forked from dusty-nv/jetson-inference
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
added detection script for saving object snapshots
- Loading branch information
Showing
1 changed file
with
109 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,109 @@ | ||
#!/usr/bin/python3 | ||
# | ||
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. | ||
# | ||
# Permission is hereby granted, free of charge, to any person obtaining a | ||
# copy of this software and associated documentation files (the "Software"), | ||
# to deal in the Software without restriction, including without limitation | ||
# the rights to use, copy, modify, merge, publish, distribute, sublicense, | ||
# and/or sell copies of the Software, and to permit persons to whom the | ||
# Software is furnished to do so, subject to the following conditions: | ||
# | ||
# The above copyright notice and this permission notice shall be included in | ||
# all copies or substantial portions of the Software. | ||
# | ||
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | ||
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING | ||
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER | ||
# DEALINGS IN THE SOFTWARE. | ||
# | ||
# This script saves the detected objects to individual images in a directory. | ||
# The directory these are stored in can be set using the --snapshots argument: | ||
# | ||
# python3 detectnet-snap.py --snapshots /path/to/snapshots <input_URI> <output_URI> | ||
# | ||
# The input and output streams are specified the same way as shown here: | ||
# https://github.com/dusty-nv/jetson-inference/blob/master/docs/aux-streaming.md | ||
# | ||
|
||
import jetson.inference | ||
import jetson.utils | ||
|
||
import argparse | ||
import datetime | ||
import math | ||
import sys | ||
import os | ||
|
||
# parse the command line | ||
parser = argparse.ArgumentParser(description="Locate objects in a live camera stream using an object detection DNN.", | ||
formatter_class=argparse.RawTextHelpFormatter, epilog=jetson.inference.detectNet.Usage() + | ||
jetson.utils.videoSource.Usage() + jetson.utils.videoOutput.Usage() + jetson.utils.logUsage()) | ||
|
||
parser.add_argument("input_URI", type=str, default="", nargs='?', help="URI of the input stream") | ||
parser.add_argument("output_URI", type=str, default="", nargs='?', help="URI of the output stream") | ||
parser.add_argument("--network", type=str, default="ssd-mobilenet-v2", help="pre-trained model to load (see below for options)") | ||
parser.add_argument("--overlay", type=str, default="box,labels,conf", help="detection overlay flags (e.g. --overlay=box,labels,conf)\nvalid combinations are: 'box', 'labels', 'conf', 'none'") | ||
parser.add_argument("--threshold", type=float, default=0.5, help="minimum detection threshold to use") | ||
parser.add_argument("--snapshots", type=str, default="images/test/detections", help="output directory of detection snapshots") | ||
parser.add_argument("--timestamp", type=str, default="%Y%m%d-%H%M%S-%f", help="timestamp format used in snapshot filenames") | ||
|
||
try: | ||
opt = parser.parse_known_args()[0] | ||
except: | ||
print("") | ||
parser.print_help() | ||
sys.exit(0) | ||
|
||
# make sure the snapshots dir exists | ||
os.makedirs(opt.snapshots, exist_ok=True) | ||
|
||
# create video output object | ||
output = jetson.utils.videoOutput(opt.output_URI, argv=sys.argv) | ||
|
||
# load the object detection network | ||
net = jetson.inference.detectNet(opt.network, sys.argv, opt.threshold) | ||
|
||
# create video sources | ||
input = jetson.utils.videoSource(opt.input_URI, argv=sys.argv) | ||
|
||
|
||
# process frames until the user exits | ||
while True: | ||
# capture the next image | ||
img = input.Capture() | ||
|
||
# detect objects in the image (with overlay) | ||
detections = net.Detect(img, overlay=opt.overlay) | ||
|
||
# print the detections | ||
print("detected {:d} objects in image".format(len(detections))) | ||
|
||
timestamp = datetime.datetime.now().strftime(opt.timestamp) | ||
|
||
for idx, detection in enumerate(detections): | ||
print(detection) | ||
roi = (int(detection.Left), int(detection.Top), int(detection.Right), int(detection.Bottom)) | ||
snapshot = jetson.utils.cudaAllocMapped(width=roi[2]-roi[0], height=roi[3]-roi[1], format=img.format) | ||
jetson.utils.cudaCrop(img, snapshot, roi) | ||
jetson.utils.cudaDeviceSynchronize() | ||
jetson.utils.saveImage(os.path.join(opt.snapshots, f"{timestamp}-{idx}.jpg"), snapshot) | ||
del snapshot | ||
|
||
# render the image | ||
output.Render(img) | ||
|
||
# update the title bar | ||
output.SetStatus("{:s} | Network {:.0f} FPS".format(opt.network, net.GetNetworkFPS())) | ||
|
||
# print out performance info | ||
net.PrintProfilerTimes() | ||
|
||
# exit on input/output EOS | ||
if not input.IsStreaming() or not output.IsStreaming(): | ||
break | ||
|
||
|