-
Notifications
You must be signed in to change notification settings - Fork 0
/
082 Largest Rectangle in Histogram.py
executable file
·169 lines (129 loc) · 4.96 KB
/
082 Largest Rectangle in Histogram.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
"""
Given n non-negative integers representing the histogram's bar height where the width of each bar is 1, find the area of
largest rectangle in the histogram.
Above is a histogram where width of each bar is 1, given height = [2,1,5,6,2,3].
The largest rectangle is shown in the shaded area, which has area = 10 unit.
For example,
Given height = [2,1,5,6,2,3],
return 10.
"""
import sys
__author__ = 'Danyang'
class Solution:
def largestRectangleArea(self, height):
"""
O(2*n)
every bar at most enter the stack once and is popped out once.
Algorithm: Stack.
Keep a stack storing the bars increasing order, then calculate the area by popping out the stack to get the
currently lowest bar which determines the height of the rectangle.
The popping out is triggered when height being scanned violates increasing order. Keep popping out until not
violate the increasing order.
When calculate the area: area = height[last]*( i-(inc_stack[-1]+1) ) rather than area = height[last] * (i-last),
since originally from inc_stack[-1]+1 to last are higher bars already popped out, which should be included in
the calculation.
pay attention to corner case
reference: http://fisherlei.blogspot.sg/2012/12/leetcode-largest-rectangle-in-histogram.html
:param height: a list of int
:return: int
"""
if not height:
return 0
n = len(height)
gmax = -sys.maxint-1
inc_stack = [] # store the idx, increasing stack
for i in xrange(n):
while inc_stack and height[inc_stack[-1]] > height[i]:
last = inc_stack.pop()
if inc_stack: # calculate area when popping
area = height[last]*(i-(inc_stack[-1]+1))
else:
area = height[last]*i
gmax = max(gmax, area)
inc_stack.append(i)
# after processing all heights, process the remaining stack
i = n
while inc_stack:
last = inc_stack.pop()
if inc_stack:
area = height[last]*(i-(inc_stack[-1]+1))
else:
area = height[last]*i
gmax = max(gmax, area)
return gmax
def largestRectangleArea_TLE(self, height):
"""
O(n*n)
:param height: a list of int
:return: int
"""
if not height:
return 0
max_area = -1<<32
for ind, val in enumerate(height):
min_h = val
max_area = max(max_area, val*1)
for j in xrange(ind, -1, -1):
min_h = min(min_h, height[j])
current_area = min_h*(ind-j+1)
max_area = max(max_area, current_area)
return max_area
def largestRectangleArea_complex(self, height):
"""
O(n*n) + prune
starting from every column, scan backward to calculate the max possible area under current column
reference: http://fisherlei.blogspot.sg/2012/12/leetcode-largest-rectangle-in-histogram.html
:param height: a list of int
:return: int
"""
if not height:
return 0
global_max = -1<<32
for ind, val in enumerate(height):
if ind+1<len(height) and val<=height[ind+1]: # PRUNE, find until peak
continue
min_h = val
global_max = max(global_max, min_h*1)
for j in xrange(ind, -1, -1): # scanning backward
min_h = min(min_h, height[j])
current_area = min_h*(ind-j+1)
global_max = max(global_max, current_area)
return global_max
def largestRectangleArea_error(self, height):
"""
O(n)
Algorithm: Stack.
reference: http://fisherlei.blogspot.sg/2012/12/leetcode-largest-rectangle-in-histogram.html
:param height: a list of int
:return: int
"""
if not height:
return 0
length = len(height)
global_max = -1<<32
inc_stack = [] # store the pointer
i = 0
while i<length:
if not inc_stack or height[i]>=height[inc_stack[-1]]:
inc_stack.append(i)
i += 1
else:
last = inc_stack.pop()
if inc_stack:
area = height[last] * (i-last)
else:
area = height[last] * i
global_max = max(global_max, area)
# remaining stack
while inc_stack:
last = inc_stack.pop()
if inc_stack:
area = height[last]*(i-last)
else:
area = height[last]*i
global_max = max(global_max, area)
return global_max
if __name__=="__main__":
# height = [2, 1, 2]
height = [4, 2, 0, 3, 2, 5]
assert Solution().largestRectangleArea(height) == Solution().largestRectangleArea_complex(height)