-
-
Notifications
You must be signed in to change notification settings - Fork 5.2k
/
Copy path__init__.py
128 lines (108 loc) · 4.65 KB
/
__init__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
"""
SciPy: A scientific computing package for Python
================================================
Documentation is available in the docstrings and
online at http://docs.scipy.org.
Contents
--------
SciPy imports all the functions from the NumPy namespace, and in
addition provides:
Subpackages
-----------
::
odr --- Orthogonal Distance Regression [*]
misc --- Various utilities that don't have
another home.
cluster --- Vector Quantization / Kmeans [*]
fftpack --- Discrete Fourier Transform algorithms
[*]
io --- Data input and output [*]
sparse.linalg.eigen.lobpcg --- Locally Optimal Block Preconditioned
Conjugate Gradient Method (LOBPCG) [*]
special --- Airy Functions [*]
lib.blas --- Wrappers to BLAS library [*]
sparse.linalg.eigen --- Sparse Eigenvalue Solvers [*]
stats --- Statistical Functions [*]
lib --- Python wrappers to external libraries
[*]
lib.lapack --- Wrappers to LAPACK library [*]
maxentropy --- Routines for fitting maximum entropy
models [*]
integrate --- Integration routines [*]
ndimage --- n-dimensional image package [*]
linalg --- Linear algebra routines [*]
spatial --- Spatial data structures and algorithms
[*]
interpolate --- Interpolation Tools [*]
sparse.linalg --- Sparse Linear Algebra [*]
sparse.linalg.dsolve.umfpack --- :Interface to the UMFPACK library: [*]
sparse.linalg.dsolve --- Linear Solvers [*]
optimize --- Optimization Tools [*]
sparse.linalg.eigen.arpack --- Eigenvalue solver using iterative
methods. [*]
signal --- Signal Processing Tools [*]
sparse --- Sparse Matrices [*]
[*] - using a package requires explicit import
Global symbols from subpackages
-------------------------------
::
misc --> info, factorial, factorial2, factorialk,
comb, who, lena, central_diff_weights,
derivative, pade, source
fftpack --> fft, fftn, fft2, ifft, ifft2, ifftn,
fftshift, ifftshift, fftfreq
stats --> find_repeats
linalg.dsolve.umfpack --> UmfpackContext
Utility tools
-------------
::
test --- Run scipy unittests
show_config --- Show scipy build configuration
show_numpy_config --- Show numpy build configuration
__version__ --- Scipy version string
__numpy_version__ --- Numpy version string
"""
__all__ = ['pkgload','test']
from numpy import show_config as show_numpy_config
if show_numpy_config is None:
raise ImportError,"Cannot import scipy when running from numpy source directory."
from numpy import __version__ as __numpy_version__
# Import numpy symbols to scipy name space
import numpy as _num
from numpy import oldnumeric
from numpy import *
from numpy.random import rand, randn
from numpy.fft import fft, ifft
from numpy.lib.scimath import *
# Emit a warning if numpy is too old
majver, minver = [float(i) for i in _num.version.version.split('.')[:2]]
if majver < 1 or (majver == 1 and minver < 2):
import warnings
warnings.warn("Numpy 1.2.0 or above is recommended for this version of " \
"scipy (detected version %s)" % _num.version.version,
UserWarning)
__all__ += ['oldnumeric']+_num.__all__
__all__ += ['randn', 'rand', 'fft', 'ifft']
del _num
# Remove the linalg imported from numpy so that the scipy.linalg package can be
# imported.
del linalg
__all__.remove('linalg')
try:
from scipy.__config__ import show as show_config
except ImportError:
msg = """Error importing scipy: you cannot import scipy while
being in scipy source directory; please exit the scipy source
tree first, and relaunch your python intepreter."""
raise ImportError(msg)
from scipy.version import version as __version__
# Load scipy packages and their global_symbols
from numpy._import_tools import PackageLoader
import os as _os
SCIPY_IMPORT_VERBOSE = int(_os.environ.get('SCIPY_IMPORT_VERBOSE','-1'))
del _os
pkgload = PackageLoader()
pkgload(verbose=SCIPY_IMPORT_VERBOSE,postpone=True)
from numpy.testing import Tester
test = Tester().test
bench = Tester().bench