to one of the segmentation models
$ ./segnet --network=xyz csi://0 # MIPI CSI camera
$ ./segnet --network=xyz /dev/video0 # V4L2 camera
$ ./segnet --network=xyz /dev/video0 output.mp4 # save to video file
$ ./segnet --network=<model> csi://0 # MIPI CSI camera
$ ./segnet --network=<model> /dev/video0 # V4L2 camera
$ ./segnet --network=<model> /dev/video0 output.mp4 # save to video file
```

#### Python

``` bash
# set --network to one of the segmentation models
$ ./segnet.py --network=xyz csi://0 # MIPI CSI camera
$ ./segnet.py --network=xyz /dev/video0 # V4L2 camera
$ ./segnet.py --network=xyz /dev/video0 output.mp4 # save to video file
$ ./segnet.py --network=<model> csi://0 # MIPI CSI camera
$ ./segnet.py --network=<model> /dev/video0 # V4L2 camera
$ ./segnet.py --network=<model> /dev/video0 output.mp4 # save to video file
```

> **note**: for example cameras to use, see these sections of the Jetson Wiki: <br/>
Expand Down Expand Up @@ -78,7 +76,9 @@ $ ./segnet.py --network=fcn-resnet18-deepscene csi://0

<img src="https://github.com/dusty-nv/jetson-inference/raw/pytorch/docs/images/segmentation-deepscene-camera.jpg" width="900">

Feel free to experiment with the different models and resolutions for indoor and outdoor environments. Next, we're going to introduce the concepts of [Transfer Learning](pytorch-transfer-learning.md) and train some example DNN models on our Jetson using PyTorch.
Feel free to experiment with the different models and resolutions for indoor and outdoor environments.

Next, we're going to introduce the concepts of [Transfer Learning](pytorch-transfer-learning.md) and train some example DNN models on our Jetson using PyTorch.

##
<p align="right">Next | <b><a href="pytorch-transfer-learning.md">Transfer Learning with PyTorch</a></b>
Expand Down
9 changes: 3 additions & 6 deletions docs/segnet-console-2.md
Original file line number Diff line number Diff line change
Expand Up @@ -15,11 +15,6 @@ As examples of using the `segNet` class, we provide sample programs C++ and Pyth
- [`segnet.cpp`](../examples/segnet/segnet.cpp) (C++)
- [`segnet.py`](../python/examples/segnet.py) (Python)

Later in the tutorial, we'll also cover segmentation on live camera streams from C++ and Python:

- [`segnet-camera.cpp`](../examples/segnet-camera/segnet-camera.cpp) (C++)
- [`segnet-camera.py`](../python/examples/segnet-camera.py) (Python)

These samples are able to segment images, videos, and camera feeds. For more info about the various types of input/output streams supported, see the [Camera Streaming and Multimedia](aux-streaming.md) page.

See [below](#pretrained-segmentation-models-available) for various pre-trained segmentation models available that use the FCN-ResNet18 network with realtime performance on Jetson. Models are provided for a variety of environments and subject matter, including urban cities, off-road trails, and indoor office spaces and homes.
Expand Down Expand Up @@ -79,7 +74,6 @@ $ ./segnet.py --network=<model> input.jpg output.jpg # overlay
$ ./segnet.py --network=<model> --alpha=200 input.jpg output.jpg # make the overlay less opaque
$ ./segnet.py --network=<model> --visualize=mask input.jpg output.jpg # output the segmentation mask
```
<br/>

### Cityscapes

Expand Down Expand Up @@ -182,6 +176,9 @@ If you want to process a directory or sequence of images, you can launch the pro
``` bash
# C++
$ ./segnet --network=fcn-resnet18-sun "images/room_*.jpg" room_output_%i.jpg

# Python
$ ./segnet.py --network=fcn-resnet18-sun "images/room_*.jpg" room_output_%i.jpg
```

> **note:** when using wildcards, always enclose it in quotes (`"*.jpg"`). Otherwise, the OS will auto-expand the sequence and modify the order of arguments on the command-line, which may result in one of the input images being overwritten by the output.
Expand Down

0 comments on commit bb95c59

Please sign in to comment.