forked from orcax/LOGER
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
488 lines (383 loc) · 18.5 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
#!/usr/bin/python3
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import logging
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from sklearn.metrics import average_precision_score
from torch.utils.data import DataLoader
from dataloader import TestDataset
class KGEModel(nn.Module):
def __init__(self, model_name, nentity, nrelation, hidden_dim, gamma,
double_entity_embedding=False, double_relation_embedding=False):
super(KGEModel, self).__init__()
self.model_name = model_name
self.nentity = nentity
self.nrelation = nrelation
self.hidden_dim = hidden_dim
self.epsilon = 2.0
self.gamma = nn.Parameter(
torch.Tensor([gamma]),
requires_grad=False
)
self.embedding_range = nn.Parameter(
torch.Tensor([(self.gamma.item() + self.epsilon) / hidden_dim]),
requires_grad=False
)
self.entity_dim = hidden_dim*2 if double_entity_embedding else hidden_dim
self.relation_dim = hidden_dim*2 if double_relation_embedding else hidden_dim
self.entity_embedding = nn.Parameter(torch.zeros(nentity, self.entity_dim))
nn.init.uniform_(
tensor=self.entity_embedding,
a=-self.embedding_range.item(),
b=self.embedding_range.item()
)
self.relation_embedding = nn.Parameter(torch.zeros(nrelation, self.relation_dim))
nn.init.uniform_(
tensor=self.relation_embedding,
a=-self.embedding_range.item(),
b=self.embedding_range.item()
)
if model_name == 'pRotatE':
self.modulus = nn.Parameter(torch.Tensor([[0.5 * self.embedding_range.item()]]))
#Do not forget to modify this line when you add a new model in the "forward" function
if model_name not in ['TransE', 'DistMult', 'ComplEx', 'RotatE', 'pRotatE']:
raise ValueError('model %s not supported' % model_name)
if model_name == 'RotatE' and (not double_entity_embedding or double_relation_embedding):
raise ValueError('RotatE should use --double_entity_embedding')
if model_name == 'ComplEx' and (not double_entity_embedding or not double_relation_embedding):
raise ValueError('ComplEx should use --double_entity_embedding and --double_relation_embedding')
def forward(self, sample, mode='single'):
'''
Forward function that calculate the score of a batch of triples.
In the 'single' mode, sample is a batch of triple.
In the 'head-batch' or 'tail-batch' mode, sample consists two part.
The first part is usually the positive sample.
And the second part is the entities in the negative samples.
Because negative samples and positive samples usually share two elements
in their triple ((head, relation) or (relation, tail)).
'''
if mode == 'single':
batch_size, negative_sample_size = sample.size(0), 1
head = torch.index_select(
self.entity_embedding,
dim=0,
index=sample[:,0]
).unsqueeze(1)
relation = torch.index_select(
self.relation_embedding,
dim=0,
index=sample[:,1]
).unsqueeze(1)
tail = torch.index_select(
self.entity_embedding,
dim=0,
index=sample[:,2]
).unsqueeze(1)
elif mode == 'head-batch':
tail_part, head_part = sample
batch_size, negative_sample_size = head_part.size(0), head_part.size(1)
head = torch.index_select(
self.entity_embedding,
dim=0,
index=head_part.view(-1)
).view(batch_size, negative_sample_size, -1)
relation = torch.index_select(
self.relation_embedding,
dim=0,
index=tail_part[:, 1]
).unsqueeze(1)
tail = torch.index_select(
self.entity_embedding,
dim=0,
index=tail_part[:, 2]
).unsqueeze(1)
elif mode == 'tail-batch':
head_part, tail_part = sample
batch_size, negative_sample_size = tail_part.size(0), tail_part.size(1)
head = torch.index_select(
self.entity_embedding,
dim=0,
index=head_part[:, 0]
).unsqueeze(1)
relation = torch.index_select(
self.relation_embedding,
dim=0,
index=head_part[:, 1]
).unsqueeze(1)
tail = torch.index_select(
self.entity_embedding,
dim=0,
index=tail_part.view(-1)
).view(batch_size, negative_sample_size, -1)
else:
raise ValueError('mode %s not supported' % mode)
model_func = {
'TransE': self.TransE,
'DistMult': self.DistMult,
'ComplEx': self.ComplEx,
'RotatE': self.RotatE,
'pRotatE': self.pRotatE
}
if self.model_name in model_func:
score = model_func[self.model_name](head, relation, tail, mode)
else:
raise ValueError('model %s not supported' % self.model_name)
return score
def TransE(self, head, relation, tail, mode):
if mode == 'head-batch':
score = head + (relation - tail)
else:
score = (head + relation) - tail
score = self.gamma.item() - torch.norm(score, p=1, dim=2)
return score
def DistMult(self, head, relation, tail, mode):
if mode == 'head-batch':
score = head * (relation * tail)
else:
score = (head * relation) * tail
score = score.sum(dim = 2)
return score
def ComplEx(self, head, relation, tail, mode):
re_head, im_head = torch.chunk(head, 2, dim=2)
re_relation, im_relation = torch.chunk(relation, 2, dim=2)
re_tail, im_tail = torch.chunk(tail, 2, dim=2)
if mode == 'head-batch':
re_score = re_relation * re_tail + im_relation * im_tail
im_score = re_relation * im_tail - im_relation * re_tail
score = re_head * re_score + im_head * im_score
else:
re_score = re_head * re_relation - im_head * im_relation
im_score = re_head * im_relation + im_head * re_relation
score = re_score * re_tail + im_score * im_tail
score = score.sum(dim = 2)
return score
def RotatE(self, head, relation, tail, mode):
pi = 3.14159265358979323846
re_head, im_head = torch.chunk(head, 2, dim=2)
re_tail, im_tail = torch.chunk(tail, 2, dim=2)
#Make phases of relations uniformly distributed in [-pi, pi]
phase_relation = relation/(self.embedding_range.item()/pi)
re_relation = torch.cos(phase_relation)
im_relation = torch.sin(phase_relation)
if mode == 'head-batch':
re_score = re_relation * re_tail + im_relation * im_tail
im_score = re_relation * im_tail - im_relation * re_tail
re_score = re_score - re_head
im_score = im_score - im_head
else:
re_score = re_head * re_relation - im_head * im_relation
im_score = re_head * im_relation + im_head * re_relation
re_score = re_score - re_tail
im_score = im_score - im_tail
score = torch.stack([re_score, im_score], dim = 0)
score = score.norm(dim = 0)
score = self.gamma.item() - score.sum(dim = 2)
return score
def pRotatE(self, head, relation, tail, mode):
pi = 3.14159262358979323846
#Make phases of entities and relations uniformly distributed in [-pi, pi]
phase_head = head/(self.embedding_range.item()/pi)
phase_relation = relation/(self.embedding_range.item()/pi)
phase_tail = tail/(self.embedding_range.item()/pi)
if mode == 'head-batch':
score = phase_head + (phase_relation - phase_tail)
else:
score = (phase_head + phase_relation) - phase_tail
score = torch.sin(score)
score = torch.abs(score)
score = self.gamma.item() - score.sum(dim = 2) * self.modulus
return score
@staticmethod
def train_step(model, optimizer, train_iterator, args):
'''
A single train step. Apply back-propation and return the loss
'''
model.train()
optimizer.zero_grad()
positive_sample, negative_sample, subsampling_weight, mode = next(train_iterator)
if args.cuda:
positive_sample = positive_sample.cuda()
negative_sample = negative_sample.cuda()
subsampling_weight = subsampling_weight.cuda()
negative_score = model((positive_sample, negative_sample), mode=mode)
if args.negative_adversarial_sampling:
#In self-adversarial sampling, we do not apply back-propagation on the sampling weight
negative_score = (F.softmax(negative_score * args.adversarial_temperature, dim = 1).detach()
* F.logsigmoid(-negative_score)).sum(dim = 1)
else:
negative_score = F.logsigmoid(-negative_score).mean(dim = 1)
positive_score = model(positive_sample)
positive_score = F.logsigmoid(positive_score).squeeze(dim = 1)
if args.uni_weight:
positive_sample_loss = - positive_score.mean()
negative_sample_loss = - negative_score.mean()
else:
positive_sample_loss = - (subsampling_weight * positive_score).sum()/subsampling_weight.sum()
negative_sample_loss = - (subsampling_weight * negative_score).sum()/subsampling_weight.sum()
loss = (positive_sample_loss + negative_sample_loss)/2
if args.regularization != 0.0:
#Use L3 regularization for ComplEx and DistMult
regularization = args.regularization * (
model.entity_embedding.norm(p = 3)**3 +
model.relation_embedding.norm(p = 3).norm(p = 3)**3
)
loss = loss + regularization
regularization_log = {'regularization': regularization.item()}
else:
regularization_log = {}
loss.backward()
optimizer.step()
log = {
**regularization_log,
'positive_sample_loss': positive_sample_loss.item(),
'negative_sample_loss': negative_sample_loss.item(),
'loss': loss.item()
}
return log
@staticmethod
def test_step(model, test_triples, test_candidates, all_true_triples, args):
'''
Evaluate the model on test or valid datasets
'''
model.eval()
if args.countries:
#Countries S* datasets are evaluated on AUC-PR
#Process test data for AUC-PR evaluation
sample = list()
y_true = list()
for head, relation, tail in test_triples:
for candidate_region in args.regions:
y_true.append(1 if candidate_region == tail else 0)
sample.append((head, relation, candidate_region))
sample = torch.LongTensor(sample)
if args.cuda:
sample = sample.cuda()
with torch.no_grad():
y_score = model(sample).squeeze(1).cpu().numpy()
y_true = np.array(y_true)
#average_precision_score is the same as auc_pr
auc_pr = average_precision_score(y_true, y_score)
metrics = {'auc_pr': auc_pr}
else:
#Otherwise use standard (filtered) MRR, MR, HITS@1, HITS@3, and HITS@10 metrics
#Prepare dataloader for evaluation
test_dataloader_head = DataLoader(
TestDataset(
test_triples,
test_candidates,
all_true_triples,
args.nentity,
args.nrelation,
'head-batch'
),
batch_size=args.test_batch_size,
num_workers=max(1, args.cpu_num//2),
collate_fn=TestDataset.collate_fn
)
test_dataloader_tail = DataLoader(
TestDataset(
test_triples,
test_candidates,
all_true_triples,
args.nentity,
args.nrelation,
'tail-batch'
),
batch_size=args.test_batch_size,
num_workers=max(1, args.cpu_num//2),
collate_fn=TestDataset.collate_fn
)
test_dataset_list = [test_dataloader_head, test_dataloader_tail]
logs = []
step = 0
total_steps = sum([len(dataset) for dataset in test_dataset_list])
# --------------------------------------------------
# Comments by Meng:
# Here we slightly modify the codes to save the intermediate prediction results of KGE models, so that we can combine the predictions from KGE and MLN to improve the results.
# --------------------------------------------------
predictions = []
with torch.no_grad():
for test_dataset in test_dataset_list:
for positive_sample, negative_sample, filter_bias, mode, candidates in test_dataset:
if args.cuda:
positive_sample = positive_sample.cuda()
negative_sample = negative_sample.cuda()
filter_bias = filter_bias.cuda()
candidates = candidates.cuda()
# Save prediction results
prediction = positive_sample.data.cpu().numpy().tolist()
batch_size = positive_sample.size(0)
score = torch.sigmoid(model((positive_sample, negative_sample), mode))
score += filter_bias
#Explicitly sort all the entities to ensure that there is no test exposure bias
# valsort, argsort = torch.sort(score, dim = 1, descending=True)
# if mode == 'head-batch':
# positive_arg = positive_sample[:, 0]
# elif mode == 'tail-batch':
# positive_arg = positive_sample[:, 2]
# else:
# raise ValueError('mode %s not supported' % mode)
for i in range(batch_size):
#Notice that argsort is not ranking
# ranking = (argsort[i, :] == positive_arg[i]).nonzero()
# assert ranking.size(0) == 1
# For each test triplet, save the ranked list (h, r, [ts]) and ([hs], r, t)
# if mode == 'head-batch':
# prediction[i].append('h')
# prediction[i].append(ranking.item() + 1)
# ls = zip(argsort[i, 0:args.topk].data.cpu().numpy().tolist(), valsort[i, 0:args.topk].data.cpu().numpy().tolist())
# prediction[i].append(ls)
# elif mode == 'tail-batch':
# prediction[i].append('t')
# prediction[i].append(ranking.item() + 1)
# prediction[i].append(ls)
# sort for rec task
valsort, argsort = torch.sort(score[i][candidates[i]], dim=0, descending=True)
ranking = (argsort == 0).nonzero()
assert ranking.size(0) == 1
# For each test triplet, save the ranked list (h, r, [ts])
prediction[i].append('h')
prediction[i].append(ranking.item() + 1)
ls = zip(candidates[i].data.cpu().numpy().tolist(), score[i][candidates[i]].data.cpu().numpy().tolist())
prediction[i].append(ls)
#ranking + 1 is the true ranking used in evaluation metrics
ranking = 1 + ranking.item()
logs.append({
'MR': float(ranking),
'MRR': 1.0/ranking,
'HITS@1': 1.0 if ranking <= 1 else 0.0,
'HITS@3': 1.0 if ranking <= 3 else 0.0,
'HITS@10': 1.0 if ranking <= 10 else 0.0,
})
predictions += prediction
if step % args.test_log_steps == 0:
logging.info('Evaluating the model... (%d/%d)' % (step, total_steps))
step += 1
metrics = {}
for metric in logs[0].keys():
metrics[metric] = sum([log[metric] for log in logs])/len(logs)
return metrics, predictions
# --------------------------------------------------
# Comments by Meng:
# Here we add a new function, which will predict the probability of each hidden triplet being true.
# The results will be used by MLN.
# --------------------------------------------------
@staticmethod
def infer_step(model, infer_triples, args):
batch_size = args.batch_size
scores = []
model.eval()
for k in range(0, len(infer_triples), batch_size):
bg = k
ed = min(k + batch_size, len(infer_triples))
batch = infer_triples[bg:ed]
batch = torch.LongTensor(batch)
if args.cuda:
batch = batch.cuda()
score = torch.sigmoid(model(batch)).squeeze(1)
scores += score.data.cpu().numpy().tolist()
return scores