forked from orcax/LOGER
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataloader.py
190 lines (155 loc) · 6.78 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
#!/usr/bin/python3
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import torch
from torch.utils.data import Dataset
class TrainDataset(Dataset):
def __init__(self, triples, nentity, nrelation, negative_sample_size, mode):
self.len = len(triples)
self.triples = triples
self.triple_set = set(triples)
self.nentity = nentity
self.nrelation = nrelation
self.negative_sample_size = negative_sample_size
self.mode = mode
self.count = self.count_frequency(triples)
self.true_head, self.true_tail = self.get_true_head_and_tail(self.triples)
def __len__(self):
return self.len
def __getitem__(self, idx):
positive_sample = self.triples[idx]
head, relation, tail = positive_sample
subsampling_weight = self.count[(head, relation)] + self.count[(tail, -relation-1)]
subsampling_weight = torch.sqrt(1 / torch.Tensor([subsampling_weight]))
negative_sample_list = []
negative_sample_size = 0
while negative_sample_size < self.negative_sample_size:
negative_sample = np.random.randint(self.nentity, size=self.negative_sample_size*2)
if self.mode == 'head-batch':
mask = np.in1d(
negative_sample,
self.true_head[(relation, tail)],
assume_unique=True,
invert=True
)
elif self.mode == 'tail-batch':
mask = np.in1d(
negative_sample,
self.true_tail[(head, relation)],
assume_unique=True,
invert=True
)
else:
raise ValueError('Training batch mode %s not supported' % self.mode)
negative_sample = negative_sample[mask]
negative_sample_list.append(negative_sample)
negative_sample_size += negative_sample.size
negative_sample = np.concatenate(negative_sample_list)[:self.negative_sample_size]
negative_sample = torch.from_numpy(negative_sample)
positive_sample = torch.LongTensor(positive_sample)
return positive_sample, negative_sample, subsampling_weight, self.mode
@staticmethod
def collate_fn(data):
positive_sample = torch.stack([_[0] for _ in data], dim=0)
negative_sample = torch.stack([_[1] for _ in data], dim=0)
subsample_weight = torch.cat([_[2] for _ in data], dim=0)
mode = data[0][3]
return positive_sample, negative_sample, subsample_weight, mode
@staticmethod
def count_frequency(triples, start=4):
'''
Get frequency of a partial triple like (head, relation) or (relation, tail)
The frequency will be used for subsampling like word2vec
'''
count = {}
for head, relation, tail in triples:
if (head, relation) not in count:
count[(head, relation)] = start
else:
count[(head, relation)] += 1
if (tail, -relation-1) not in count:
count[(tail, -relation-1)] = start
else:
count[(tail, -relation-1)] += 1
return count
@staticmethod
def get_true_head_and_tail(triples):
'''
Build a dictionary of true triples that will
be used to filter these true triples for negative sampling
'''
true_head = {}
true_tail = {}
for head, relation, tail in triples:
if (head, relation) not in true_tail:
true_tail[(head, relation)] = []
true_tail[(head, relation)].append(tail)
if (relation, tail) not in true_head:
true_head[(relation, tail)] = []
true_head[(relation, tail)].append(head)
for relation, tail in true_head:
true_head[(relation, tail)] = np.array(list(set(true_head[(relation, tail)])))
for head, relation in true_tail:
true_tail[(head, relation)] = np.array(list(set(true_tail[(head, relation)])))
return true_head, true_tail
class TestDataset(Dataset):
def __init__(self, triples, candidates, all_true_triples, nentity, nrelation, mode):
self.len = len(triples)
self.triple_set = set(all_true_triples)
self.triples = triples
self.candidate_set = candidates
self.nentity = nentity
self.nrelation = nrelation
self.mode = mode
def __len__(self):
return self.len
def __getitem__(self, idx):
head, relation, tail = self.triples[idx]
candidates = self.candidate_set[idx]
if self.mode == 'head-batch':
tmp = [(0, rand_head) if (rand_head, relation, tail) not in self.triple_set
else (-1, head) for rand_head in range(self.nentity)]
tmp[head] = (0, head)
elif self.mode == 'tail-batch':
tmp = [(0, rand_tail) if (head, relation, rand_tail) not in self.triple_set
else (-1, tail) for rand_tail in range(self.nentity)]
tmp[tail] = (0, tail)
else:
raise ValueError('negative batch mode %s not supported' % self.mode)
tmp = torch.LongTensor(tmp)
filter_bias = tmp[:, 0].float()
negative_sample = tmp[:, 1]
positive_sample = torch.LongTensor((head, relation, tail))
candidates = torch.LongTensor(candidates)
assert candidates.size(0) == 101
return positive_sample, negative_sample, filter_bias, self.mode, candidates
@staticmethod
def collate_fn(data):
positive_sample = torch.stack([_[0] for _ in data], dim=0)
negative_sample = torch.stack([_[1] for _ in data], dim=0)
filter_bias = torch.stack([_[2] for _ in data], dim=0)
mode = data[0][3]
candidates = torch.stack([_[4] for _ in data], dim=0)
return positive_sample, negative_sample, filter_bias, mode, candidates
class BidirectionalOneShotIterator(object):
def __init__(self, dataloader_head, dataloader_tail):
self.iterator_head = self.one_shot_iterator(dataloader_head)
self.iterator_tail = self.one_shot_iterator(dataloader_tail)
self.step = 0
def __next__(self):
self.step += 1
if self.step % 2 == 0:
data = next(self.iterator_head)
else:
data = next(self.iterator_tail)
return data
@staticmethod
def one_shot_iterator(dataloader):
'''
Transform a PyTorch Dataloader into python iterator
'''
while True:
for data in dataloader:
yield data