Skip to content

Commit

Permalink
added detection script for saving object snapshots
Browse files Browse the repository at this point in the history
  • Loading branch information
dusty-nv committed Jan 31, 2022
1 parent 6bf94f7 commit b75ea72
Showing 1 changed file with 109 additions and 0 deletions.
109 changes: 109 additions & 0 deletions python/examples/detectnet-snap.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,109 @@
#!/usr/bin/python3
#
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.
#
# This script saves the detected objects to individual images in a directory.
# The directory these are stored in can be set using the --snapshots argument:
#
# python3 detectnet-snap.py --snapshots /path/to/snapshots <input_URI> <output_URI>
#
# The input and output streams are specified the same way as shown here:
# https://github.com/dusty-nv/jetson-inference/blob/master/docs/aux-streaming.md
#

import jetson.inference
import jetson.utils

import argparse
import datetime
import math
import sys
import os

# parse the command line
parser = argparse.ArgumentParser(description="Locate objects in a live camera stream using an object detection DNN.",
formatter_class=argparse.RawTextHelpFormatter, epilog=jetson.inference.detectNet.Usage() +
jetson.utils.videoSource.Usage() + jetson.utils.videoOutput.Usage() + jetson.utils.logUsage())

parser.add_argument("input_URI", type=str, default="", nargs='?', help="URI of the input stream")
parser.add_argument("output_URI", type=str, default="", nargs='?', help="URI of the output stream")
parser.add_argument("--network", type=str, default="ssd-mobilenet-v2", help="pre-trained model to load (see below for options)")
parser.add_argument("--overlay", type=str, default="box,labels,conf", help="detection overlay flags (e.g. --overlay=box,labels,conf)\nvalid combinations are: 'box', 'labels', 'conf', 'none'")
parser.add_argument("--threshold", type=float, default=0.5, help="minimum detection threshold to use")
parser.add_argument("--snapshots", type=str, default="images/test/detections", help="output directory of detection snapshots")
parser.add_argument("--timestamp", type=str, default="%Y%m%d-%H%M%S-%f", help="timestamp format used in snapshot filenames")

try:
opt = parser.parse_known_args()[0]
except:
print("")
parser.print_help()
sys.exit(0)

# make sure the snapshots dir exists
os.makedirs(opt.snapshots, exist_ok=True)

# create video output object
output = jetson.utils.videoOutput(opt.output_URI, argv=sys.argv)

# load the object detection network
net = jetson.inference.detectNet(opt.network, sys.argv, opt.threshold)

# create video sources
input = jetson.utils.videoSource(opt.input_URI, argv=sys.argv)


# process frames until the user exits
while True:
# capture the next image
img = input.Capture()

# detect objects in the image (with overlay)
detections = net.Detect(img, overlay=opt.overlay)

# print the detections
print("detected {:d} objects in image".format(len(detections)))

timestamp = datetime.datetime.now().strftime(opt.timestamp)

for idx, detection in enumerate(detections):
print(detection)
roi = (int(detection.Left), int(detection.Top), int(detection.Right), int(detection.Bottom))
snapshot = jetson.utils.cudaAllocMapped(width=roi[2]-roi[0], height=roi[3]-roi[1], format=img.format)
jetson.utils.cudaCrop(img, snapshot, roi)
jetson.utils.cudaDeviceSynchronize()
jetson.utils.saveImage(os.path.join(opt.snapshots, f"{timestamp}-{idx}.jpg"), snapshot)
del snapshot

# render the image
output.Render(img)

# update the title bar
output.SetStatus("{:s} | Network {:.0f} FPS".format(opt.network, net.GetNetworkFPS()))

# print out performance info
net.PrintProfilerTimes()

# exit on input/output EOS
if not input.IsStreaming() or not output.IsStreaming():
break


0 comments on commit b75ea72

Please sign in to comment.