diff --git a/Fairness Performance.ipynb b/Fairness Performance.ipynb index df2a42c..1a6c733 100644 --- a/Fairness Performance.ipynb +++ b/Fairness Performance.ipynb @@ -9,7 +9,7 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -18,32 +18,12 @@ "parentdir = os.path.dirname(currentdir)\n", "sys.path.insert(0,parentdir)\n", "\n", - "import argparse\n", - "from argparse import Namespace\n", - "\n", - "def read_line_number(file_path, line_num):\n", - " with open(file_path, 'r') as fin:\n", - " for i,line in enumerate(fin):\n", - " if i == line_num:\n", - " return line.strip()\n", - " return \"\"\n", - "\n", - "def extract_args(log_path):\n", - " print(log_path)\n", - " argstr = read_line_number(log_path, 1)\n", - " if 'fair_lambda' not in argstr:\n", - " argstr = argstr[:-1] + ', fair_lambda=0.1)'\n", - " if 'fair_rho' not in argstr:\n", - " argstr = argstr[:-1] + ', fair_rho=1)'\n", - " if 'fair_group_feature' not in argstr:\n", - " argstr = argstr[:-1] + f\", fair_group_feature='{group_feature}')\"\n", - " args = eval(argstr)\n", - " return args" + "from utils import read_line_number, extract_args" ] }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -66,8 +46,8 @@ " user_groups[uid] = fairness_control.group_dict[uid]\n", " return user_groups\n", "\n", - "def get_userwise_performance(model, at_k_list):\n", - " model.reader.set_phase('test')\n", + "def get_userwise_performance(model, at_k_list, phase = 'test'):\n", + " model.reader.set_phase(phase)\n", " eval_data = model.reader.get_eval_dataset()\n", " eval_loader = DataLoader(eval_data, worker_init_fn = worker_init_func,\n", " batch_size = 1, shuffle = False, pin_memory = False, \n", @@ -94,7 +74,7 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -113,7 +93,7 @@ " device = \"cuda:\" + str(device)\n", "else:\n", " device = \"cpu\"\n", - "params = {'at_k_list': [10,50], 'eval_sample_p': 1.0}" + "# params = {'at_k_list': [10,50], 'eval_sample_p': 1.0}" ] }, { @@ -125,7 +105,7 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -143,11 +123,16 @@ "# '/logs/f2rec_train_and_eval_FedMF_lr0.003_reg0.1_losspairwisebpr_local1_fedavg.log'\n", " ], \n", " 'FairMF': [\n", - " '/logs/f2rec_train_and_eval_FairMF_lr0.00003_reg0.1_losspairwisebpr_lambda-0.1_gactivity.log'\n", - " ,'/logs/f2rec_train_and_eval_FairMF_lr0.00003_reg0.1_losspairwisebpr_lambda0_gactivity.log'\n", - " ,'/logs/f2rec_train_and_eval_FairMF_lr0.00003_reg0.1_losspairwisebpr_lambda0.1_gactivity.log'\n", - " ,'/logs/f2rec_train_and_eval_FairMF_lr0.00003_reg0.1_losspairwisebpr_lambda0.5_gactivity.log'\n", - " ,'/logs/f2rec_train_and_eval_FairMF_lr0.00003_reg0.1_losspairwisebpr_lambda1.0_gactivity.log'\n", + " f'/logs/f2rec_train_and_eval_FairMF_lr0.00003_reg0.1_losspairwisebpr_lambda-0.7_g{group_feature}.log'\n", + " ,f'/logs/f2rec_train_and_eval_FairMF_lr0.00003_reg0.1_losspairwisebpr_lambda-0.5_g{group_feature}.log'\n", + " ,f'/logs/f2rec_train_and_eval_FairMF_lr0.00003_reg0.1_losspairwisebpr_lambda-0.3_g{group_feature}.log'\n", + " ,f'/logs/f2rec_train_and_eval_FairMF_lr0.00003_reg0.1_losspairwisebpr_lambda-0.1_g{group_feature}.log'\n", + " ,f'/logs/f2rec_train_and_eval_FairMF_lr0.00003_reg0.1_losspairwisebpr_lambda0.1_g{group_feature}.log'\n", + " ,f'/logs/f2rec_train_and_eval_FairMF_lr0.00003_reg0.1_losspairwisebpr_lambda0.3_g{group_feature}.log'\n", + " ,f'/logs/f2rec_train_and_eval_FairMF_lr0.00003_reg0.1_losspairwisebpr_lambda0.5_g{group_feature}.log'\n", + " ,f'/logs/f2rec_train_and_eval_FairMF_lr0.00003_reg0.1_losspairwisebpr_lambda0.7_g{group_feature}.log'\n", + " ,f'/logs/f2rec_train_and_eval_FairMF_lr0.00003_reg0.1_losspairwisebpr_lambda0.9_g{group_feature}.log'\n", + "# ,'/logs/f2rec_train_and_eval_FairMF_lr0.00003_reg0.1_losspairwisebpr_lambda1.0_gactivity.log'\n", " ],\n", " 'F2MF': [\n", "# '/logs/f2rec_train_and_eval_FairFedMF_lr0.0003_reg0.1_losspairwisebpr_lambda-0.1_sigma0_gactivity.log'\n", @@ -189,7 +174,7 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 5, "metadata": { "scrolled": true }, @@ -198,8 +183,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "/home/sl1471/workspace/experiments/ml-1m/logs/f2rec_train_and_eval_FairMF_lr0.00003_reg0.1_losspairwisebpr_lambda-0.1_gactivity.log\n", - "Namespace(cuda=2, seed=29, train=False, train_and_eval=True, continuous_train=False, eval=False, model_path='/home/sl1471/workspace/experiments/ml-1m/models/f2rec_FairMF_lr0.00003_reg0.1_pairwisebpr_lambda-0.1_gactivity.pkl', loss='pairwisebpr', l2_coef=0.1, emb_size=32, data_file='/home/sl1471/workspace/experiments/ml-1m/tsv_data/', n_worker=4, user_meta_data='/home/sl1471/workspace/experiments/ml-1m/meta_data/user.meta', item_meta_data='/home/sl1471/workspace/experiments/ml-1m/meta_data/item.meta', user_fields_meta_file='/home/sl1471/workspace/experiments/ml-1m/meta_data/user_fields.meta', item_fields_meta_file='/home/sl1471/workspace/experiments/ml-1m/meta_data/item_fields.meta', user_fields_vocab_file='/home/sl1471/workspace/experiments/ml-1m/meta_data/user_fields.vocab', item_fields_vocab_file='/home/sl1471/workspace/experiments/ml-1m/meta_data/item_fields.vocab', n_neg=1, n_neg_val=100, n_neg_test=-1, n_round=1, optimizer='Adam', epoch=30, check_epoch=1, lr=3e-05, batch_size=256, eval_batch_size=1, temper=6, with_val=True, val_sample_p=1.0, test_sample_p=1.0, stop_metric='_NDCG@50', pin_memory=False, at_k=[1, 5, 10, 20, 50], n_eval_process=1, fair_lambda=-0.1, fair_rho=1, fair_group_feature='activity')\n", + "/home/sl1471/workspace/experiments/ml-1m/logs/f2rec_train_and_eval_FairMF_lr0.00003_reg0.1_losspairwisebpr_lambda-0.7_gactivity.log\n", + "Namespace(cuda=2, seed=29, train=False, train_and_eval=True, continuous_train=False, eval=False, model_path='/home/sl1471/workspace/experiments/ml-1m/models/f2rec_FairMF_lr0.00003_reg0.1_pairwisebpr_lambda-0.7_gactivity.pkl', loss='pairwisebpr', l2_coef=0.1, emb_size=32, data_file='/home/sl1471/workspace/experiments/ml-1m/tsv_data/', n_worker=4, user_meta_data='/home/sl1471/workspace/experiments/ml-1m/meta_data/user.meta', item_meta_data='/home/sl1471/workspace/experiments/ml-1m/meta_data/item.meta', user_fields_meta_file='/home/sl1471/workspace/experiments/ml-1m/meta_data/user_fields.meta', item_fields_meta_file='/home/sl1471/workspace/experiments/ml-1m/meta_data/item_fields.meta', user_fields_vocab_file='/home/sl1471/workspace/experiments/ml-1m/meta_data/user_fields.vocab', item_fields_vocab_file='/home/sl1471/workspace/experiments/ml-1m/meta_data/item_fields.vocab', n_neg=1, n_neg_val=100, n_neg_test=-1, n_round=1, optimizer='Adam', epoch=30, check_epoch=1, lr=3e-05, batch_size=256, eval_batch_size=1, temper=6, with_val=True, val_sample_p=1.0, test_sample_p=1.0, stop_metric='_NDCG@50', pin_memory=False, at_k=[1, 5, 10, 20, 50], n_eval_process=1, fair_lambda=-0.7, fair_rho=1, fair_group_feature='activity')\n", "Loading train data file. Done.\n", "Loading val data file. Done.\n", "Loading test data file. Done.\n", @@ -222,7 +207,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "100%|██████████| 6023/6023 [00:08<00:00, 737.67it/s] \n" + "100%|██████████| 6023/6023 [00:07<00:00, 818.00it/s]\n" ] }, { @@ -230,68 +215,146 @@ "output_type": "stream", "text": [ "user activity: 1885(A) -- 4138(I), threshold (133.05495600199237)\n", - "embedding: tensor([[-0.0063, -0.0224, -0.0381, ..., 0.0122, -0.0042, -0.0213],\n", - " [-0.0065, 0.0187, -0.0209, ..., -0.0587, -0.0227, -0.0036],\n", - " [ 0.0098, 0.0069, 0.0158, ..., -0.0135, 0.0217, -0.0402],\n", + "embedding: tensor([[-0.0102, 0.0165, 0.0270, ..., -0.0165, -0.0083, 0.0012],\n", + " [ 0.0408, 0.0174, 0.0196, ..., 0.0113, -0.0015, 0.0144],\n", + " [ 0.0059, -0.0147, -0.0018, ..., -0.0328, -0.0192, 0.0077],\n", " ...,\n", - " [-0.0206, -0.0156, 0.0366, ..., 0.0259, -0.0548, 0.0071],\n", - " [-0.0071, 0.0350, -0.0368, ..., -0.0195, -0.0107, -0.0220],\n", - " [-0.0391, 0.0144, -0.0225, ..., -0.0045, -0.0220, 0.0383]])\n", - "embedding: tensor([[ 0.0057, -0.0034, 0.0334, ..., 0.0074, 0.0456, -0.0271],\n", - " [-0.0323, -0.0125, -0.0087, ..., 0.0126, -0.0179, -0.0257],\n", - " [-0.0033, 0.0130, 0.0422, ..., -0.0275, -0.0011, -0.0459],\n", + " [-0.0163, -0.0088, -0.0009, ..., -0.0178, -0.0296, -0.0039],\n", + " [-0.0225, -0.0289, 0.0003, ..., -0.0158, -0.0054, -0.0125],\n", + " [-0.0141, 0.0299, -0.0131, ..., 0.0300, -0.0158, -0.0013]])\n", + "embedding: tensor([[-4.0577e-05, 7.4671e-03, 1.7524e-02, ..., -1.8667e-03,\n", + " 1.2714e-02, 3.2318e-03],\n", + " [-1.6225e-02, -1.4440e-02, -3.8067e-02, ..., -1.4310e-02,\n", + " 4.1424e-02, -2.2690e-03],\n", + " [-3.4895e-02, -1.1444e-02, -1.9060e-02, ..., 1.9326e-02,\n", + " 1.8023e-02, -4.1046e-02],\n", " ...,\n", - " [ 0.0009, 0.0306, -0.0017, ..., 0.0039, 0.0061, 0.0210],\n", - " [-0.0087, -0.0195, 0.0015, ..., -0.0127, 0.0223, -0.0244],\n", - " [ 0.0212, -0.0036, -0.0294, ..., 0.0060, 0.0608, 0.0192]])\n", - "Load (checkpoint) from /home/sl1471/workspace/experiments/ml-1m/models/f2rec_FairMF_lr0.00003_reg0.1_pairwisebpr_lambda-0.1_gactivity.pkl\n" + " [-9.5959e-03, -1.2495e-02, -1.8470e-03, ..., -7.0209e-03,\n", + " -2.3703e-02, 5.1025e-02],\n", + " [ 6.0020e-03, -3.9752e-02, 9.1225e-04, ..., 2.9983e-02,\n", + " -2.8201e-03, 1.5765e-03],\n", + " [-7.4039e-03, 8.6611e-03, -3.8427e-03, ..., -2.0098e-03,\n", + " -8.2824e-03, 3.7646e-03]])\n", + "Load (checkpoint) from /home/sl1471/workspace/experiments/ml-1m/models/f2rec_FairMF_lr0.00003_reg0.1_pairwisebpr_lambda-0.7_gactivity.pkl\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|██████████| 6022/6022 [00:36<00:00, 165.18it/s]\n", + "100%|██████████| 6022/6022 [00:36<00:00, 166.02it/s]\n", + "100%|██████████| 6022/6022 [00:36<00:00, 165.09it/s]\n", + "100%|██████████| 6022/6022 [00:36<00:00, 165.60it/s]\n", + "100%|██████████| 6022/6022 [04:42<00:00, 21.31it/s]\n", + "100%|██████████| 6022/6022 [04:42<00:00, 21.31it/s]\n", + "100%|██████████| 6022/6022 [04:42<00:00, 21.29it/s]\n", + "100%|██████████| 6022/6022 [04:42<00:00, 21.29it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/home/sl1471/workspace/experiments/ml-1m/logs/f2rec_train_and_eval_FairMF_lr0.00003_reg0.1_losspairwisebpr_lambda-0.5_gactivity.log\n", + "Namespace(cuda=2, seed=29, train=False, train_and_eval=True, continuous_train=False, eval=False, model_path='/home/sl1471/workspace/experiments/ml-1m/models/f2rec_FairMF_lr0.00003_reg0.1_pairwisebpr_lambda-0.5_gactivity.pkl', loss='pairwisebpr', l2_coef=0.1, emb_size=32, data_file='/home/sl1471/workspace/experiments/ml-1m/tsv_data/', n_worker=4, user_meta_data='/home/sl1471/workspace/experiments/ml-1m/meta_data/user.meta', item_meta_data='/home/sl1471/workspace/experiments/ml-1m/meta_data/item.meta', user_fields_meta_file='/home/sl1471/workspace/experiments/ml-1m/meta_data/user_fields.meta', item_fields_meta_file='/home/sl1471/workspace/experiments/ml-1m/meta_data/item_fields.meta', user_fields_vocab_file='/home/sl1471/workspace/experiments/ml-1m/meta_data/user_fields.vocab', item_fields_vocab_file='/home/sl1471/workspace/experiments/ml-1m/meta_data/item_fields.vocab', n_neg=1, n_neg_val=100, n_neg_test=-1, n_round=1, optimizer='Adam', epoch=30, check_epoch=1, lr=3e-05, batch_size=256, eval_batch_size=1, temper=6, with_val=True, val_sample_p=1.0, test_sample_p=1.0, stop_metric='_NDCG@50', pin_memory=False, at_k=[1, 5, 10, 20, 50], n_eval_process=1, fair_lambda=-0.5, fair_rho=1, fair_group_feature='activity')\n", + "embedding: tensor([[-3.4417e-03, 3.2665e-02, 3.4477e-02, ..., -6.7283e-03,\n", + " -7.8777e-03, 2.6371e-02],\n", + " [ 3.0404e-03, -1.5310e-02, 2.8141e-03, ..., 9.3149e-03,\n", + " -8.6102e-05, -2.5758e-03],\n", + " [ 2.8342e-03, -2.2138e-03, 7.2973e-03, ..., 2.6807e-02,\n", + " 5.1225e-02, -1.3322e-02],\n", + " ...,\n", + " [ 9.0445e-03, 1.3507e-02, 1.1591e-02, ..., 9.2701e-03,\n", + " 1.9650e-02, -3.2457e-02],\n", + " [ 3.8066e-03, 1.6751e-02, 1.9948e-02, ..., 1.8067e-04,\n", + " 3.0044e-02, 4.3310e-05],\n", + " [-2.0486e-03, -9.1874e-03, 1.9261e-02, ..., 1.7766e-02,\n", + " -1.7993e-02, 8.0760e-03]])\n", + "embedding: tensor([[ 0.0398, -0.0311, 0.0080, ..., 0.0034, 0.0108, -0.0141],\n", + " [-0.0374, 0.0257, -0.0357, ..., 0.0016, -0.0115, -0.0185],\n", + " [-0.0121, -0.0063, 0.0069, ..., -0.0293, 0.0145, 0.0286],\n", + " ...,\n", + " [ 0.0469, 0.0157, -0.0146, ..., 0.0018, -0.0077, 0.0115],\n", + " [ 0.0181, 0.0452, -0.0127, ..., -0.0798, 0.0701, 0.0337],\n", + " [ 0.0109, -0.0258, -0.0320, ..., -0.0213, 0.0062, 0.0105]])\n", + "Load (checkpoint) from /home/sl1471/workspace/experiments/ml-1m/models/f2rec_FairMF_lr0.00003_reg0.1_pairwisebpr_lambda-0.5_gactivity.pkl\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|██████████| 6022/6022 [05:44<00:00, 17.49it/s]\n", + "100%|██████████| 6022/6022 [05:44<00:00, 17.49it/s]\n", + "100%|██████████| 6022/6022 [05:44<00:00, 17.48it/s]\n", + "100%|██████████| 6022/6022 [05:44<00:00, 17.48it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/home/sl1471/workspace/experiments/ml-1m/logs/f2rec_train_and_eval_FairMF_lr0.00003_reg0.1_losspairwisebpr_lambda-0.3_gactivity.log\n", + "Namespace(cuda=2, seed=29, train=False, train_and_eval=True, continuous_train=False, eval=False, model_path='/home/sl1471/workspace/experiments/ml-1m/models/f2rec_FairMF_lr0.00003_reg0.1_pairwisebpr_lambda-0.3_gactivity.pkl', loss='pairwisebpr', l2_coef=0.1, emb_size=32, data_file='/home/sl1471/workspace/experiments/ml-1m/tsv_data/', n_worker=4, user_meta_data='/home/sl1471/workspace/experiments/ml-1m/meta_data/user.meta', item_meta_data='/home/sl1471/workspace/experiments/ml-1m/meta_data/item.meta', user_fields_meta_file='/home/sl1471/workspace/experiments/ml-1m/meta_data/user_fields.meta', item_fields_meta_file='/home/sl1471/workspace/experiments/ml-1m/meta_data/item_fields.meta', user_fields_vocab_file='/home/sl1471/workspace/experiments/ml-1m/meta_data/user_fields.vocab', item_fields_vocab_file='/home/sl1471/workspace/experiments/ml-1m/meta_data/item_fields.vocab', n_neg=1, n_neg_val=100, n_neg_test=-1, n_round=1, optimizer='Adam', epoch=30, check_epoch=1, lr=3e-05, batch_size=256, eval_batch_size=1, temper=6, with_val=True, val_sample_p=1.0, test_sample_p=1.0, stop_metric='_NDCG@50', pin_memory=False, at_k=[1, 5, 10, 20, 50], n_eval_process=1, fair_lambda=-0.3, fair_rho=1, fair_group_feature='activity')\n", + "embedding: tensor([[ 0.0219, 0.0129, 0.0011, ..., 0.0065, 0.0036, -0.0196],\n", + " [-0.0152, 0.0033, -0.0272, ..., -0.0147, 0.0305, 0.0213],\n", + " [-0.0044, 0.0015, 0.0036, ..., -0.0134, -0.0058, 0.0005],\n", + " ...,\n", + " [ 0.0018, 0.0226, 0.0042, ..., 0.0100, 0.0020, -0.0039],\n", + " [-0.0033, 0.0024, 0.0256, ..., 0.0242, 0.0196, -0.0253],\n", + " [ 0.0090, -0.0408, -0.0312, ..., -0.0234, 0.0048, 0.0072]])\n", + "embedding: tensor([[-0.0768, -0.0110, 0.0170, ..., 0.0357, 0.0145, -0.0221],\n", + " [-0.0025, -0.0050, -0.0187, ..., 0.0028, -0.0112, 0.0185],\n", + " [-0.0247, 0.0318, 0.0415, ..., 0.0093, -0.0093, -0.0066],\n", + " ...,\n", + " [-0.0156, -0.0006, 0.0232, ..., -0.0091, 0.0083, 0.0046],\n", + " [-0.0289, 0.0157, -0.0027, ..., -0.0158, 0.0115, 0.0149],\n", + " [-0.0228, -0.0052, -0.0174, ..., -0.0032, -0.0203, -0.0226]])\n", + "Load (checkpoint) from /home/sl1471/workspace/experiments/ml-1m/models/f2rec_FairMF_lr0.00003_reg0.1_pairwisebpr_lambda-0.3_gactivity.pkl\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "100%|██████████| 6022/6022 [00:55<00:00, 108.92it/s]\n", - "100%|██████████| 6022/6022 [00:48<00:00, 124.13it/s]\n", - "100%|██████████| 6022/6022 [00:55<00:00, 108.90it/s]\n", - "100%|██████████| 6022/6022 [00:51<00:00, 117.56it/s]\n", - "100%|██████████| 6022/6022 [05:04<00:00, 19.78it/s]\n", - "100%|██████████| 6022/6022 [05:04<00:00, 19.78it/s]\n", - "100%|██████████| 6022/6022 [05:04<00:00, 19.77it/s]\n", - "100%|██████████| 6022/6022 [05:04<00:00, 19.77it/s]\n" + "100%|██████████| 6022/6022 [04:54<00:00, 20.45it/s]\n", + "100%|██████████| 6022/6022 [04:54<00:00, 20.45it/s]\n", + "100%|██████████| 6022/6022 [04:54<00:00, 20.43it/s]\n", + "100%|██████████| 6022/6022 [04:54<00:00, 20.44it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "/home/sl1471/workspace/experiments/ml-1m/logs/f2rec_train_and_eval_FairMF_lr0.00003_reg0.1_losspairwisebpr_lambda0_gactivity.log\n", - "Namespace(cuda=2, seed=29, train=False, train_and_eval=True, continuous_train=False, eval=False, model_path='/home/sl1471/workspace/experiments/ml-1m/models/f2rec_FairMF_lr0.00003_reg0.1_pairwisebpr_lambda0_gactivity.pkl', loss='pairwisebpr', l2_coef=0.1, emb_size=32, data_file='/home/sl1471/workspace/experiments/ml-1m/tsv_data/', n_worker=4, user_meta_data='/home/sl1471/workspace/experiments/ml-1m/meta_data/user.meta', item_meta_data='/home/sl1471/workspace/experiments/ml-1m/meta_data/item.meta', user_fields_meta_file='/home/sl1471/workspace/experiments/ml-1m/meta_data/user_fields.meta', item_fields_meta_file='/home/sl1471/workspace/experiments/ml-1m/meta_data/item_fields.meta', user_fields_vocab_file='/home/sl1471/workspace/experiments/ml-1m/meta_data/user_fields.vocab', item_fields_vocab_file='/home/sl1471/workspace/experiments/ml-1m/meta_data/item_fields.vocab', n_neg=1, n_neg_val=100, n_neg_test=-1, n_round=1, optimizer='Adam', epoch=30, check_epoch=1, lr=3e-05, batch_size=256, eval_batch_size=1, temper=6, with_val=True, val_sample_p=1.0, test_sample_p=1.0, stop_metric='_NDCG@50', pin_memory=False, at_k=[1, 5, 10, 20, 50], n_eval_process=1, fair_lambda=0.0, fair_rho=1, fair_group_feature='activity')\n", - "embedding: tensor([[ 0.0020, -0.0004, 0.0090, ..., -0.0011, -0.0132, -0.0087],\n", - " [ 0.0257, -0.0170, -0.0278, ..., -0.0403, 0.0033, -0.0260],\n", - " [ 0.0045, 0.0098, -0.0004, ..., 0.0102, -0.0120, -0.0167],\n", + "/home/sl1471/workspace/experiments/ml-1m/logs/f2rec_train_and_eval_FairMF_lr0.00003_reg0.1_losspairwisebpr_lambda-0.1_gactivity.log\n", + "Namespace(cuda=2, seed=29, train=False, train_and_eval=True, continuous_train=False, eval=False, model_path='/home/sl1471/workspace/experiments/ml-1m/models/f2rec_FairMF_lr0.00003_reg0.1_pairwisebpr_lambda-0.1_gactivity.pkl', loss='pairwisebpr', l2_coef=0.1, emb_size=32, data_file='/home/sl1471/workspace/experiments/ml-1m/tsv_data/', n_worker=4, user_meta_data='/home/sl1471/workspace/experiments/ml-1m/meta_data/user.meta', item_meta_data='/home/sl1471/workspace/experiments/ml-1m/meta_data/item.meta', user_fields_meta_file='/home/sl1471/workspace/experiments/ml-1m/meta_data/user_fields.meta', item_fields_meta_file='/home/sl1471/workspace/experiments/ml-1m/meta_data/item_fields.meta', user_fields_vocab_file='/home/sl1471/workspace/experiments/ml-1m/meta_data/user_fields.vocab', item_fields_vocab_file='/home/sl1471/workspace/experiments/ml-1m/meta_data/item_fields.vocab', n_neg=1, n_neg_val=100, n_neg_test=-1, n_round=1, optimizer='Adam', epoch=30, check_epoch=1, lr=3e-05, batch_size=256, eval_batch_size=1, temper=6, with_val=True, val_sample_p=1.0, test_sample_p=1.0, stop_metric='_NDCG@50', pin_memory=False, at_k=[1, 5, 10, 20, 50], n_eval_process=1, fair_lambda=-0.1, fair_rho=1, fair_group_feature='activity')\n", + "embedding: tensor([[-0.0099, -0.0129, 0.0186, ..., -0.0081, -0.0148, -0.0095],\n", + " [ 0.0090, 0.0045, 0.0206, ..., 0.0326, -0.0026, -0.0107],\n", + " [ 0.0143, 0.0077, -0.0571, ..., -0.0066, 0.0027, 0.0062],\n", " ...,\n", - " [-0.0156, 0.0027, 0.0179, ..., 0.0133, -0.0126, 0.0467],\n", - " [ 0.0267, -0.0073, 0.0251, ..., -0.0017, 0.0068, 0.0040],\n", - " [-0.0436, -0.0142, 0.0206, ..., -0.0072, -0.0263, 0.0046]])\n", - "embedding: tensor([[-0.0494, 0.0467, -0.0309, ..., -0.0129, -0.0281, -0.0132],\n", - " [-0.0064, 0.0065, 0.0505, ..., -0.0050, -0.0195, -0.0379],\n", - " [ 0.0256, 0.0228, -0.0121, ..., 0.0095, -0.0133, 0.0128],\n", + " [-0.0292, 0.0153, -0.0228, ..., -0.0064, 0.0197, 0.0022],\n", + " [ 0.0213, -0.0153, -0.0220, ..., 0.0086, -0.0177, -0.0100],\n", + " [-0.0038, 0.0066, 0.0123, ..., -0.0087, 0.0022, -0.0223]])\n", + "embedding: tensor([[ 0.0585, -0.0091, 0.0291, ..., -0.0460, 0.0288, -0.0300],\n", + " [-0.0014, -0.0267, -0.0049, ..., 0.0266, 0.0049, 0.0508],\n", + " [-0.0055, -0.0080, -0.0446, ..., 0.0336, -0.0168, -0.0318],\n", " ...,\n", - " [-0.0296, 0.0026, 0.0102, ..., -0.0303, 0.0008, 0.0089],\n", - " [ 0.0150, -0.0191, 0.0014, ..., -0.0517, 0.0049, -0.0068],\n", - " [-0.0195, 0.0408, -0.0051, ..., 0.0059, 0.0095, 0.0015]])\n", - "Load (checkpoint) from /home/sl1471/workspace/experiments/ml-1m/models/f2rec_FairMF_lr0.00003_reg0.1_pairwisebpr_lambda0_gactivity.pkl\n" + " [-0.0181, -0.0223, 0.0297, ..., -0.0150, -0.0219, 0.0138],\n", + " [-0.0260, -0.0520, 0.0065, ..., -0.0015, 0.0259, 0.0245],\n", + " [ 0.0209, 0.0305, -0.0384, ..., -0.0392, -0.0162, -0.0421]])\n", + "Load (checkpoint) from /home/sl1471/workspace/experiments/ml-1m/models/f2rec_FairMF_lr0.00003_reg0.1_pairwisebpr_lambda-0.1_gactivity.pkl\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "100%|██████████| 6022/6022 [04:19<00:00, 23.20it/s]\n", - "100%|██████████| 6022/6022 [04:19<00:00, 23.21it/s]\n", - "100%|██████████| 6022/6022 [04:19<00:00, 23.19it/s]\n", - "100%|██████████| 6022/6022 [04:19<00:00, 23.20it/s]\n" + "100%|██████████| 6022/6022 [05:08<00:00, 19.54it/s]\n", + "100%|██████████| 6022/6022 [05:08<00:00, 19.54it/s]\n", + "100%|██████████| 6022/6022 [05:08<00:00, 19.53it/s]\n", + "100%|██████████| 6022/6022 [05:08<00:00, 19.54it/s]\n" ] }, { @@ -300,20 +363,20 @@ "text": [ "/home/sl1471/workspace/experiments/ml-1m/logs/f2rec_train_and_eval_FairMF_lr0.00003_reg0.1_losspairwisebpr_lambda0.1_gactivity.log\n", "Namespace(cuda=2, seed=29, train=False, train_and_eval=True, continuous_train=False, eval=False, model_path='/home/sl1471/workspace/experiments/ml-1m/models/f2rec_FairMF_lr0.00003_reg0.1_pairwisebpr_lambda0.1_gactivity.pkl', loss='pairwisebpr', l2_coef=0.1, emb_size=32, data_file='/home/sl1471/workspace/experiments/ml-1m/tsv_data/', n_worker=4, user_meta_data='/home/sl1471/workspace/experiments/ml-1m/meta_data/user.meta', item_meta_data='/home/sl1471/workspace/experiments/ml-1m/meta_data/item.meta', user_fields_meta_file='/home/sl1471/workspace/experiments/ml-1m/meta_data/user_fields.meta', item_fields_meta_file='/home/sl1471/workspace/experiments/ml-1m/meta_data/item_fields.meta', user_fields_vocab_file='/home/sl1471/workspace/experiments/ml-1m/meta_data/user_fields.vocab', item_fields_vocab_file='/home/sl1471/workspace/experiments/ml-1m/meta_data/item_fields.vocab', n_neg=1, n_neg_val=100, n_neg_test=-1, n_round=1, optimizer='Adam', epoch=30, check_epoch=1, lr=3e-05, batch_size=256, eval_batch_size=1, temper=6, with_val=True, val_sample_p=1.0, test_sample_p=1.0, stop_metric='_NDCG@50', pin_memory=False, at_k=[1, 5, 10, 20, 50], n_eval_process=1, fair_lambda=0.1, fair_rho=1, fair_group_feature='activity')\n", - "embedding: tensor([[-0.0150, -0.0265, 0.0212, ..., 0.0251, -0.0268, 0.0098],\n", - " [ 0.0162, -0.0267, -0.0174, ..., -0.0055, 0.0150, -0.0059],\n", - " [ 0.0083, -0.0014, -0.0251, ..., -0.0132, 0.0074, 0.0059],\n", + "embedding: tensor([[-0.0021, 0.0101, 0.0134, ..., 0.0040, -0.0023, -0.0156],\n", + " [-0.0201, -0.0099, -0.0134, ..., 0.0231, -0.0021, 0.0127],\n", + " [-0.0025, 0.0277, -0.0065, ..., 0.0022, -0.0012, -0.0330],\n", " ...,\n", - " [-0.0047, 0.0088, -0.0239, ..., 0.0144, 0.0163, 0.0107],\n", - " [ 0.0070, 0.0139, -0.0194, ..., -0.0060, -0.0214, 0.0040],\n", - " [-0.0370, 0.0051, -0.0113, ..., 0.0196, 0.0037, -0.0235]])\n", - "embedding: tensor([[-0.0080, 0.0166, 0.0153, ..., 0.0366, 0.0590, -0.0280],\n", - " [-0.0198, -0.0241, 0.0332, ..., -0.0058, -0.0484, -0.0207],\n", - " [ 0.0370, -0.0013, -0.0332, ..., -0.0063, -0.0243, -0.0476],\n", + " [ 0.0297, 0.0066, -0.0089, ..., 0.0039, 0.0390, 0.0164],\n", + " [ 0.0142, 0.0109, -0.0027, ..., -0.0125, 0.0167, -0.0003],\n", + " [-0.0078, 0.0296, -0.0078, ..., 0.0093, -0.0118, 0.0110]])\n", + "embedding: tensor([[ 0.0201, -0.0314, 0.0370, ..., -0.0300, 0.0088, 0.0066],\n", + " [-0.0049, -0.0227, 0.0245, ..., 0.0396, 0.0252, 0.0048],\n", + " [ 0.0203, -0.0168, -0.0040, ..., -0.0113, 0.0080, -0.0223],\n", " ...,\n", - " [ 0.0140, 0.0349, 0.0391, ..., 0.0099, 0.0157, 0.0346],\n", - " [ 0.0157, -0.0292, -0.0081, ..., -0.0259, 0.0128, -0.0319],\n", - " [-0.0228, 0.0050, -0.0761, ..., 0.0241, 0.0457, 0.0055]])\n", + " [ 0.0155, -0.0287, -0.0404, ..., -0.0340, 0.0017, -0.0127],\n", + " [ 0.0521, 0.0061, 0.0186, ..., 0.0376, -0.0038, -0.0133],\n", + " [-0.0002, -0.0210, -0.0103, ..., -0.0248, -0.0074, 0.0016]])\n", "Load (checkpoint) from /home/sl1471/workspace/experiments/ml-1m/models/f2rec_FairMF_lr0.00003_reg0.1_pairwisebpr_lambda0.1_gactivity.pkl\n" ] }, @@ -321,10 +384,43 @@ "name": "stderr", "output_type": "stream", "text": [ - "100%|██████████| 6022/6022 [04:44<00:00, 21.20it/s]\n", - "100%|██████████| 6022/6022 [04:44<00:00, 21.20it/s]\n", - "100%|██████████| 6022/6022 [04:44<00:00, 21.19it/s]\n", - "100%|██████████| 6022/6022 [04:44<00:00, 21.19it/s]\n" + "100%|██████████| 6022/6022 [05:33<00:00, 18.07it/s]\n", + "100%|██████████| 6022/6022 [05:33<00:00, 18.07it/s]\n", + "100%|██████████| 6022/6022 [05:33<00:00, 18.06it/s]\n", + "100%|██████████| 6022/6022 [05:33<00:00, 18.06it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/home/sl1471/workspace/experiments/ml-1m/logs/f2rec_train_and_eval_FairMF_lr0.00003_reg0.1_losspairwisebpr_lambda0.3_gactivity.log\n", + "Namespace(cuda=2, seed=29, train=False, train_and_eval=True, continuous_train=False, eval=False, model_path='/home/sl1471/workspace/experiments/ml-1m/models/f2rec_FairMF_lr0.00003_reg0.1_pairwisebpr_lambda0.3_gactivity.pkl', loss='pairwisebpr', l2_coef=0.1, emb_size=32, data_file='/home/sl1471/workspace/experiments/ml-1m/tsv_data/', n_worker=4, user_meta_data='/home/sl1471/workspace/experiments/ml-1m/meta_data/user.meta', item_meta_data='/home/sl1471/workspace/experiments/ml-1m/meta_data/item.meta', user_fields_meta_file='/home/sl1471/workspace/experiments/ml-1m/meta_data/user_fields.meta', item_fields_meta_file='/home/sl1471/workspace/experiments/ml-1m/meta_data/item_fields.meta', user_fields_vocab_file='/home/sl1471/workspace/experiments/ml-1m/meta_data/user_fields.vocab', item_fields_vocab_file='/home/sl1471/workspace/experiments/ml-1m/meta_data/item_fields.vocab', n_neg=1, n_neg_val=100, n_neg_test=-1, n_round=1, optimizer='Adam', epoch=30, check_epoch=1, lr=3e-05, batch_size=256, eval_batch_size=1, temper=6, with_val=True, val_sample_p=1.0, test_sample_p=1.0, stop_metric='_NDCG@50', pin_memory=False, at_k=[1, 5, 10, 20, 50], n_eval_process=1, fair_lambda=0.3, fair_rho=1, fair_group_feature='activity')\n", + "embedding: tensor([[-0.0101, 0.0077, 0.0083, ..., -0.0237, -0.0046, -0.0263],\n", + " [-0.0517, -0.0025, 0.0109, ..., 0.0075, 0.0022, 0.0096],\n", + " [-0.0096, 0.0165, 0.0082, ..., -0.0288, -0.0132, -0.0031],\n", + " ...,\n", + " [-0.0091, -0.0151, -0.0066, ..., -0.0048, 0.0118, -0.0152],\n", + " [-0.0170, -0.0004, -0.0230, ..., -0.0234, -0.0159, -0.0189],\n", + " [-0.0104, -0.0078, 0.0109, ..., -0.0429, 0.0137, -0.0223]])\n", + "embedding: tensor([[ 0.0070, -0.0088, -0.0409, ..., 0.0456, 0.0605, -0.0248],\n", + " [-0.0273, -0.0198, 0.0072, ..., -0.0096, -0.0234, -0.0383],\n", + " [ 0.0005, 0.0166, -0.0016, ..., 0.0284, -0.0067, 0.0398],\n", + " ...,\n", + " [-0.0356, 0.0130, 0.0279, ..., 0.0351, 0.0064, 0.0055],\n", + " [ 0.0172, -0.0301, 0.0401, ..., 0.0386, -0.0076, -0.0128],\n", + " [-0.0046, 0.0162, -0.0560, ..., -0.0048, -0.0193, 0.0177]])\n", + "Load (checkpoint) from /home/sl1471/workspace/experiments/ml-1m/models/f2rec_FairMF_lr0.00003_reg0.1_pairwisebpr_lambda0.3_gactivity.pkl\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|██████████| 6022/6022 [04:54<00:00, 20.48it/s]\n", + "100%|██████████| 6022/6022 [04:53<00:00, 20.49it/s]\n", + "100%|██████████| 6022/6022 [04:54<00:00, 20.48it/s]\n", + "100%|██████████| 6022/6022 [04:54<00:00, 20.48it/s]\n" ] }, { @@ -333,20 +429,20 @@ "text": [ "/home/sl1471/workspace/experiments/ml-1m/logs/f2rec_train_and_eval_FairMF_lr0.00003_reg0.1_losspairwisebpr_lambda0.5_gactivity.log\n", "Namespace(cuda=2, seed=29, train=False, train_and_eval=True, continuous_train=False, eval=False, model_path='/home/sl1471/workspace/experiments/ml-1m/models/f2rec_FairMF_lr0.00003_reg0.1_pairwisebpr_lambda0.5_gactivity.pkl', loss='pairwisebpr', l2_coef=0.1, emb_size=32, data_file='/home/sl1471/workspace/experiments/ml-1m/tsv_data/', n_worker=4, user_meta_data='/home/sl1471/workspace/experiments/ml-1m/meta_data/user.meta', item_meta_data='/home/sl1471/workspace/experiments/ml-1m/meta_data/item.meta', user_fields_meta_file='/home/sl1471/workspace/experiments/ml-1m/meta_data/user_fields.meta', item_fields_meta_file='/home/sl1471/workspace/experiments/ml-1m/meta_data/item_fields.meta', user_fields_vocab_file='/home/sl1471/workspace/experiments/ml-1m/meta_data/user_fields.vocab', item_fields_vocab_file='/home/sl1471/workspace/experiments/ml-1m/meta_data/item_fields.vocab', n_neg=1, n_neg_val=100, n_neg_test=-1, n_round=1, optimizer='Adam', epoch=30, check_epoch=1, lr=3e-05, batch_size=256, eval_batch_size=1, temper=6, with_val=True, val_sample_p=1.0, test_sample_p=1.0, stop_metric='_NDCG@50', pin_memory=False, at_k=[1, 5, 10, 20, 50], n_eval_process=1, fair_lambda=0.5, fair_rho=1, fair_group_feature='activity')\n", - "embedding: tensor([[ 0.0144, 0.0021, -0.0184, ..., -0.0036, 0.0297, -0.0087],\n", - " [-0.0140, -0.0014, 0.0128, ..., 0.0392, -0.0321, -0.0193],\n", - " [-0.0208, -0.0069, -0.0119, ..., -0.0230, 0.0045, 0.0158],\n", + "embedding: tensor([[-0.0072, -0.0058, -0.0276, ..., 0.0048, -0.0203, -0.0329],\n", + " [ 0.0118, 0.0062, 0.0082, ..., 0.0244, 0.0086, 0.0130],\n", + " [ 0.0180, -0.0068, 0.0016, ..., -0.0030, 0.0145, -0.0156],\n", " ...,\n", - " [-0.0192, 0.0216, 0.0238, ..., 0.0213, -0.0044, -0.0150],\n", - " [-0.0077, 0.0215, 0.0014, ..., -0.0385, -0.0016, -0.0058],\n", - " [ 0.0090, 0.0030, 0.0044, ..., -0.0087, 0.0219, 0.0334]])\n", - "embedding: tensor([[-0.0258, 0.0063, 0.0372, ..., -0.0105, 0.0158, -0.0025],\n", - " [ 0.0019, -0.0109, 0.0702, ..., -0.0251, -0.0303, -0.0068],\n", - " [ 0.0255, -0.0340, 0.0148, ..., -0.0029, 0.0074, 0.0137],\n", + " [-0.0199, -0.0149, -0.0132, ..., -0.0184, 0.0253, 0.0148],\n", + " [ 0.0090, 0.0136, 0.0135, ..., -0.0026, 0.0217, -0.0137],\n", + " [ 0.0047, 0.0287, 0.0039, ..., 0.0067, 0.0079, -0.0066]])\n", + "embedding: tensor([[-0.0100, -0.0273, 0.0223, ..., 0.0103, -0.0425, -0.0028],\n", + " [ 0.0146, 0.0362, 0.0075, ..., 0.0163, 0.0090, -0.0018],\n", + " [-0.0249, 0.0180, 0.0020, ..., -0.0066, 0.0206, -0.0225],\n", " ...,\n", - " [ 0.0102, 0.0270, 0.0100, ..., 0.0135, 0.0040, -0.0158],\n", - " [-0.0086, 0.0208, -0.0234, ..., -0.0394, 0.0322, -0.0169],\n", - " [-0.0408, -0.0129, 0.0059, ..., -0.0148, -0.0173, 0.0068]])\n", + " [-0.0343, 0.0273, 0.0177, ..., 0.0146, -0.0516, 0.0085],\n", + " [ 0.0233, -0.0018, -0.0562, ..., 0.0232, 0.0517, 0.0040],\n", + " [ 0.0177, 0.0036, -0.0226, ..., -0.0180, -0.0274, -0.0108]])\n", "Load (checkpoint) from /home/sl1471/workspace/experiments/ml-1m/models/f2rec_FairMF_lr0.00003_reg0.1_pairwisebpr_lambda0.5_gactivity.pkl\n" ] }, @@ -354,43 +450,76 @@ "name": "stderr", "output_type": "stream", "text": [ - "100%|██████████| 6022/6022 [04:25<00:00, 22.69it/s]\n", - "100%|██████████| 6022/6022 [04:25<00:00, 22.69it/s]\n", - "100%|██████████| 6022/6022 [04:25<00:00, 22.67it/s]\n", - "100%|██████████| 6022/6022 [04:25<00:00, 22.68it/s]\n" + "100%|██████████| 6022/6022 [04:51<00:00, 20.68it/s]\n", + "100%|██████████| 6022/6022 [04:51<00:00, 20.68it/s]\n", + "100%|██████████| 6022/6022 [04:51<00:00, 20.67it/s]\n", + "100%|██████████| 6022/6022 [04:51<00:00, 20.68it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/home/sl1471/workspace/experiments/ml-1m/logs/f2rec_train_and_eval_FairMF_lr0.00003_reg0.1_losspairwisebpr_lambda0.7_gactivity.log\n", + "Namespace(cuda=2, seed=29, train=False, train_and_eval=True, continuous_train=False, eval=False, model_path='/home/sl1471/workspace/experiments/ml-1m/models/f2rec_FairMF_lr0.00003_reg0.1_pairwisebpr_lambda0.7_gactivity.pkl', loss='pairwisebpr', l2_coef=0.1, emb_size=32, data_file='/home/sl1471/workspace/experiments/ml-1m/tsv_data/', n_worker=4, user_meta_data='/home/sl1471/workspace/experiments/ml-1m/meta_data/user.meta', item_meta_data='/home/sl1471/workspace/experiments/ml-1m/meta_data/item.meta', user_fields_meta_file='/home/sl1471/workspace/experiments/ml-1m/meta_data/user_fields.meta', item_fields_meta_file='/home/sl1471/workspace/experiments/ml-1m/meta_data/item_fields.meta', user_fields_vocab_file='/home/sl1471/workspace/experiments/ml-1m/meta_data/user_fields.vocab', item_fields_vocab_file='/home/sl1471/workspace/experiments/ml-1m/meta_data/item_fields.vocab', n_neg=1, n_neg_val=100, n_neg_test=-1, n_round=1, optimizer='Adam', epoch=30, check_epoch=1, lr=3e-05, batch_size=256, eval_batch_size=1, temper=6, with_val=True, val_sample_p=1.0, test_sample_p=1.0, stop_metric='_NDCG@50', pin_memory=False, at_k=[1, 5, 10, 20, 50], n_eval_process=1, fair_lambda=0.7, fair_rho=1, fair_group_feature='activity')\n", + "embedding: tensor([[ 0.0071, -0.0096, -0.0262, ..., 0.0222, 0.0279, 0.0089],\n", + " [ 0.0210, -0.0025, -0.0015, ..., 0.0075, 0.0126, -0.0104],\n", + " [-0.0073, 0.0204, 0.0250, ..., 0.0041, -0.0211, 0.0256],\n", + " ...,\n", + " [ 0.0270, -0.0224, 0.0003, ..., 0.0208, -0.0245, 0.0087],\n", + " [-0.0210, 0.0283, -0.0091, ..., 0.0024, -0.0125, -0.0044],\n", + " [ 0.0009, -0.0106, 0.0047, ..., -0.0131, 0.0290, -0.0034]])\n", + "embedding: tensor([[-0.0387, -0.0245, 0.0051, ..., -0.0139, -0.0011, -0.0350],\n", + " [ 0.0020, -0.0126, -0.0110, ..., 0.0032, -0.0308, -0.0253],\n", + " [ 0.0205, -0.0028, 0.0146, ..., -0.0130, 0.0075, 0.0127],\n", + " ...,\n", + " [ 0.0325, 0.0112, 0.0039, ..., 0.0060, 0.0260, 0.0054],\n", + " [-0.0383, -0.0022, 0.0120, ..., 0.0256, 0.0104, 0.0527],\n", + " [ 0.0649, 0.0089, 0.0103, ..., 0.0008, -0.0032, -0.0037]])\n", + "Load (checkpoint) from /home/sl1471/workspace/experiments/ml-1m/models/f2rec_FairMF_lr0.00003_reg0.1_pairwisebpr_lambda0.7_gactivity.pkl\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|██████████| 6022/6022 [05:27<00:00, 18.40it/s]\n", + "100%|██████████| 6022/6022 [05:27<00:00, 18.40it/s]\n", + "100%|██████████| 6022/6022 [05:27<00:00, 18.38it/s]\n", + "100%|██████████| 6022/6022 [05:27<00:00, 18.38it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "/home/sl1471/workspace/experiments/ml-1m/logs/f2rec_train_and_eval_FairMF_lr0.00003_reg0.1_losspairwisebpr_lambda1.0_gactivity.log\n", - "Namespace(cuda=2, seed=29, train=False, train_and_eval=True, continuous_train=False, eval=False, model_path='/home/sl1471/workspace/experiments/ml-1m/models/f2rec_FairMF_lr0.00003_reg0.1_pairwisebpr_lambda1.0_gactivity.pkl', loss='pairwisebpr', l2_coef=0.1, emb_size=32, data_file='/home/sl1471/workspace/experiments/ml-1m/tsv_data/', n_worker=4, user_meta_data='/home/sl1471/workspace/experiments/ml-1m/meta_data/user.meta', item_meta_data='/home/sl1471/workspace/experiments/ml-1m/meta_data/item.meta', user_fields_meta_file='/home/sl1471/workspace/experiments/ml-1m/meta_data/user_fields.meta', item_fields_meta_file='/home/sl1471/workspace/experiments/ml-1m/meta_data/item_fields.meta', user_fields_vocab_file='/home/sl1471/workspace/experiments/ml-1m/meta_data/user_fields.vocab', item_fields_vocab_file='/home/sl1471/workspace/experiments/ml-1m/meta_data/item_fields.vocab', n_neg=1, n_neg_val=100, n_neg_test=-1, n_round=1, optimizer='Adam', epoch=30, check_epoch=1, lr=3e-05, batch_size=256, eval_batch_size=1, temper=6, with_val=True, val_sample_p=1.0, test_sample_p=1.0, stop_metric='_NDCG@50', pin_memory=False, at_k=[1, 5, 10, 20, 50], n_eval_process=1, fair_lambda=1.0, fair_rho=1, fair_group_feature='activity')\n", - "embedding: tensor([[ 0.0135, 0.0131, 0.0033, ..., -0.0188, 0.0332, 0.0046],\n", - " [-0.0096, 0.0008, 0.0132, ..., -0.0060, 0.0073, 0.0151],\n", - " [ 0.0096, 0.0186, 0.0073, ..., -0.0028, 0.0165, 0.0312],\n", + "/home/sl1471/workspace/experiments/ml-1m/logs/f2rec_train_and_eval_FairMF_lr0.00003_reg0.1_losspairwisebpr_lambda0.9_gactivity.log\n", + "Namespace(cuda=2, seed=29, train=False, train_and_eval=True, continuous_train=False, eval=False, model_path='/home/sl1471/workspace/experiments/ml-1m/models/f2rec_FairMF_lr0.00003_reg0.1_pairwisebpr_lambda0.9_gactivity.pkl', loss='pairwisebpr', l2_coef=0.1, emb_size=32, data_file='/home/sl1471/workspace/experiments/ml-1m/tsv_data/', n_worker=4, user_meta_data='/home/sl1471/workspace/experiments/ml-1m/meta_data/user.meta', item_meta_data='/home/sl1471/workspace/experiments/ml-1m/meta_data/item.meta', user_fields_meta_file='/home/sl1471/workspace/experiments/ml-1m/meta_data/user_fields.meta', item_fields_meta_file='/home/sl1471/workspace/experiments/ml-1m/meta_data/item_fields.meta', user_fields_vocab_file='/home/sl1471/workspace/experiments/ml-1m/meta_data/user_fields.vocab', item_fields_vocab_file='/home/sl1471/workspace/experiments/ml-1m/meta_data/item_fields.vocab', n_neg=1, n_neg_val=100, n_neg_test=-1, n_round=1, optimizer='Adam', epoch=30, check_epoch=1, lr=3e-05, batch_size=256, eval_batch_size=1, temper=6, with_val=True, val_sample_p=1.0, test_sample_p=1.0, stop_metric='_NDCG@50', pin_memory=False, at_k=[1, 5, 10, 20, 50], n_eval_process=1, fair_lambda=0.9, fair_rho=1, fair_group_feature='activity')\n", + "embedding: tensor([[ 0.0035, -0.0056, -0.0398, ..., -0.0488, -0.0226, -0.0143],\n", + " [-0.0178, -0.0113, -0.0134, ..., 0.0108, 0.0047, -0.0191],\n", + " [ 0.0148, -0.0087, -0.0027, ..., -0.0107, -0.0342, 0.0120],\n", " ...,\n", - " [-0.0271, 0.0341, 0.0423, ..., 0.0142, 0.0075, 0.0178],\n", - " [-0.0010, -0.0224, 0.0363, ..., 0.0227, 0.0035, -0.0224],\n", - " [-0.0320, -0.0299, -0.0160, ..., -0.0191, -0.0078, -0.0090]])\n", - "embedding: tensor([[-0.0243, -0.0038, -0.0151, ..., -0.0056, 0.0129, -0.0132],\n", - " [ 0.0051, -0.0411, -0.0140, ..., -0.0107, -0.0103, 0.0025],\n", - " [ 0.0010, -0.0246, 0.0071, ..., 0.0016, 0.0089, -0.0112],\n", + " [-0.0485, 0.0016, 0.0013, ..., -0.0224, -0.0388, -0.0126],\n", + " [-0.0109, -0.0148, -0.0105, ..., -0.0271, 0.0075, 0.0242],\n", + " [ 0.0612, 0.0190, -0.0064, ..., 0.0193, 0.0064, -0.0010]])\n", + "embedding: tensor([[ 0.0309, -0.0134, 0.0277, ..., -0.0086, 0.0225, 0.0306],\n", + " [ 0.0365, -0.0488, -0.0017, ..., 0.0233, 0.0298, -0.0201],\n", + " [-0.0052, 0.0111, 0.0308, ..., 0.0028, -0.0250, 0.0346],\n", " ...,\n", - " [ 0.0146, -0.0193, 0.0085, ..., 0.0155, 0.0319, 0.0339],\n", - " [ 0.0233, 0.0367, 0.0521, ..., 0.0165, 0.0174, -0.0182],\n", - " [-0.0059, 0.0076, 0.0377, ..., 0.0185, 0.0260, -0.0117]])\n", - "Load (checkpoint) from /home/sl1471/workspace/experiments/ml-1m/models/f2rec_FairMF_lr0.00003_reg0.1_pairwisebpr_lambda1.0_gactivity.pkl\n" + " [-0.0480, -0.0043, -0.0128, ..., 0.0334, -0.0083, 0.0398],\n", + " [-0.0209, -0.0010, 0.0216, ..., -0.0143, -0.0077, 0.0249],\n", + " [ 0.0253, 0.0272, 0.0173, ..., -0.0113, 0.0210, 0.0354]])\n", + "Load (checkpoint) from /home/sl1471/workspace/experiments/ml-1m/models/f2rec_FairMF_lr0.00003_reg0.1_pairwisebpr_lambda0.9_gactivity.pkl\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "100%|██████████| 6022/6022 [04:32<00:00, 22.08it/s]\n", - "100%|██████████| 6022/6022 [04:32<00:00, 22.08it/s]\n", - "100%|██████████| 6022/6022 [04:32<00:00, 22.06it/s]\n", - "100%|██████████| 6022/6022 [04:32<00:00, 22.06it/s]\n" + "100%|██████████| 6022/6022 [05:06<00:00, 19.68it/s]\n", + "100%|██████████| 6022/6022 [05:05<00:00, 19.68it/s]\n", + "100%|██████████| 6022/6022 [05:06<00:00, 19.67it/s]\n", + "100%|██████████| 6022/6022 [05:06<00:00, 19.67it/s]\n" ] } ], @@ -401,7 +530,10 @@ "import torch\n", "import numpy as np\n", "\n", - "metrics = ['F1@10','NDCG@10','F1@50','NDCG@50','AUC']\n", + "phase = 'test'\n", + "measures = ['RECALL','F1','NDCG']\n", + "k_list = [10,50]\n", + "metrics = [f'{m}@{k}' for m in measures for k in k_list] + ['AUC']\n", "# for data_key in data_key_list:\n", "result_file_path = ROOT + data_key + \"/results/fairness_\" + group_feature + \"_\" + datetime.datetime.now().strftime('%Y%m%d_%H%M%S') + \".csv\"\n", "with open(result_file_path, 'w') as fout:\n", @@ -435,7 +567,7 @@ " fout.write('\\t'.join(['all','-','-','group'] + [str(g) for g in uG.values()]) + '\\n')\n", " count += 1\n", " # evaluation\n", - " user_results = get_userwise_performance(model, params['at_k_list'])\n", + " user_results = get_userwise_performance(model, k_list, phase)\n", " for m in metrics:\n", " fout.write('\\t'.join([modelName,args.fair_group_feature,str(args.fair_lambda),m] + \n", " [str(user_results[uid][m]) if uid in user_results else '0' for uid in uG]) + '\\n')" @@ -443,7 +575,7 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -459,7 +591,7 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 7, "metadata": {}, "outputs": [ { @@ -494,16 +626,16 @@ " 8\n", " 9\n", " ...\n", - " 17\n", - " 18\n", - " 19\n", - " 20\n", - " 21\n", - " 22\n", - " 23\n", - " 24\n", - " 25\n", - " 26\n", + " 55\n", + " 56\n", + " 57\n", + " 58\n", + " 59\n", + " 60\n", + " 61\n", + " 62\n", + " 63\n", + " 64\n", " \n", " \n", " \n", @@ -559,47 +691,47 @@ " 2\n", " fair_lambda\n", " -\n", - " -0.1\n", - " -0.1\n", - " -0.1\n", - " -0.1\n", - " -0.1\n", - " 0.0\n", - " 0.0\n", - " 0.0\n", + " -0.7\n", + " -0.7\n", + " -0.7\n", + " -0.7\n", + " -0.7\n", + " -0.7\n", + " -0.7\n", + " -0.5\n", " ...\n", - " 0.5\n", - " 0.5\n", - " 0.5\n", - " 0.5\n", - " 0.5\n", - " 1.0\n", - " 1.0\n", - " 1.0\n", - " 1.0\n", - " 1.0\n", + " 0.7\n", + " 0.7\n", + " 0.7\n", + " 0.9\n", + " 0.9\n", + " 0.9\n", + " 0.9\n", + " 0.9\n", + " 0.9\n", + " 0.9\n", " \n", " \n", " 3\n", " metric\n", " group\n", + " RECALL@10\n", + " RECALL@50\n", " F1@10\n", - " NDCG@10\n", " F1@50\n", + " NDCG@10\n", " NDCG@50\n", " AUC\n", - " F1@10\n", - " NDCG@10\n", - " F1@50\n", + " RECALL@10\n", " ...\n", - " F1@10\n", " NDCG@10\n", - " F1@50\n", " NDCG@50\n", " AUC\n", + " RECALL@10\n", + " RECALL@50\n", " F1@10\n", - " NDCG@10\n", " F1@50\n", + " NDCG@10\n", " NDCG@50\n", " AUC\n", " \n", @@ -609,23 +741,23 @@ " inactive\n", " 0.0\n", " 0.0\n", - " 0.03846153989434242\n", - " 0.11164668947458267\n", - " 0.9680675049636003\n", " 0.0\n", " 0.0\n", - " 0.03846153989434242\n", + " 0.0\n", + " 0.0\n", + " 0.9631039046988749\n", + " 0.0\n", " ...\n", " 0.0\n", + " 0.12895093858242035\n", + " 0.9680675049636003\n", + " 0.0\n", + " 0.5\n", " 0.0\n", " 0.03846153989434242\n", - " 0.12262944132089615\n", - " 0.9669920582395765\n", - " 0.1666666716337204\n", - " 0.2640681564807892\n", - " 0.03846153989434242\n", - " 0.2640681564807892\n", - " 0.978325612177366\n", + " 0.0\n", + " 0.1395953744649887\n", + " 0.9761747187293184\n", " \n", " \n", " 5\n", @@ -635,45 +767,45 @@ " 0.0\n", " 0.0\n", " 0.0\n", - " 0.8937123745819399\n", " 0.0\n", " 0.0\n", + " 0.9117056856187291\n", " 0.0\n", " ...\n", " 0.0\n", " 0.0\n", + " 0.905685618729097\n", " 0.0\n", " 0.0\n", - " 0.9109030100334449\n", " 0.0\n", " 0.0\n", " 0.0\n", " 0.0\n", - " 0.6861538461538461\n", + " 0.871571906354515\n", " \n", " \n", " 6\n", " 2\n", " inactive\n", + " 0.0833333358168602\n", + " 0.0833333358168602\n", " 0.09090909361839294\n", - " 0.22009176015853882\n", - " 0.032258063554763794\n", - " 0.19635792076587677\n", - " 0.783387668725692\n", - " 0.09090909361839294\n", - " 0.22009176015853882\n", " 0.032258063554763794\n", + " 0.07336392253637314\n", + " 0.06545264273881912\n", + " 0.7570064058567834\n", + " 0.0833333358168602\n", " ...\n", - " 0.09090909361839294\n", - " 0.22009176015853882\n", - " 0.032258063554763794\n", - " 0.19635792076587677\n", - " 0.7802705330587967\n", " 0.0\n", + " 0.04543294385075569\n", + " 0.7982298101121025\n", + " 0.0\n", + " 0.0833333358168602\n", " 0.0\n", " 0.032258063554763794\n", - " 0.0447048544883728\n", - " 0.7856039807824297\n", + " 0.0\n", + " 0.04041965305805206\n", + " 0.8007177991306337\n", " \n", " \n", " 7\n", @@ -683,45 +815,45 @@ " 0.0\n", " 0.0\n", " 0.0\n", - " 0.8746657754010695\n", " 0.0\n", " 0.0\n", + " 0.8711898395721924\n", " 0.0\n", " ...\n", " 0.0\n", " 0.0\n", + " 0.8809491978609626\n", " 0.0\n", " 0.0\n", - " 0.8651737967914439\n", " 0.0\n", " 0.0\n", " 0.0\n", " 0.0\n", - " 0.8631016042780748\n", + " 0.9002673796791444\n", " \n", " \n", " 8\n", " 8\n", " inactive\n", " 0.0\n", + " 0.07692307978868484\n", " 0.0\n", " 0.0317460335791111\n", - " 0.04568304494023323\n", - " 0.7312062937062938\n", " 0.0\n", + " 0.04668193683028221\n", + " 0.7485166348802713\n", " 0.0\n", - " 0.0317460335791111\n", " ...\n", - " 0.08695652335882187\n", - " 0.06362078338861465\n", - " 0.0317460335791111\n", - " 0.05397642403841019\n", - " 0.6976451578724306\n", " 0.0\n", + " 0.04668193683028221\n", + " 0.6992079889807163\n", + " 0.0\n", + " 0.07692307978868484\n", " 0.0\n", " 0.0317460335791111\n", - " 0.04668193683028221\n", - " 0.6701896588260224\n", + " 0.0\n", + " 0.047794464975595474\n", + " 0.6717789785971604\n", " \n", " \n", " 9\n", @@ -731,116 +863,104 @@ " 0.0\n", " 0.0\n", " 0.0\n", - " 0.6991292773556652\n", " 0.0\n", " 0.0\n", + " 0.6895531769360177\n", " 0.0\n", " ...\n", " 0.0\n", " 0.0\n", + " 0.7531658440093912\n", " 0.0\n", " 0.0\n", - " 0.7338472630469748\n", " 0.0\n", " 0.0\n", " 0.0\n", " 0.0\n", - " 0.701772872645259\n", + " 0.768814818922966\n", " \n", " \n", "\n", - "

10 rows × 27 columns

\n", + "

10 rows × 65 columns

\n", "" ], "text/plain": [ - " 0 1 2 3 \\\n", - "0 model all FairMF FairMF \n", - "1 fair_group - activity activity \n", - "2 fair_lambda - -0.1 -0.1 \n", - "3 metric group F1@10 NDCG@10 \n", - "4 4 inactive 0.0 0.0 \n", - "5 1 inactive 0.0 0.0 \n", - "6 2 inactive 0.09090909361839294 0.22009176015853882 \n", - "7 3 inactive 0.0 0.0 \n", - "8 8 inactive 0.0 0.0 \n", - "9 5 active 0.0 0.0 \n", + " 0 1 2 3 \\\n", + "0 model all FairMF FairMF \n", + "1 fair_group - activity activity \n", + "2 fair_lambda - -0.7 -0.7 \n", + "3 metric group RECALL@10 RECALL@50 \n", + "4 4 inactive 0.0 0.0 \n", + "5 1 inactive 0.0 0.0 \n", + "6 2 inactive 0.0833333358168602 0.0833333358168602 \n", + "7 3 inactive 0.0 0.0 \n", + "8 8 inactive 0.0 0.07692307978868484 \n", + "9 5 active 0.0 0.0 \n", "\n", - " 4 5 6 \\\n", - "0 FairMF FairMF FairMF \n", - "1 activity activity activity \n", - "2 -0.1 -0.1 -0.1 \n", - "3 F1@50 NDCG@50 AUC \n", - "4 0.03846153989434242 0.11164668947458267 0.9680675049636003 \n", - "5 0.0 0.0 0.8937123745819399 \n", - "6 0.032258063554763794 0.19635792076587677 0.783387668725692 \n", - "7 0.0 0.0 0.8746657754010695 \n", - "8 0.0317460335791111 0.04568304494023323 0.7312062937062938 \n", - "9 0.0 0.0 0.6991292773556652 \n", + " 4 5 6 \\\n", + "0 FairMF FairMF FairMF \n", + "1 activity activity activity \n", + "2 -0.7 -0.7 -0.7 \n", + "3 F1@10 F1@50 NDCG@10 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.09090909361839294 0.032258063554763794 0.07336392253637314 \n", + "7 0.0 0.0 0.0 \n", + "8 0.0 0.0317460335791111 0.0 \n", + "9 0.0 0.0 0.0 \n", "\n", - " 7 8 9 ... \\\n", - "0 FairMF FairMF FairMF ... \n", - "1 activity activity activity ... \n", - "2 0.0 0.0 0.0 ... \n", - "3 F1@10 NDCG@10 F1@50 ... \n", - "4 0.0 0.0 0.03846153989434242 ... \n", - "5 0.0 0.0 0.0 ... \n", - "6 0.09090909361839294 0.22009176015853882 0.032258063554763794 ... \n", - "7 0.0 0.0 0.0 ... \n", - "8 0.0 0.0 0.0317460335791111 ... \n", - "9 0.0 0.0 0.0 ... \n", + " 7 8 9 ... 55 \\\n", + "0 FairMF FairMF FairMF ... FairMF \n", + "1 activity activity activity ... activity \n", + "2 -0.7 -0.7 -0.5 ... 0.7 \n", + "3 NDCG@50 AUC RECALL@10 ... NDCG@10 \n", + "4 0.0 0.9631039046988749 0.0 ... 0.0 \n", + "5 0.0 0.9117056856187291 0.0 ... 0.0 \n", + "6 0.06545264273881912 0.7570064058567834 0.0833333358168602 ... 0.0 \n", + "7 0.0 0.8711898395721924 0.0 ... 0.0 \n", + "8 0.04668193683028221 0.7485166348802713 0.0 ... 0.0 \n", + "9 0.0 0.6895531769360177 0.0 ... 0.0 \n", "\n", - " 17 18 19 \\\n", - "0 FairMF FairMF FairMF \n", - "1 activity activity activity \n", - "2 0.5 0.5 0.5 \n", - "3 F1@10 NDCG@10 F1@50 \n", - "4 0.0 0.0 0.03846153989434242 \n", - "5 0.0 0.0 0.0 \n", - "6 0.09090909361839294 0.22009176015853882 0.032258063554763794 \n", - "7 0.0 0.0 0.0 \n", - "8 0.08695652335882187 0.06362078338861465 0.0317460335791111 \n", - "9 0.0 0.0 0.0 \n", + " 56 57 58 59 \\\n", + "0 FairMF FairMF FairMF FairMF \n", + "1 activity activity activity activity \n", + "2 0.7 0.7 0.9 0.9 \n", + "3 NDCG@50 AUC RECALL@10 RECALL@50 \n", + "4 0.12895093858242035 0.9680675049636003 0.0 0.5 \n", + "5 0.0 0.905685618729097 0.0 0.0 \n", + "6 0.04543294385075569 0.7982298101121025 0.0 0.0833333358168602 \n", + "7 0.0 0.8809491978609626 0.0 0.0 \n", + "8 0.04668193683028221 0.6992079889807163 0.0 0.07692307978868484 \n", + "9 0.0 0.7531658440093912 0.0 0.0 \n", "\n", - " 20 21 22 \\\n", - "0 FairMF FairMF FairMF \n", - "1 activity activity activity \n", - "2 0.5 0.5 1.0 \n", - "3 NDCG@50 AUC F1@10 \n", - "4 0.12262944132089615 0.9669920582395765 0.1666666716337204 \n", - "5 0.0 0.9109030100334449 0.0 \n", - "6 0.19635792076587677 0.7802705330587967 0.0 \n", - "7 0.0 0.8651737967914439 0.0 \n", - "8 0.05397642403841019 0.6976451578724306 0.0 \n", - "9 0.0 0.7338472630469748 0.0 \n", + " 60 61 62 63 \\\n", + "0 FairMF FairMF FairMF FairMF \n", + "1 activity activity activity activity \n", + "2 0.9 0.9 0.9 0.9 \n", + "3 F1@10 F1@50 NDCG@10 NDCG@50 \n", + "4 0.0 0.03846153989434242 0.0 0.1395953744649887 \n", + "5 0.0 0.0 0.0 0.0 \n", + "6 0.0 0.032258063554763794 0.0 0.04041965305805206 \n", + "7 0.0 0.0 0.0 0.0 \n", + "8 0.0 0.0317460335791111 0.0 0.047794464975595474 \n", + "9 0.0 0.0 0.0 0.0 \n", "\n", - " 23 24 25 \\\n", - "0 FairMF FairMF FairMF \n", - "1 activity activity activity \n", - "2 1.0 1.0 1.0 \n", - "3 NDCG@10 F1@50 NDCG@50 \n", - "4 0.2640681564807892 0.03846153989434242 0.2640681564807892 \n", - "5 0.0 0.0 0.0 \n", - "6 0.0 0.032258063554763794 0.0447048544883728 \n", - "7 0.0 0.0 0.0 \n", - "8 0.0 0.0317460335791111 0.04668193683028221 \n", - "9 0.0 0.0 0.0 \n", - "\n", - " 26 \n", + " 64 \n", "0 FairMF \n", "1 activity \n", - "2 1.0 \n", + "2 0.9 \n", "3 AUC \n", - "4 0.978325612177366 \n", - "5 0.6861538461538461 \n", - "6 0.7856039807824297 \n", - "7 0.8631016042780748 \n", - "8 0.6701896588260224 \n", - "9 0.701772872645259 \n", + "4 0.9761747187293184 \n", + "5 0.871571906354515 \n", + "6 0.8007177991306337 \n", + "7 0.9002673796791444 \n", + "8 0.6717789785971604 \n", + "9 0.768814818922966 \n", "\n", - "[10 rows x 27 columns]" + "[10 rows x 65 columns]" ] }, - "execution_count": 35, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } @@ -853,7 +973,7 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -863,21 +983,21 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "100%|██████████| 2/2 [00:00<00:00, 27.54it/s]" + "100%|██████████| 2/2 [00:00<00:00, 14.34it/s]" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "{'active': {'FairMF-activity--0.1-F1@10': 0.04788724746782362, 'FairMF-activity--0.1-NDCG@10': 0.12004315365372666, 'FairMF-activity--0.1-F1@50': 0.0895838829577562, 'FairMF-activity--0.1-NDCG@50': 0.11788520608245535, 'FairMF-activity--0.1-AUC': 0.7751625785683649, 'FairMF-activity-0.0-F1@10': 0.04803834901010959, 'FairMF-activity-0.0-NDCG@10': 0.1202911107941711, 'FairMF-activity-0.0-F1@50': 0.08984669020068424, 'FairMF-activity-0.0-NDCG@50': 0.118057916258568, 'FairMF-activity-0.0-AUC': 0.776730031319056, 'FairMF-activity-0.1-F1@10': 0.04819667332556188, 'FairMF-activity-0.1-NDCG@10': 0.12075651478941307, 'FairMF-activity-0.1-F1@50': 0.09028496139285103, 'FairMF-activity-0.1-NDCG@50': 0.11863349908542886, 'FairMF-activity-0.1-AUC': 0.7779999268475992, 'FairMF-activity-0.5-F1@10': 0.04818783592215346, 'FairMF-activity-0.5-NDCG@10': 0.12068575711955443, 'FairMF-activity-0.5-F1@50': 0.09022910579129935, 'FairMF-activity-0.5-NDCG@50': 0.11819612358397846, 'FairMF-activity-0.5-AUC': 0.7825138848686926, 'FairMF-activity-1.0-F1@10': 0.04461496372852939, 'FairMF-activity-1.0-NDCG@10': 0.11317628383715526, 'FairMF-activity-1.0-F1@50': 0.08942004081049554, 'FairMF-activity-1.0-NDCG@50': 0.11521379407149411, 'FairMF-activity-1.0-AUC': 0.7682345567194494}, 'inactive': {'FairMF-activity--0.1-F1@10': 0.030976919205631934, 'FairMF-activity--0.1-NDCG@10': 0.041360288327129846, 'FairMF-activity--0.1-F1@50': 0.034506369477594015, 'FairMF-activity--0.1-NDCG@50': 0.08510886718750231, 'FairMF-activity--0.1-AUC': 0.8426082354244728, 'FairMF-activity-0.0-F1@10': 0.030205917939749034, 'FairMF-activity-0.0-NDCG@10': 0.04040198094363025, 'FairMF-activity-0.0-F1@50': 0.03459582420627449, 'FairMF-activity-0.0-NDCG@50': 0.08514570754542784, 'FairMF-activity-0.0-AUC': 0.843454465963513, 'FairMF-activity-0.1-F1@10': 0.03008767640983998, 'FairMF-activity-0.1-NDCG@10': 0.04031534223545569, 'FairMF-activity-0.1-F1@50': 0.034683430380984176, 'FairMF-activity-0.1-NDCG@50': 0.0852466344406546, 'FairMF-activity-0.1-AUC': 0.844230879736925, 'FairMF-activity-0.5-F1@10': 0.027632753146150015, 'FairMF-activity-0.5-NDCG@10': 0.0368171666183995, 'FairMF-activity-0.5-F1@50': 0.035241210293353455, 'FairMF-activity-0.5-NDCG@50': 0.08402029521122183, 'FairMF-activity-0.5-AUC': 0.8467967044414492, 'FairMF-activity-1.0-F1@10': 0.027764541362402143, 'FairMF-activity-1.0-NDCG@10': 0.03395063753343591, 'FairMF-activity-1.0-F1@50': 0.0330052497889689, 'FairMF-activity-1.0-NDCG@50': 0.07639648443403554, 'FairMF-activity-1.0-AUC': 0.8305386013174151}}\n" + "{'active': {'FairMF-activity--0.7-RECALL@10': 0.03168997032399875, 'FairMF-activity--0.7-RECALL@50': 0.11281246733592344, 'FairMF-activity--0.7-F1@10': 0.04736566817195251, 'FairMF-activity--0.7-F1@50': 0.0876078152283038, 'FairMF-activity--0.7-NDCG@10': 0.11827505801258416, 'FairMF-activity--0.7-NDCG@50': 0.11566177255348042, 'FairMF-activity--0.7-AUC': 0.7650679279047291, 'FairMF-activity--0.5-RECALL@10': 0.03201709352458385, 'FairMF-activity--0.5-RECALL@50': 0.113215869476411, 'FairMF-activity--0.5-F1@10': 0.04783080723186071, 'FairMF-activity--0.5-F1@50': 0.0879031938715623, 'FairMF-activity--0.5-NDCG@10': 0.11760060914473446, 'FairMF-activity--0.5-NDCG@50': 0.11530137017260575, 'FairMF-activity--0.5-AUC': 0.7688613738463135, 'FairMF-activity--0.3-RECALL@10': 0.03230175644737379, 'FairMF-activity--0.3-RECALL@50': 0.11408731027824967, 'FairMF-activity--0.3-F1@10': 0.04829150305107355, 'FairMF-activity--0.3-F1@50': 0.08864572253868735, 'FairMF-activity--0.3-NDCG@10': 0.1192854175635611, 'FairMF-activity--0.3-NDCG@50': 0.11649011308895497, 'FairMF-activity--0.3-AUC': 0.7722617076934682, 'FairMF-activity--0.1-RECALL@10': 0.03202131496623791, 'FairMF-activity--0.1-RECALL@50': 0.11510055193810943, 'FairMF-activity--0.1-F1@10': 0.04788724746782362, 'FairMF-activity--0.1-F1@50': 0.0895838829577562, 'FairMF-activity--0.1-NDCG@10': 0.12004315365372666, 'FairMF-activity--0.1-NDCG@50': 0.11788520608245535, 'FairMF-activity--0.1-AUC': 0.7751625785683649, 'FairMF-activity-0.1-RECALL@10': 0.03223638626492387, 'FairMF-activity-0.1-RECALL@50': 0.11574099375582263, 'FairMF-activity-0.1-F1@10': 0.04819667332556188, 'FairMF-activity-0.1-F1@50': 0.09028496139285103, 'FairMF-activity-0.1-NDCG@10': 0.12075651478941307, 'FairMF-activity-0.1-NDCG@50': 0.11863349908542886, 'FairMF-activity-0.1-AUC': 0.7779999268475992, 'FairMF-activity-0.3-RECALL@10': 0.031558192643863135, 'FairMF-activity-0.3-RECALL@50': 0.11529113031943533, 'FairMF-activity-0.3-F1@10': 0.04728444444573922, 'FairMF-activity-0.3-F1@50': 0.08998536549864303, 'FairMF-activity-0.3-NDCG@10': 0.11872620567165572, 'FairMF-activity-0.3-NDCG@50': 0.11764470098011531, 'FairMF-activity-0.3-AUC': 0.7800082930341399, 'FairMF-activity-0.5-RECALL@10': 0.03206556548317524, 'FairMF-activity-0.5-RECALL@50': 0.1156525433379712, 'FairMF-activity-0.5-F1@10': 0.04818783592215346, 'FairMF-activity-0.5-F1@50': 0.09022910579129935, 'FairMF-activity-0.5-NDCG@10': 0.12068575711955443, 'FairMF-activity-0.5-NDCG@50': 0.11819612358397846, 'FairMF-activity-0.5-AUC': 0.7825138848686926, 'FairMF-activity-0.7-RECALL@10': 0.03170375237661347, 'FairMF-activity-0.7-RECALL@50': 0.11536526066159696, 'FairMF-activity-0.7-F1@10': 0.047681693161593194, 'FairMF-activity-0.7-F1@50': 0.09005156433017089, 'FairMF-activity-0.7-NDCG@10': 0.12000241896201824, 'FairMF-activity-0.7-NDCG@50': 0.11769677276429115, 'FairMF-activity-0.7-AUC': 0.7836893578134864, 'FairMF-activity-0.9-RECALL@10': 0.03015118532366952, 'FairMF-activity-0.9-RECALL@50': 0.11461960117601906, 'FairMF-activity-0.9-F1@10': 0.04553247108185955, 'FairMF-activity-0.9-F1@50': 0.08941733787325395, 'FairMF-activity-0.9-NDCG@10': 0.11622596493371286, 'FairMF-activity-0.9-NDCG@50': 0.11581673727220107, 'FairMF-activity-0.9-AUC': 0.7838655006975198}, 'inactive': {'FairMF-activity--0.7-RECALL@10': 0.0442119355626172, 'FairMF-activity--0.7-RECALL@50': 0.16641216505033427, 'FairMF-activity--0.7-F1@10': 0.030582529333065985, 'FairMF-activity--0.7-F1@50': 0.03392924434026572, 'FairMF-activity--0.7-NDCG@10': 0.04021494217344837, 'FairMF-activity--0.7-NDCG@50': 0.08346181038829233, 'FairMF-activity--0.7-AUC': 0.8360932252441239, 'FairMF-activity--0.5-RECALL@10': 0.045027548918653175, 'FairMF-activity--0.5-RECALL@50': 0.16567511399831927, 'FairMF-activity--0.5-F1@10': 0.031061464972417654, 'FairMF-activity--0.5-F1@50': 0.03400075667422262, 'FairMF-activity--0.5-NDCG@10': 0.04057005202680906, 'FairMF-activity--0.5-NDCG@50': 0.08328927789583121, 'FairMF-activity--0.5-AUC': 0.8382657346456331, 'FairMF-activity--0.3-RECALL@10': 0.04536559651741982, 'FairMF-activity--0.3-RECALL@50': 0.16672438466306871, 'FairMF-activity--0.3-F1@10': 0.03093934972230899, 'FairMF-activity--0.3-F1@50': 0.03411902506818425, 'FairMF-activity--0.3-NDCG@10': 0.04039719102353556, 'FairMF-activity--0.3-NDCG@50': 0.08340662918986691, 'FairMF-activity--0.3-AUC': 0.8404746424113221, 'FairMF-activity--0.1-RECALL@10': 0.04522339725029016, 'FairMF-activity--0.1-RECALL@50': 0.1690464536237319, 'FairMF-activity--0.1-F1@10': 0.030976919205631934, 'FairMF-activity--0.1-F1@50': 0.034506369477594015, 'FairMF-activity--0.1-NDCG@10': 0.041360288327129846, 'FairMF-activity--0.1-NDCG@50': 0.08510886718750231, 'FairMF-activity--0.1-AUC': 0.8426082354244728, 'FairMF-activity-0.1-RECALL@10': 0.043735175377538245, 'FairMF-activity-0.1-RECALL@50': 0.170627260754902, 'FairMF-activity-0.1-F1@10': 0.03008767640983998, 'FairMF-activity-0.1-F1@50': 0.034683430380984176, 'FairMF-activity-0.1-NDCG@10': 0.04031534223545569, 'FairMF-activity-0.1-NDCG@50': 0.0852466344406546, 'FairMF-activity-0.1-AUC': 0.844230879736925, 'FairMF-activity-0.3-RECALL@10': 0.0422658992452641, 'FairMF-activity-0.3-RECALL@50': 0.172139141943638, 'FairMF-activity-0.3-F1@10': 0.02902053588321885, 'FairMF-activity-0.3-F1@50': 0.03488443586286468, 'FairMF-activity-0.3-NDCG@10': 0.03887263822337986, 'FairMF-activity-0.3-NDCG@50': 0.08492939229689922, 'FairMF-activity-0.3-AUC': 0.8456137490750278, 'FairMF-activity-0.5-RECALL@10': 0.04105153666340501, 'FairMF-activity-0.5-RECALL@50': 0.172941732855416, 'FairMF-activity-0.5-F1@10': 0.027632753146150015, 'FairMF-activity-0.5-F1@50': 0.035241210293353455, 'FairMF-activity-0.5-NDCG@10': 0.0368171666183995, 'FairMF-activity-0.5-NDCG@50': 0.08402029521122183, 'FairMF-activity-0.5-AUC': 0.8467967044414492, 'FairMF-activity-0.7-RECALL@10': 0.0365454569865979, 'FairMF-activity-0.7-RECALL@50': 0.17151095363535915, 'FairMF-activity-0.7-F1@10': 0.024865569769687804, 'FairMF-activity-0.7-F1@50': 0.03510887001060059, 'FairMF-activity-0.7-NDCG@10': 0.0338236169269588, 'FairMF-activity-0.7-NDCG@50': 0.0823813596682284, 'FairMF-activity-0.7-AUC': 0.8457193098911433, 'FairMF-activity-0.9-RECALL@10': 0.03182227203227599, 'FairMF-activity-0.9-RECALL@50': 0.16347840156226967, 'FairMF-activity-0.9-F1@10': 0.020826791682147103, 'FairMF-activity-0.9-F1@50': 0.033946553614384055, 'FairMF-activity-0.9-NDCG@10': 0.02914872616421407, 'FairMF-activity-0.9-NDCG@50': 0.07696885403478912, 'FairMF-activity-0.9-AUC': 0.8382559839247209}}\n" ] }, { @@ -903,7 +1023,7 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 10, "metadata": { "scrolled": false }, @@ -912,31 +1032,69 @@ "name": "stdout", "output_type": "stream", "text": [ + "FairMF-activity--0.7-RECALL@10\t: 0.012521965238618447\t [0.03168997032399875, 0.0442119355626172]\n", + "FairMF-activity--0.7-RECALL@50\t: 0.053599697714410824\t [0.11281246733592344, 0.16641216505033427]\n", + "FairMF-activity--0.7-F1@10\t: 0.016783138838886522\t [0.04736566817195251, 0.030582529333065985]\n", + "FairMF-activity--0.7-F1@50\t: 0.053678570888038075\t [0.0876078152283038, 0.03392924434026572]\n", + "FairMF-activity--0.7-NDCG@10\t: 0.07806011583913579\t [0.11827505801258416, 0.04021494217344837]\n", + "FairMF-activity--0.7-NDCG@50\t: 0.0321999621651881\t [0.11566177255348042, 0.08346181038829233]\n", + "FairMF-activity--0.7-AUC\t: 0.07102529733939478\t [0.7650679279047291, 0.8360932252441239]\n", + "FairMF-activity--0.5-RECALL@10\t: 0.013010455394069323\t [0.03201709352458385, 0.045027548918653175]\n", + "FairMF-activity--0.5-RECALL@50\t: 0.05245924452190827\t [0.113215869476411, 0.16567511399831927]\n", + "FairMF-activity--0.5-F1@10\t: 0.016769342259443053\t [0.04783080723186071, 0.031061464972417654]\n", + "FairMF-activity--0.5-F1@50\t: 0.05390243719733968\t [0.0879031938715623, 0.03400075667422262]\n", + "FairMF-activity--0.5-NDCG@10\t: 0.07703055711792539\t [0.11760060914473446, 0.04057005202680906]\n", + "FairMF-activity--0.5-NDCG@50\t: 0.03201209227677454\t [0.11530137017260575, 0.08328927789583121]\n", + "FairMF-activity--0.5-AUC\t: 0.06940436079931966\t [0.7688613738463135, 0.8382657346456331]\n", + "FairMF-activity--0.3-RECALL@10\t: 0.013063840070046032\t [0.03230175644737379, 0.04536559651741982]\n", + "FairMF-activity--0.3-RECALL@50\t: 0.052637074384819044\t [0.11408731027824967, 0.16672438466306871]\n", + "FairMF-activity--0.3-F1@10\t: 0.01735215332876456\t [0.04829150305107355, 0.03093934972230899]\n", + "FairMF-activity--0.3-F1@50\t: 0.05452669747050311\t [0.08864572253868735, 0.03411902506818425]\n", + "FairMF-activity--0.3-NDCG@10\t: 0.07888822654002554\t [0.1192854175635611, 0.04039719102353556]\n", + "FairMF-activity--0.3-NDCG@50\t: 0.033083483899088065\t [0.11649011308895497, 0.08340662918986691]\n", + "FairMF-activity--0.3-AUC\t: 0.06821293471785383\t [0.7722617076934682, 0.8404746424113221]\n", + "FairMF-activity--0.1-RECALL@10\t: 0.013202082284052251\t [0.03202131496623791, 0.04522339725029016]\n", + "FairMF-activity--0.1-RECALL@50\t: 0.05394590168562248\t [0.11510055193810943, 0.1690464536237319]\n", "FairMF-activity--0.1-F1@10\t: 0.016910328262191687\t [0.04788724746782362, 0.030976919205631934]\n", - "FairMF-activity--0.1-NDCG@10\t: 0.07868286532659681\t [0.12004315365372666, 0.041360288327129846]\n", "FairMF-activity--0.1-F1@50\t: 0.05507751348016218\t [0.0895838829577562, 0.034506369477594015]\n", + "FairMF-activity--0.1-NDCG@10\t: 0.07868286532659681\t [0.12004315365372666, 0.041360288327129846]\n", "FairMF-activity--0.1-NDCG@50\t: 0.032776338894953044\t [0.11788520608245535, 0.08510886718750231]\n", "FairMF-activity--0.1-AUC\t: 0.06744565685610793\t [0.7751625785683649, 0.8426082354244728]\n", - "FairMF-activity-0.0-F1@10\t: 0.017832431070360553\t [0.04803834901010959, 0.030205917939749034]\n", - "FairMF-activity-0.0-NDCG@10\t: 0.07988912985054085\t [0.1202911107941711, 0.04040198094363025]\n", - "FairMF-activity-0.0-F1@50\t: 0.05525086599440975\t [0.08984669020068424, 0.03459582420627449]\n", - "FairMF-activity-0.0-NDCG@50\t: 0.032912208713140156\t [0.118057916258568, 0.08514570754542784]\n", - "FairMF-activity-0.0-AUC\t: 0.06672443464445699\t [0.776730031319056, 0.843454465963513]\n", + "FairMF-activity-0.1-RECALL@10\t: 0.011498789112614372\t [0.03223638626492387, 0.043735175377538245]\n", + "FairMF-activity-0.1-RECALL@50\t: 0.05488626699907938\t [0.11574099375582263, 0.170627260754902]\n", "FairMF-activity-0.1-F1@10\t: 0.0181089969157219\t [0.04819667332556188, 0.03008767640983998]\n", - "FairMF-activity-0.1-NDCG@10\t: 0.08044117255395739\t [0.12075651478941307, 0.04031534223545569]\n", "FairMF-activity-0.1-F1@50\t: 0.05560153101186685\t [0.09028496139285103, 0.034683430380984176]\n", + "FairMF-activity-0.1-NDCG@10\t: 0.08044117255395739\t [0.12075651478941307, 0.04031534223545569]\n", "FairMF-activity-0.1-NDCG@50\t: 0.033386864644774264\t [0.11863349908542886, 0.0852466344406546]\n", "FairMF-activity-0.1-AUC\t: 0.06623095288932579\t [0.7779999268475992, 0.844230879736925]\n", + "FairMF-activity-0.3-RECALL@10\t: 0.010707706601400968\t [0.031558192643863135, 0.0422658992452641]\n", + "FairMF-activity-0.3-RECALL@50\t: 0.056848011624202666\t [0.11529113031943533, 0.172139141943638]\n", + "FairMF-activity-0.3-F1@10\t: 0.01826390856252037\t [0.04728444444573922, 0.02902053588321885]\n", + "FairMF-activity-0.3-F1@50\t: 0.055100929635778347\t [0.08998536549864303, 0.03488443586286468]\n", + "FairMF-activity-0.3-NDCG@10\t: 0.07985356744827586\t [0.11872620567165572, 0.03887263822337986]\n", + "FairMF-activity-0.3-NDCG@50\t: 0.03271530868321609\t [0.11764470098011531, 0.08492939229689922]\n", + "FairMF-activity-0.3-AUC\t: 0.06560545604088797\t [0.7800082930341399, 0.8456137490750278]\n", + "FairMF-activity-0.5-RECALL@10\t: 0.008985971180229771\t [0.03206556548317524, 0.04105153666340501]\n", + "FairMF-activity-0.5-RECALL@50\t: 0.0572891895174448\t [0.1156525433379712, 0.172941732855416]\n", "FairMF-activity-0.5-F1@10\t: 0.020555082776003448\t [0.04818783592215346, 0.027632753146150015]\n", - "FairMF-activity-0.5-NDCG@10\t: 0.08386859050115493\t [0.12068575711955443, 0.0368171666183995]\n", "FairMF-activity-0.5-F1@50\t: 0.054987895497945895\t [0.09022910579129935, 0.035241210293353455]\n", + "FairMF-activity-0.5-NDCG@10\t: 0.08386859050115493\t [0.12068575711955443, 0.0368171666183995]\n", "FairMF-activity-0.5-NDCG@50\t: 0.034175828372756636\t [0.11819612358397846, 0.08402029521122183]\n", "FairMF-activity-0.5-AUC\t: 0.06428281957275661\t [0.7825138848686926, 0.8467967044414492]\n", - "FairMF-activity-1.0-F1@10\t: 0.016850422366127247\t [0.04461496372852939, 0.027764541362402143]\n", - "FairMF-activity-1.0-NDCG@10\t: 0.07922564630371935\t [0.11317628383715526, 0.03395063753343591]\n", - "FairMF-activity-1.0-F1@50\t: 0.05641479102152664\t [0.08942004081049554, 0.0330052497889689]\n", - "FairMF-activity-1.0-NDCG@50\t: 0.038817309637458566\t [0.11521379407149411, 0.07639648443403554]\n", - "FairMF-activity-1.0-AUC\t: 0.06230404459796568\t [0.7682345567194494, 0.8305386013174151]\n" + "FairMF-activity-0.7-RECALL@10\t: 0.004841704609984426\t [0.03170375237661347, 0.0365454569865979]\n", + "FairMF-activity-0.7-RECALL@50\t: 0.05614569297376219\t [0.11536526066159696, 0.17151095363535915]\n", + "FairMF-activity-0.7-F1@10\t: 0.02281612339190539\t [0.047681693161593194, 0.024865569769687804]\n", + "FairMF-activity-0.7-F1@50\t: 0.0549426943195703\t [0.09005156433017089, 0.03510887001060059]\n", + "FairMF-activity-0.7-NDCG@10\t: 0.08617880203505944\t [0.12000241896201824, 0.0338236169269588]\n", + "FairMF-activity-0.7-NDCG@50\t: 0.035315413096062745\t [0.11769677276429115, 0.0823813596682284]\n", + "FairMF-activity-0.7-AUC\t: 0.062029952077656936\t [0.7836893578134864, 0.8457193098911433]\n", + "FairMF-activity-0.9-RECALL@10\t: 0.0016710867086064743\t [0.03015118532366952, 0.03182227203227599]\n", + "FairMF-activity-0.9-RECALL@50\t: 0.04885880038625061\t [0.11461960117601906, 0.16347840156226967]\n", + "FairMF-activity-0.9-F1@10\t: 0.02470567939971245\t [0.04553247108185955, 0.020826791682147103]\n", + "FairMF-activity-0.9-F1@50\t: 0.0554707842588699\t [0.08941733787325395, 0.033946553614384055]\n", + "FairMF-activity-0.9-NDCG@10\t: 0.08707723876949879\t [0.11622596493371286, 0.02914872616421407]\n", + "FairMF-activity-0.9-NDCG@50\t: 0.03884788323741195\t [0.11581673727220107, 0.07696885403478912]\n", + "FairMF-activity-0.9-AUC\t: 0.05439048322720108\t [0.7838655006975198, 0.8382559839247209]\n" ] } ], diff --git a/Recommendation Performance.ipynb b/Recommendation Performance.ipynb index 9a873cf..7766c60 100644 --- a/Recommendation Performance.ipynb +++ b/Recommendation Performance.ipynb @@ -12,9 +12,10 @@ "parentdir = os.path.dirname(currentdir)\n", "sys.path.insert(0,parentdir) \n", "\n", - "# data_key = 'ml-1m/'\n", + "data_key = 'ml-1m/'\n", "# data_key = 'amz_Books/'\n", - "data_key = 'amz_Movies_and_TV/'\n", + "# data_key = 'amz_Movies_and_TV/'\n", + "# data_key = 'amz_Electronics/'\n", "PROCESSED_DATA_ROOT = \"/home/sl1471/workspace/experiments/\"\n", "target_path = PROCESSED_DATA_ROOT + data_key" ] @@ -37,14 +38,128 @@ "name": "stderr", "output_type": "stream", "text": [ - "36it [00:01, 35.55it/s]" + "9it [00:00, 76.04it/s]" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "dict_keys([0, 1, 2, 3, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 32, 33, 35])\n" + "f2rec_train_and_eval_FairMF_lr0.00003_reg0.1_losspairwisebpr_lambda0.5_gactivity.log\n", + "f2rec_train_and_eval_FairMF_lr0.00003_reg0.1_losspairwisebpr_lambda0.1_gGender.log\n", + "f2rec_train_and_eval_FedMF_lr0.01_reg0.1_losspairwisebpr_local1_fedavg.log\n", + "f2rec_train_and_eval_FedMF_lr0.003_reg0.1_losspairwisebpr_local3_fedavg.log\n", + "f2rec_train_and_eval_FairMF_lr0.00003_reg0.1_losspairwisebpr_lambda1.0_gGender.log\n", + "f2rec_train_and_eval_FedMF_lr0.001_reg0.1_losspairwisebpr_local1_fedavg.log\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "17it [00:00, 76.81it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "f2rec_train_and_eval_MF_lr0.00003_reg0.1_losspairwisebpr.log\n", + "f2rec_train_and_eval_MF_lr0.00001_reg0.1_losspairwisebpr.log\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "30it [00:00, 52.47it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "f2rec_train_and_eval_MF_lr0.0001_reg0.1_losspairwisebpr.log\n", + "f2rec_train_and_eval_FedMF_lr0.0003_reg0.1_losspairwisebpr_local1_fedavg.log\n", + "f2rec_train_and_eval_FedMF_lr0.01_reg0.1_losspairwisebpr_local3_fedavg.log\n", + "f2rec_train_and_eval_FedMF_lr0.0003_reg0.1_losspairwisebpr_local5_fedavg.log\n", + "f2rec_train_and_eval_MF_lr0.00001_reg1.0_losspairwisebpr.log\n", + "f2rec_train_and_eval_MF_lr0.00003_reg0_losspairwisebpr.log\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "45it [00:01, 36.06it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "f2rec_train_and_eval_FedMF_lr0.003_reg0.1_losspairwisebpr_local1_fedavg.log\n", + "f2rec_train_and_eval_MF_lr0.0001_reg1.0_losspairwisebpr.log\n", + "f2rec_train_and_eval_FairMF_lr0.00003_reg0.1_losspairwisebpr_lambda0.3_gactivity.log\n", + "f2rec_train_and_eval_FairMF_lr0.00003_reg0.1_losspairwisebpr_lambda0.1_gactivity.log\n", + "f2rec_train_and_eval_FedMF_lr0.001_reg0.1_losspairwisebpr_local3_fedavg.log\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "50it [00:01, 32.09it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "f2rec_train_and_eval_MF_lr0.0001_reg0_losspairwisebpr.log\n", + "f2rec_train_and_eval_MF_lr0.00001_reg0_losspairwisebpr.log\n", + "f2rec_train_and_eval_FairMF_lr0.00003_reg0.1_losspairwisebpr_lambda0.1_gAge.log\n", + "f2rec_train_and_eval_FairMF_lr0.00003_reg0.1_losspairwisebpr_lambda-0.1_gAge.log\n", + "f2rec_train_and_eval_FedMF_lr0.0001_reg0.1_losspairwisebpr_local1_fedavg.log\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "56it [00:01, 34.60it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "f2rec_train_and_eval_FairMF_lr0.00003_reg0.1_losspairwisebpr_lambda0_gGender.log\n", + "f2rec_train_and_eval_FairMF_lr0.00003_reg0.1_losspairwisebpr_lambda-0.1_gactivity.log\n", + "f2rec_train_and_eval_FairMF_lr0.00003_reg0.1_losspairwisebpr_lambda1.0_gactivity.log\n", + "f2rec_train_and_eval_FedMF_lr0.0001_reg0.1_losspairwisebpr_local5_fedavg.log\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "72it [00:01, 43.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "f2rec_train_and_eval_FairMF_lr0.00003_reg0.1_losspairwisebpr_lambda0_gactivity.log\n", + "f2rec_train_and_eval_FairMF_lr0.00003_reg0.1_losspairwisebpr_lambda0.7_gactivity.log\n", + "f2rec_train_and_eval_FairMF_lr0.00003_reg0.1_losspairwisebpr_lambda0_gAge.log\n", + "f2rec_train_and_eval_FairMF_lr0.00003_reg0.1_losspairwisebpr_lambda-0.1_gGender.log\n", + "f2rec_train_and_eval_MF_lr0.00003_reg1.0_losspairwisebpr.log\n", + "dict_keys([1, 8, 15, 16, 19, 21, 23, 29, 30, 31, 32, 34, 38, 39, 41, 44, 45, 46, 47, 49, 51, 55, 56, 57, 59, 66, 69, 70, 71])\n" ] }, { @@ -58,8 +173,6 @@ "source": [ "from utils import extract_results\n", "log_path = target_path + \"logs/\"\n", - "# results = extract_results(log_path, ['n_interest', 'threshold_c'])\n", - "# results = extract_results(log_path, ['n_interest'])\n", "results = extract_results(log_path, ['lr', 'l2_coef', 'fair_group_feature', 'fair_lambda', 'fair_noise_sigma', 'n_local_step'], \"f2rec_train_and_eval\")\n", "print(results.keys())" ] @@ -78,97 +191,97 @@ "text": [ "Example:\n", "{\n", - " \"args\": \"cuda=3, seed=19, train=False, train_and_eval=True, continuous_train=False, eval=False, model_path='/home/sl1471/workspace/experiments/amz_Movies_and_TV/models/f2rec_FedMF_lr0.01_reg0.1_pairwisebpr_local1_fedavg.pkl', loss='pairwisebpr', l2_coef=0.1, emb_size=32, device_dropout_p=0.1, device_dropout_type='same', n_local_step=1, random_local_step=False, aggregation_func='fedavg', mitigation_trade_off=1.0, elastic_mu=0.01, data_file='/home/sl1471/workspace/experiments/amz_Movies_and_TV/tsv_data/', n_worker=4, user_meta_data='/home/sl1471/workspace/experiments/amz_Movies_and_TV/meta_data/user.meta', item_meta_data='/home/sl1471/workspace/experiments/amz_Movies_and_TV/meta_data/item.meta', user_fields_meta_file='/home/sl1471/workspace/experiments/amz_Movies_and_TV/meta_data/user_fields.meta', item_fields_meta_file='/home/sl1471/workspace/experiments/amz_Movies_and_TV/meta_data/item_fields.meta', user_fields_vocab_file='/home/sl1471/workspace/experiments/amz_Movies_and_TV/meta_data/user_fields.vocab', item_fields_vocab_file='/home/sl1471/workspace/experiments/amz_Movies_and_TV/meta_data/item_fields.vocab', n_neg=1, n_neg_val=100, n_neg_test=-1, n_round=1, optimizer='SGD', epoch=40, check_epoch=1, lr=0.01, batch_size=256, eval_batch_size=1, temper=6, with_val=True, val_sample_p=0.5, test_sample_p=1.0, stop_metric='_AUC', pin_memory=False, at_k=[1, 5, 10, 20, 50], n_eval_process=1,\",\n", - " \"model_name\": \"FedMF\",\n", - " \"lr\": 0.01,\n", + " \"args\": \"cuda=2, seed=29, train=False, train_and_eval=True, continuous_train=False, eval=False, model_path='/home/sl1471/workspace/experiments/ml-1m/models/f2rec_FairMF_lr0.00003_reg0.1_pairwisebpr_lambda0.5_gactivity.pkl', loss='pairwisebpr', l2_coef=0.1, emb_size=32, data_file='/home/sl1471/workspace/experiments/ml-1m/tsv_data/', n_worker=4, user_meta_data='/home/sl1471/workspace/experiments/ml-1m/meta_data/user.meta', item_meta_data='/home/sl1471/workspace/experiments/ml-1m/meta_data/item.meta', user_fields_meta_file='/home/sl1471/workspace/experiments/ml-1m/meta_data/user_fields.meta', item_fields_meta_file='/home/sl1471/workspace/experiments/ml-1m/meta_data/item_fields.meta', user_fields_vocab_file='/home/sl1471/workspace/experiments/ml-1m/meta_data/user_fields.vocab', item_fields_vocab_file='/home/sl1471/workspace/experiments/ml-1m/meta_data/item_fields.vocab', n_neg=1, n_neg_val=100, n_neg_test=-1, n_round=1, optimizer='Adam', epoch=30, check_epoch=1, lr=3e-05, batch_size=256, eval_batch_size=1, temper=6, with_val=True, val_sample_p=1.0, test_sample_p=1.0, stop_metric='_NDCG@50', pin_memory=False, at_k=[1, 5, 10, 20, 50], n_eval_process=1, fair_lambda=0.5, fair_rho=1, fair_group_feature='activity',\",\n", + " \"model_name\": \"MF\",\n", + " \"lr\": 3e-05,\n", " \"l2_coef\": 0.1,\n", - " \"fair_group_feature\": \"NaN\",\n", - " \"fair_lambda\": \"NaN\",\n", + " \"fair_group_feature\": \"activity\",\n", + " \"fair_lambda\": 0.5,\n", " \"fair_noise_sigma\": \"NaN\",\n", - " \"n_local_step\": 1,\n", + " \"n_local_step\": \"NaN\",\n", " \"HR@1\": [\n", - " 0.00747493163172288\n", + " 0.06858186648953836\n", " ],\n", " \"P@1\": [\n", - " 0.00747493163172288\n", + " 0.06858186648953836\n", " ],\n", " \"RECALL@1\": [\n", - " 0.0010341418818753203\n", + " 0.005869701477952304\n", " ],\n", " \"F1@1\": [\n", - " 0.0017525567106882224\n", + " 0.009771999251468608\n", " ],\n", " \"NDCG@1\": [\n", - " 0.00747493163172288\n", + " 0.06858186648953836\n", " ],\n", " \"HR@5\": [\n", - " 0.03609845031905196\n", + " 0.2092328130189306\n", " ],\n", " \"P@5\": [\n", - " 0.009845032054615108\n", + " 0.05881766959584381\n", " ],\n", " \"RECALL@5\": [\n", - " 0.006226766596352146\n", + " 0.0219579737583823\n", " ],\n", " \"F1@5\": [\n", - " 0.006892276030125516\n", + " 0.02528280524595117\n", " ],\n", " \"NDCG@5\": [\n", - " 0.009898451592776594\n", + " 0.06318684952653393\n", " ],\n", " \"HR@10\": [\n", - " 0.06946216955332725\n", + " 0.3027233477250083\n", " ],\n", " \"P@10\": [\n", - " 0.00929808584580991\n", + " 0.05292261804988201\n", " ],\n", " \"RECALL@10\": [\n", - " 0.011543219648437438\n", + " 0.03823875757427629\n", " ],\n", " \"F1@10\": [\n", - " 0.009103384933204355\n", + " 0.03406688317483924\n", " ],\n", " \"NDCG@10\": [\n", - " 0.011741163862110162\n", + " 0.06306962312698088\n", " ],\n", " \"HR@20\": [\n", - " 0.1309024612579763\n", + " 0.44337429425440056\n", " ],\n", " \"P@20\": [\n", - " 0.01042844140554083\n", + " 0.049178014771981284\n", " ],\n", " \"RECALL@20\": [\n", - " 0.027579905640897608\n", + " 0.07501739317508571\n", " ],\n", " \"F1@20\": [\n", - " 0.013533679318827397\n", + " 0.04616553749971411\n", " ],\n", " \"NDCG@20\": [\n", - " 0.018424931326804644\n", + " 0.07136765470631155\n", " ],\n", " \"HR@50\": [\n", - " 0.22260711030082042\n", + " 0.6328462304882099\n", " ],\n", " \"P@50\": [\n", - " 0.008215132029684652\n", + " 0.03985054756578755\n", " ],\n", " \"RECALL@50\": [\n", - " 0.05335067739419863\n", + " 0.15500913201842106\n", " ],\n", " \"F1@50\": [\n", - " 0.013018028142818725\n", + " 0.05245346253739663\n", " ],\n", " \"NDCG@50\": [\n", - " 0.027437968108439674\n", + " 0.09471797646041583\n", " ],\n", " \"MR\": [\n", - " 710.5788100384318\n", + " 76.159751144686\n", " ],\n", " \"MRR\": [\n", - " 0.0068026606860800785\n", + " 0.021771233552693246\n", " ],\n", " \"AUC\": [\n", - " 0.6969213234012142\n", + " 0.8266749555691079\n", " ]\n", "}\n" ] @@ -219,7 +332,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Dir exists: '/home/sl1471/workspace/experiments/amz_Movies_and_TV/results/'\n" + "Dir exists: '/home/sl1471/workspace/experiments/ml-1m/results/'\n" ] } ], @@ -234,18 +347,1229 @@ "df.to_csv(result_file_path, sep = '\\t')" ] }, + { + "cell_type": "markdown", + "id": "2adceabe", + "metadata": {}, + "source": [ + "## Plots" + ] + }, + { + "cell_type": "markdown", + "id": "b8c9d8da", + "metadata": {}, + "source": [ + "### Lambda" + ] + }, { "cell_type": "code", - "execution_count": null, - "id": "4e4b7267", + "execution_count": 9, + "id": "fc79d054", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
argsmodel_namelrl2_coeffair_group_featurefair_lambdafair_noise_sigman_local_stepHR@1P@1...F1@20NDCG@20HR@50P@50RECALL@50F1@50NDCG@50MRMRRAUC
1cuda=2, seed=29, train=False, train_and_eval=T...MF0.000030.1activity0.5NaNNaN0.0685820.068582...0.0461660.0713680.6328460.0398510.1550090.0524530.09471876.1597510.0217710.826675
8cuda=1, seed=19, train=False, train_and_eval=T...FedMF0.003000.1NaNNaNNaN30.0664230.066423...0.0433300.0674990.5983060.0370180.1412610.0484230.088329101.5605590.0200700.766201
15cuda=2, seed=19, train=False, train_and_eval=T...MF0.000030.1Gender1.0NaNNaN0.0709070.070907...0.0475620.0754990.6376620.0401360.1602730.0530170.09899478.5872730.0235700.819796
16cuda=2, seed=19, train=False, train_and_eval=T...FedMF0.001000.1NaNNaNNaN10.0644300.064430...0.0434310.0667230.5973100.0368810.1403130.0482460.087327103.8079280.0197190.761074
19cuda=3, seed=19, train=False, train_and_eval=T...MF0.000030.1NaNNaNNaNNaN0.0668380.066838...0.0402080.0633830.6134170.0383310.1461050.0502420.08857988.0607600.0200430.810460
21cuda=3, seed=19, train=False, train_and_eval=T...MF0.000010.1NaNNaNNaNNaN0.0485720.048572...0.0363010.0550180.5813680.0340000.1205540.0437830.074811105.1098960.0163060.779343
23cuda=3, seed=19, train=False, train_and_eval=T...MF0.000100.1NaNNaNNaNNaN0.0728160.072816...0.0446260.0708600.6131680.0380600.1481770.0502410.09330785.6324810.0225090.813692
29cuda=2, seed=19, train=False, train_and_eval=T...FedMF0.000300.1NaNNaNNaN10.0564600.056460...0.0421020.0632830.5971440.0363900.1383620.0476500.084244111.3116810.0181730.745807
30cuda=1, seed=19, train=False, train_and_eval=T...FedMF0.010000.1NaNNaNNaN30.0587840.058784...0.0436600.0662330.5994690.0367780.1410290.0481380.086796101.4393890.0191630.766446
31cuda=1, seed=19, train=False, train_and_eval=T...FedMF0.000300.1NaNNaNNaN50.0675860.067586...0.0420640.0653020.5998010.0369210.1411750.0483080.087170102.5709150.0196550.763850
32cuda=3, seed=19, train=False, train_and_eval=T...MF0.000011.0NaNNaNNaNNaN0.0489870.048987...0.0368540.0555700.5711560.0340340.1204170.0437320.074782102.0733240.0160430.785295
34cuda=3, seed=19, train=False, train_and_eval=T...MF0.000030.0NaNNaNNaNNaN0.0385250.038525...0.0247590.0419190.5264030.0315310.1100790.0398520.06500795.8217040.0149380.796111
38cuda=2, seed=19, train=False, train_and_eval=T...FedMF0.003000.1NaNNaNNaN10.0679180.067918...0.0431690.0673500.5958980.0368430.1401320.0481690.088002102.6669160.0201910.763786
39cuda=3, seed=19, train=False, train_and_eval=T...MF0.000101.0NaNNaNNaNNaN0.0651780.065178...0.0420570.0648120.5904180.0371640.1382050.0483770.086210102.1243330.0190640.785940
41cuda=2, seed=29, train=False, train_and_eval=T...MF0.000030.1activity0.3NaNNaN0.0730650.073065...0.0460490.0719550.6310200.0396280.1543450.0521320.09517076.5683760.0222940.825078
44cuda=2, seed=29, train=False, train_and_eval=T...MF0.000030.1activity0.1NaNNaN0.0758880.075888...0.0462320.0729100.6326800.0396280.1534470.0520880.09569777.1323060.0228280.823499
45cuda=1, seed=19, train=False, train_and_eval=T...FedMF0.001000.1NaNNaNNaN30.0601130.060113...0.0427780.0655960.5964800.0369280.1404500.0482700.086677101.9054800.0191480.765395
46cuda=3, seed=19, train=False, train_and_eval=T...MF0.000100.0NaNNaNNaNNaN0.0136170.013617...0.0076690.0152220.1959480.0124330.0383080.0139530.02295495.7267700.0076790.802866
47cuda=3, seed=19, train=False, train_and_eval=T...MF0.000010.0NaNNaNNaNNaN0.0417640.041764...0.0335270.0503980.5640980.0320440.1116590.0410430.069065107.0547280.0150150.776493
49cuda=2, seed=19, train=False, train_and_eval=T...MF0.000030.1Age-0.1NaNNaN0.0747260.074726...0.0463120.0734830.6381600.0392200.1559980.0520030.09691877.5081520.0237940.821338
51cuda=2, seed=19, train=False, train_and_eval=T...FedMF0.000100.1NaNNaNNaN10.0674190.067419...0.0399830.0636970.5868480.0327630.1273630.0432630.081222142.0062450.0188610.688310
55cuda=2, seed=19, train=False, train_and_eval=T...MF0.000030.1Gender0.0NaNNaN0.0549650.054965...0.0424230.0657030.6441380.0374660.1514320.0495590.08966480.2287960.0206790.815622
56cuda=2, seed=29, train=False, train_and_eval=T...MF0.000030.1activity-0.1NaNNaN0.0755560.075556...0.0460700.0729080.6350050.0393030.1521600.0517470.09536877.7564520.0228460.821496
57cuda=2, seed=29, train=False, train_and_eval=T...MF0.000030.1activity1.0NaNNaN0.0584520.058452...0.0431550.0657920.6225510.0388110.1451120.0506640.08854784.2396930.0193960.811036
59cuda=1, seed=19, train=False, train_and_eval=T...FedMF0.000100.1NaNNaNNaN50.0680840.068084...0.0416400.0648780.5973100.0368350.1396360.0481620.086652105.9184810.0193770.756618
66cuda=2, seed=29, train=False, train_and_eval=T...MF0.000030.1activity0.0NaNNaN0.0755560.075556...0.0461040.0727160.6340090.0394690.1529660.0518900.09544877.4853040.0228330.822568
69cuda=2, seed=19, train=False, train_and_eval=T...MF0.000030.1Age0.0NaNNaN0.0549650.054965...0.0424230.0657030.6441380.0374660.1514320.0495590.08966480.2287960.0206790.815622
70cuda=2, seed=19, train=False, train_and_eval=T...MF0.000030.1Gender-0.1NaNNaN0.0699100.069910...0.0463190.0729940.6391560.0393130.1565220.0521650.09678277.2455930.0236450.821809
71cuda=3, seed=19, train=False, train_and_eval=T...MF0.000031.0NaNNaNNaNNaN0.0572070.057207...0.0386320.0596760.5829460.0353540.1273510.0457210.080073101.5489250.0178840.786067
\n", + "

29 rows × 36 columns

\n", + "
" + ], + "text/plain": [ + " args model_name lr \\\n", + "1 cuda=2, seed=29, train=False, train_and_eval=T... MF 0.00003 \n", + "8 cuda=1, seed=19, train=False, train_and_eval=T... FedMF 0.00300 \n", + "15 cuda=2, seed=19, train=False, train_and_eval=T... MF 0.00003 \n", + "16 cuda=2, seed=19, train=False, train_and_eval=T... FedMF 0.00100 \n", + "19 cuda=3, seed=19, train=False, train_and_eval=T... MF 0.00003 \n", + "21 cuda=3, seed=19, train=False, train_and_eval=T... MF 0.00001 \n", + "23 cuda=3, seed=19, train=False, train_and_eval=T... MF 0.00010 \n", + "29 cuda=2, seed=19, train=False, train_and_eval=T... FedMF 0.00030 \n", + "30 cuda=1, seed=19, train=False, train_and_eval=T... FedMF 0.01000 \n", + "31 cuda=1, seed=19, train=False, train_and_eval=T... FedMF 0.00030 \n", + "32 cuda=3, seed=19, train=False, train_and_eval=T... MF 0.00001 \n", + "34 cuda=3, seed=19, train=False, train_and_eval=T... MF 0.00003 \n", + "38 cuda=2, seed=19, train=False, train_and_eval=T... FedMF 0.00300 \n", + "39 cuda=3, seed=19, train=False, train_and_eval=T... MF 0.00010 \n", + "41 cuda=2, seed=29, train=False, train_and_eval=T... MF 0.00003 \n", + "44 cuda=2, seed=29, train=False, train_and_eval=T... MF 0.00003 \n", + "45 cuda=1, seed=19, train=False, train_and_eval=T... FedMF 0.00100 \n", + "46 cuda=3, seed=19, train=False, train_and_eval=T... MF 0.00010 \n", + "47 cuda=3, seed=19, train=False, train_and_eval=T... MF 0.00001 \n", + "49 cuda=2, seed=19, train=False, train_and_eval=T... MF 0.00003 \n", + "51 cuda=2, seed=19, train=False, train_and_eval=T... FedMF 0.00010 \n", + "55 cuda=2, seed=19, train=False, train_and_eval=T... MF 0.00003 \n", + "56 cuda=2, seed=29, train=False, train_and_eval=T... MF 0.00003 \n", + "57 cuda=2, seed=29, train=False, train_and_eval=T... MF 0.00003 \n", + "59 cuda=1, seed=19, train=False, train_and_eval=T... FedMF 0.00010 \n", + "66 cuda=2, seed=29, train=False, train_and_eval=T... MF 0.00003 \n", + "69 cuda=2, seed=19, train=False, train_and_eval=T... MF 0.00003 \n", + "70 cuda=2, seed=19, train=False, train_and_eval=T... MF 0.00003 \n", + "71 cuda=3, seed=19, train=False, train_and_eval=T... MF 0.00003 \n", + "\n", + " l2_coef fair_group_feature fair_lambda fair_noise_sigma n_local_step \\\n", + "1 0.1 activity 0.5 NaN NaN \n", + "8 0.1 NaN NaN NaN 3 \n", + "15 0.1 Gender 1.0 NaN NaN \n", + "16 0.1 NaN NaN NaN 1 \n", + "19 0.1 NaN NaN NaN NaN \n", + "21 0.1 NaN NaN NaN NaN \n", + "23 0.1 NaN NaN NaN NaN \n", + "29 0.1 NaN NaN NaN 1 \n", + "30 0.1 NaN NaN NaN 3 \n", + "31 0.1 NaN NaN NaN 5 \n", + "32 1.0 NaN NaN NaN NaN \n", + "34 0.0 NaN NaN NaN NaN \n", + "38 0.1 NaN NaN NaN 1 \n", + "39 1.0 NaN NaN NaN NaN \n", + "41 0.1 activity 0.3 NaN NaN \n", + "44 0.1 activity 0.1 NaN NaN \n", + "45 0.1 NaN NaN NaN 3 \n", + "46 0.0 NaN NaN NaN NaN \n", + "47 0.0 NaN NaN NaN NaN \n", + "49 0.1 Age -0.1 NaN NaN \n", + "51 0.1 NaN NaN NaN 1 \n", + "55 0.1 Gender 0.0 NaN NaN \n", + "56 0.1 activity -0.1 NaN NaN \n", + "57 0.1 activity 1.0 NaN NaN \n", + "59 0.1 NaN NaN NaN 5 \n", + "66 0.1 activity 0.0 NaN NaN \n", + "69 0.1 Age 0.0 NaN NaN \n", + "70 0.1 Gender -0.1 NaN NaN \n", + "71 1.0 NaN NaN NaN NaN \n", + "\n", + " HR@1 P@1 ... F1@20 NDCG@20 HR@50 P@50 \\\n", + "1 0.068582 0.068582 ... 0.046166 0.071368 0.632846 0.039851 \n", + "8 0.066423 0.066423 ... 0.043330 0.067499 0.598306 0.037018 \n", + "15 0.070907 0.070907 ... 0.047562 0.075499 0.637662 0.040136 \n", + "16 0.064430 0.064430 ... 0.043431 0.066723 0.597310 0.036881 \n", + "19 0.066838 0.066838 ... 0.040208 0.063383 0.613417 0.038331 \n", + "21 0.048572 0.048572 ... 0.036301 0.055018 0.581368 0.034000 \n", + "23 0.072816 0.072816 ... 0.044626 0.070860 0.613168 0.038060 \n", + "29 0.056460 0.056460 ... 0.042102 0.063283 0.597144 0.036390 \n", + "30 0.058784 0.058784 ... 0.043660 0.066233 0.599469 0.036778 \n", + "31 0.067586 0.067586 ... 0.042064 0.065302 0.599801 0.036921 \n", + "32 0.048987 0.048987 ... 0.036854 0.055570 0.571156 0.034034 \n", + "34 0.038525 0.038525 ... 0.024759 0.041919 0.526403 0.031531 \n", + "38 0.067918 0.067918 ... 0.043169 0.067350 0.595898 0.036843 \n", + "39 0.065178 0.065178 ... 0.042057 0.064812 0.590418 0.037164 \n", + "41 0.073065 0.073065 ... 0.046049 0.071955 0.631020 0.039628 \n", + "44 0.075888 0.075888 ... 0.046232 0.072910 0.632680 0.039628 \n", + "45 0.060113 0.060113 ... 0.042778 0.065596 0.596480 0.036928 \n", + "46 0.013617 0.013617 ... 0.007669 0.015222 0.195948 0.012433 \n", + "47 0.041764 0.041764 ... 0.033527 0.050398 0.564098 0.032044 \n", + "49 0.074726 0.074726 ... 0.046312 0.073483 0.638160 0.039220 \n", + "51 0.067419 0.067419 ... 0.039983 0.063697 0.586848 0.032763 \n", + "55 0.054965 0.054965 ... 0.042423 0.065703 0.644138 0.037466 \n", + "56 0.075556 0.075556 ... 0.046070 0.072908 0.635005 0.039303 \n", + "57 0.058452 0.058452 ... 0.043155 0.065792 0.622551 0.038811 \n", + "59 0.068084 0.068084 ... 0.041640 0.064878 0.597310 0.036835 \n", + "66 0.075556 0.075556 ... 0.046104 0.072716 0.634009 0.039469 \n", + "69 0.054965 0.054965 ... 0.042423 0.065703 0.644138 0.037466 \n", + "70 0.069910 0.069910 ... 0.046319 0.072994 0.639156 0.039313 \n", + "71 0.057207 0.057207 ... 0.038632 0.059676 0.582946 0.035354 \n", + "\n", + " RECALL@50 F1@50 NDCG@50 MR MRR AUC \n", + "1 0.155009 0.052453 0.094718 76.159751 0.021771 0.826675 \n", + "8 0.141261 0.048423 0.088329 101.560559 0.020070 0.766201 \n", + "15 0.160273 0.053017 0.098994 78.587273 0.023570 0.819796 \n", + "16 0.140313 0.048246 0.087327 103.807928 0.019719 0.761074 \n", + "19 0.146105 0.050242 0.088579 88.060760 0.020043 0.810460 \n", + "21 0.120554 0.043783 0.074811 105.109896 0.016306 0.779343 \n", + "23 0.148177 0.050241 0.093307 85.632481 0.022509 0.813692 \n", + "29 0.138362 0.047650 0.084244 111.311681 0.018173 0.745807 \n", + "30 0.141029 0.048138 0.086796 101.439389 0.019163 0.766446 \n", + "31 0.141175 0.048308 0.087170 102.570915 0.019655 0.763850 \n", + "32 0.120417 0.043732 0.074782 102.073324 0.016043 0.785295 \n", + "34 0.110079 0.039852 0.065007 95.821704 0.014938 0.796111 \n", + "38 0.140132 0.048169 0.088002 102.666916 0.020191 0.763786 \n", + "39 0.138205 0.048377 0.086210 102.124333 0.019064 0.785940 \n", + "41 0.154345 0.052132 0.095170 76.568376 0.022294 0.825078 \n", + "44 0.153447 0.052088 0.095697 77.132306 0.022828 0.823499 \n", + "45 0.140450 0.048270 0.086677 101.905480 0.019148 0.765395 \n", + "46 0.038308 0.013953 0.022954 95.726770 0.007679 0.802866 \n", + "47 0.111659 0.041043 0.069065 107.054728 0.015015 0.776493 \n", + "49 0.155998 0.052003 0.096918 77.508152 0.023794 0.821338 \n", + "51 0.127363 0.043263 0.081222 142.006245 0.018861 0.688310 \n", + "55 0.151432 0.049559 0.089664 80.228796 0.020679 0.815622 \n", + "56 0.152160 0.051747 0.095368 77.756452 0.022846 0.821496 \n", + "57 0.145112 0.050664 0.088547 84.239693 0.019396 0.811036 \n", + "59 0.139636 0.048162 0.086652 105.918481 0.019377 0.756618 \n", + "66 0.152966 0.051890 0.095448 77.485304 0.022833 0.822568 \n", + "69 0.151432 0.049559 0.089664 80.228796 0.020679 0.815622 \n", + "70 0.156522 0.052165 0.096782 77.245593 0.023645 0.821809 \n", + "71 0.127351 0.045721 0.080073 101.548925 0.017884 0.786067 \n", + "\n", + "[29 rows x 36 columns]" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "22ce1d41", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/sl1471/anaconda3/envs/edgecdr/lib/python3.7/site-packages/ipykernel_launcher.py:3: UserWarning: Boolean Series key will be reindexed to match DataFrame index.\n", + " This is separate from the ipykernel package so we can avoid doing imports until\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
argsmodel_namelrl2_coeffair_group_featurefair_lambdafair_noise_sigman_local_stepHR@1P@1...F1@20NDCG@20HR@50P@50RECALL@50F1@50NDCG@50MRMRRAUC
1cuda=2, seed=29, train=False, train_and_eval=T...MF0.000030.1activity0.5NaNNaN0.0685820.068582...0.0461660.0713680.6328460.0398510.1550090.0524530.09471876.1597510.0217710.826675
41cuda=2, seed=29, train=False, train_and_eval=T...MF0.000030.1activity0.3NaNNaN0.0730650.073065...0.0460490.0719550.6310200.0396280.1543450.0521320.09517076.5683760.0222940.825078
44cuda=2, seed=29, train=False, train_and_eval=T...MF0.000030.1activity0.1NaNNaN0.0758880.075888...0.0462320.0729100.6326800.0396280.1534470.0520880.09569777.1323060.0228280.823499
56cuda=2, seed=29, train=False, train_and_eval=T...MF0.000030.1activity-0.1NaNNaN0.0755560.075556...0.0460700.0729080.6350050.0393030.1521600.0517470.09536877.7564520.0228460.821496
57cuda=2, seed=29, train=False, train_and_eval=T...MF0.000030.1activity1.0NaNNaN0.0584520.058452...0.0431550.0657920.6225510.0388110.1451120.0506640.08854784.2396930.0193960.811036
66cuda=2, seed=29, train=False, train_and_eval=T...MF0.000030.1activity0.0NaNNaN0.0755560.075556...0.0461040.0727160.6340090.0394690.1529660.0518900.09544877.4853040.0228330.822568
\n", + "

6 rows × 36 columns

\n", + "
" + ], + "text/plain": [ + " args model_name lr \\\n", + "1 cuda=2, seed=29, train=False, train_and_eval=T... MF 0.00003 \n", + "41 cuda=2, seed=29, train=False, train_and_eval=T... MF 0.00003 \n", + "44 cuda=2, seed=29, train=False, train_and_eval=T... MF 0.00003 \n", + "56 cuda=2, seed=29, train=False, train_and_eval=T... MF 0.00003 \n", + "57 cuda=2, seed=29, train=False, train_and_eval=T... MF 0.00003 \n", + "66 cuda=2, seed=29, train=False, train_and_eval=T... MF 0.00003 \n", + "\n", + " l2_coef fair_group_feature fair_lambda fair_noise_sigma n_local_step \\\n", + "1 0.1 activity 0.5 NaN NaN \n", + "41 0.1 activity 0.3 NaN NaN \n", + "44 0.1 activity 0.1 NaN NaN \n", + "56 0.1 activity -0.1 NaN NaN \n", + "57 0.1 activity 1.0 NaN NaN \n", + "66 0.1 activity 0.0 NaN NaN \n", + "\n", + " HR@1 P@1 ... F1@20 NDCG@20 HR@50 P@50 \\\n", + "1 0.068582 0.068582 ... 0.046166 0.071368 0.632846 0.039851 \n", + "41 0.073065 0.073065 ... 0.046049 0.071955 0.631020 0.039628 \n", + "44 0.075888 0.075888 ... 0.046232 0.072910 0.632680 0.039628 \n", + "56 0.075556 0.075556 ... 0.046070 0.072908 0.635005 0.039303 \n", + "57 0.058452 0.058452 ... 0.043155 0.065792 0.622551 0.038811 \n", + "66 0.075556 0.075556 ... 0.046104 0.072716 0.634009 0.039469 \n", + "\n", + " RECALL@50 F1@50 NDCG@50 MR MRR AUC \n", + "1 0.155009 0.052453 0.094718 76.159751 0.021771 0.826675 \n", + "41 0.154345 0.052132 0.095170 76.568376 0.022294 0.825078 \n", + "44 0.153447 0.052088 0.095697 77.132306 0.022828 0.823499 \n", + "56 0.152160 0.051747 0.095368 77.756452 0.022846 0.821496 \n", + "57 0.145112 0.050664 0.088547 84.239693 0.019396 0.811036 \n", + "66 0.152966 0.051890 0.095448 77.485304 0.022833 0.822568 \n", + "\n", + "[6 rows x 36 columns]" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sub_df = df[df['model_name']=='MF']\n", + "sub_df = sub_df[sub_df['fair_group_feature']=='activity']\n", + "sub_df = sub_df[df['l2_coef']==0.1]\n", + "sub_df" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "572552ac", "metadata": {}, "outputs": [], - "source": [] + "source": [ + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "def plot_recommendation_over_lambda(df, metrics, ncol = 3):\n", + " '''\n", + " @input:\n", + " - stats: {field_name: {key: [values]}}\n", + " - features: [field_name]\n", + " - ncol: number of subplots in each row\n", + " '''\n", + " assert ncol > 0\n", + " N = len(metrics)\n", + " X,indices = np.array(df['fair_lambda']),np.argsort(df['fair_lambda'])\n", + " plt.figure(figsize = (16, 4*((N-1)//ncol+1)))\n", + " for i,field in enumerate(metrics):\n", + " plt.subplot((N-1)//ncol+1,ncol,i+1)\n", + " Y = np.array(df[field])\n", + " Y = [Y[i] for i in indices]\n", + " plt.plot(X,Y)\n", + " plt.title(field)\n", + " scale = 1e-7 + np.max(Y) - np.min(Y)\n", + " plt.ylim(np.min(Y) - scale * 0.05, np.max(Y) + scale * 0.05)\n", + " plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "1113794e", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7UAAAHiCAYAAAA3TetTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAADQEklEQVR4nOzdd3hVVfbw8e9KL5SQQqihhd4h0i2ABSs69t5Rx/Yb35lRx3Gc0XHGGadhFzsKoqOijl1RREBK6F2S0AKhJCEhhbSb9f5xTuASEwik3NxkfZ4nT25Ou+so2Tnr7r3XFlXFGGOMMcYYY4zxRwG+DsAYY4wxxhhjjDlRltQaY4wxxhhjjPFbltQaY4wxxhhjjPFbltQaY4wxxhhjjPFbltQaY4wxxhhjjPFbltQaY4wxxhhjjPFbltQaY4wxxhhjjPFbltQaY4wxxhhjjPFbltQanxORrSJyUETyvb46iMg0EdkkIuUickM153YUkaki8pOI7HeP/5eIxFc6boCIfCkimSKiVVwnWkRmi0iBiGwTkavq6XaNMU2I237tEZFIr223iMhc97W67Uq+iGSJyBwRubyK65wlIvNEJE9E9onI9yJygdf+9iLykojscq+VJiKvi0ifStcJEpHbRGSB297tFJEPRWR8Fe951DZWRH4lIrtFJFdEXhWR0Nr91zLGNAcN9Fx3g4h4Kr3HaV777bmumbGk1jQW56tqC6+vXcAq4JfA8qpOEJGxwHxgD3AmEAOcCmwHForIEK/DS4F3gZuref9ngRIgHrgaeF5E+tf6rowxzUEQcO9R9g9W1RZAb+B14BkReaRip4hcAvwXmA50wmmH/gCc7+6PARYCEcDJQEtgGPA9cIbXdSKBr4HTgf8HdAZ6AM8BT4jIHyrFVW0bKyJnAQ8AE4GuQHfgT8f472CMMRXq+7kO4MdK7zHXa5891zUzQb4OwJjqqOqzACJSVHmf+5D3FjBZVVd77doN/EdEvgfeFJGhqlqmqpuATSKSWMW1IoGLgQGqmg/MF5GPgWtxHuqMMeZongR+KyLPqWpOdQepaiZOu3QQeEtEngGygX8Bj6nqy16Hf+9+AfwKOABcq6rl7rYc4LVKb/E08IOqVk5ev3LbxG9EZK6qznPjqbaNBa4HXlHVde4xjwEzsDbRGHOC6vK57mjvY891zZP11Bp/dRcwTVVXi8hpIrLOHY73/0TkK1VdASwCJtXgWr0Aj6r+5LVtFWCf6BljaiIZmAv8uobHf4TzofIInN7bzsB7Rzn+dGC2V0L7MyLSzb3eH0Ukyh12t1tEZonI/4B2OA9z99Qwxv447WCFVUC8++BpjDF17USe64a60yx+EpGHRaSis86e65ohS2pNY/GhiOS4Xx/W4PgzgFkiIsBMnIfJXkAbIMQ9ZiXQp8qzj9QCyK20LRdniJ8xxtTEH4C7RSTuWAeqaimQCUTjDK8DyDjKKbE4vRUAiMgFbluZJyJfuZsnAu+7ie+DOD27XXB6kScAQs3bRPh5u1jx2tpFY0xN1Pdz3TxgANAWp1f2SuA37j57rmuGLKk1jcWFqhrlfl1Yg+PbAjuBOCBIVT93h6PM9Dqms3vMseQDrSptawXk1eBcY4xBVdcCn1CDoW0iEozTdmUDWe7m9kc5Jct7v6p+rKpROMOSKx72KtpEgIHAO6parKrLgHXu9pq2ifDzdrHitbWLxpiaqNfnOlVNU9UtqlquqmuAR4FL3OPsua4ZsqTW+KtMnIe8fUCZiJztDju5CkBEJgLnAp/V4Fo/AUEi0tNr22AOPwgaY0xNPALcCnQ8xnGTgTJgCbAJ2IHT01CdOcCFInK0v9kVbSLAGuAyEQkVkWE4Q+7a48y5ffFYN+Fah9MOVhgM7FHVrGqON8aY2qjtc53ijEgBe65rliypNY2WiISISBhOIxUsImFeD3XfApeoquJUtfsnkAIU41T7vB3nU8Jc91riXivE/TmsYnkKVS0APgAeFZFIt/reZODNhrpXY4z/U9UU4B2qmbfqLjFxNU5Vzr+papbbht0HPCwiN4pIKxEJEJFxIjLNPfVfOEPw3hSRHm571hIY4nX574CL3KF7fwVa41QM/QPwJfAf4CVV/cArnqO1sdOBm0Wkn4i0AX6PU7nZGGNOSB0/150t7jI/4ixt9jBOvQJ7rmumxPm3Y4zviMhW4BZV/abS9rk4pdy9jVfVuW5Dtgg4R1U3VHHNIO/qeCLSFdhS6bBtqtrV3R8NvIozpyMLeEBVZ2KMMUdRuf0Skc7AZmCRqp4mzrrYhTi9CCU4xUpeqty+iMgk4CFgKHAQp0fhSVX91N3fAXgMOAdnXtgenKUvnqhoA0VkJrBWVf9SRZxHtInutrlU08a6++8D7gfCgfeB21W1+Dj/ExljmpkGeq77B0414xY47eFbOFXkS9399lzXzFhSa/yWiIzHWdLiCZxP5DJxhtn9GViiqo/7MDxjjGlQItIK+ALYAPzb/d4GuBGniErS0SooG2OML9lznakNS2qNXxOR7sDvcJa8aAOk4gyRe+5Y65gZY0xT406ruBNn+F53nMIonwN/UdVtvozNGGOOxZ7rzImypNYYY4wxxhhjjN+yQlHGGGOMMcYYY/yWJbXGGGOMMcYYY/xWkK8DqAuxsbHatWtXX4dhjGlkli1blqmqcb6Oo65YW2eMqUpTa+vA2jtjzM8dra1rEklt165dSU5O9nUYxphGRkSaVGEca+uMMVWprq1zl4qaCgQCL6vqE5X2i7v/HJylp25Q1eXuvq04hcY8QJmqJrnbnwTOx1miKhW4UVVz3KXzNgCb3MsvUtXb3XOG4xT7CQc+A+7VYxR1sfbOGFPZ0Z7rbPixMcYYY0wTIyKBwLPA2UA/4EoR6VfpsLOBnu7XFOD5SvvHq+qQioTW9TUwQFUHAT8BD3rtS3WPH1KR0Lqed69f8V6Tand3xhhzJEtqjTHGGGOanhFAiqqmqWoJMAuYXOmYycB0dSwCokSk/dEuqqpfeS2tsgjodLTj3eu1UtUf3d7Z6cCFx387xhhTPUtqjTHGGGOano7ADq+f091tNT1Gga9EZJmITKnmPW7CWQe5QjcRWSEi34vIyV7vkX6MOAAQkSkikiwiyfv27avuvowx5mcsqTXGmGMQkUkisklEUkTkgSr2i4g85e5fLSLDvPZFich7IrJRRDaIyGivfXe7110nIn9vqPsxxjQLUsW2yvNYj3bMWFUdhjNE+U4ROeWIE0UeAsqAGe6mDCBBVYcC9wEzRaRVDeNwNqpOU9UkVU2Ki2tSda+MMfWsSRSKMsaY+uI1L+0MnB6GpSLysaqu9zrMe17aSJz5YyPdfVOBL1T1EhEJASLc647HGfo3SFWLRaRtg9yQMaa5SAc6e/3cCdhV02NUteL7XhGZjTOceR6AiFwPnAdMrCj4pKrFQLH7epmIpAK93PfoVNV7GGNMXbGeWtNslXrKfR2C8Q8nPC/N7aU4BXgFQFVLVDXHPecO4An3QRBV3dsA92KaIVXlGIVmTdO0FOgpIt3cD9SuAD6udMzHwHXuaJNRQK6qZohIpIi0BBCRSOBMYK378yTgfuACVS2suJCIxLkfAiIi3XE+5EtT1QwgT0RGudWWrwM+qsf7NsY0Q9ZTa5odVeW9Zen86+ufmDVlFF1iIn0dkmncqppzNrIGx3TEGZq3D3hNRAYDy3CWsijA6cE4WUQeB4qAX6vq0vq5BdPcqCprdx7g0zUZfLYmg39dNpikrtG+Dss0IFUtE5G7gC9xlvR5VVXXicjt7v4XcJbXOQdIwVnS50b39HhgtpODEgTMVNUv3H3PAKHA1+7+iqV7TgEeFZEynGWAblfVbPecOzi8pM/nHDkP1xjThKkq2QUlbMsuZHtWIduzC9mWVciO7EK6xkbw90sG18n7WFJrmpXNe/J46MO1LNmSTVKXNnjKrffCHFNt5qUFAcOAu1V1sYhMBR4AHnb3tQFGAScB74pI98prN7oFWqYAJCQk1OY+TBOnqqzZmcunazL4fM1utmcXEhQgjEmMxU0+TDOjqp/hJK7e217weq3AnVWclwZU+aSpqonVbH8feL+afcnAgBoHbozxK6WecnblHGSbm7Q6iWsB27MPsiO7kPzisirP69ehVZ3FYEmtaRYOlnh4+tvNTJuXRouwIP528UAuHd6ZgAB70DPHVJt5aQqkq+pid/t7OEltxTkfuA+VS0SkHIjF6dk9RFWnAdMAkpKS7FMYcwRVZXV6Lp+tyeCztRnsyD5IUIAwNjGWu8Yncmb/eKIiQnwdpjHGGD+XV1R6qId1m1dv67bsAnblFB3RURQSFEBCdARdoiMY2S2aLjERJERHEBwYwKOfrCd1Xz6/O7svt5zcrc7is6TWNHnfbdzLwx+tJX3/QS4Z3okHz+5DTItQX4dl/MeheWnATpx5aVdVOuZj4C4RmYUzNDnXnUeGiOwQkd6qugmYCFQUmPoQmADMFZFeQAiQWd83Y/yfqrKqIpFdk0H6fieRHdczlrsn9OTMfpbIGmOMOT7l5cqevCK2ZxUeOVQ4u5DtWQXsLyw94vjoyBASoiMY2rkNFw6JoLObxHaJiaRty9CfdRwt27af295cRlGph1evP4nxfeq2PqYltabJ2p1bxKOfrOOzNbtJbNuCWVNGMap7jK/DMn6mlvPSAO4GZriFWtK89r0KvCoia4ES4PrKQ4+NqaCqrNyR4yayu9mZc5DgQGFcYiz3TuzJmf3a0Toi2NdhGmOMacSKSj3syD48r9V7qPCO/QcpKTtcRDUwQOgYFU5CdARnD2xPl2intzXB7XVtGVbzvzkfLE/ngffX0K51GG/fOpKe8S3r/N4sqTVNTpmnnOk/buOfX22irFz5zVm9ufXk7oQEWbFvc2JOdF6au28lkFTF9hLgmjoN1DQpqsqKHTl8tjqDz9ceTmRP7hnHr87oxRl94y2RNcYYc0hFUabtlRNX9/vuA0VHHB8ZEkhCTCQ927bk9L7xTm+rm7R2iAonOLB2z86ecuXJLzfxwvepjOoezfNXD6dNZP2MJLKk1jQpq3bk8NCHa1i78wCn9orjsckDSIiJ8HVYxhhTI+XlbiK7JoPP12SwK7eIkMAATu4Zy31n9OL0fvG0DrdE1hhjmqsyTzm7corYll1weF6rV69r5aJM7VqFkRAdwbiesc48VzdpTYiOIDoypN4KCeYXl/F/s1bwzYa9XD0ygT9e0L/WSfLRWFJrmoQDRaX848tNvLloG21bhvLc1cM4e0A7q/hpjGn0nER2P5+u3s3nazPIcBPZU3rF8uuzenN6v3haHccwL2OMMf4tr6j0iB5W7zmuO3MO/qwoU+c24XSJiWREt+gjEtfO0RGEBQc2ePw7sgu55Y1kUvbl89jk/lw7umu9v6cltcavqSr/W53BY5+sJyu/mOtHd+X/ndnruMb5G2NMQysvV5Zv339o+Z3dByoS2Th+O6k3E/taImuMMU1VebmyN6/YXfbm53NcswtKjji+TUQwCTGRDO4cxQWDOxya19olJoL4lmGNajWPRWlZ3PHWMjzlyhs3jmBcz9gGeV9Lao3f2ppZwMMfreWHzZkM6tSaV68/iYGdWvs6LGOMqVJ5ubJs+34+XZ3BF2vdRDYogFN6xnH/2ZbIGmNMU1JU6iF9/+GE1Xs5nB3ZhRRXKsrUIcoZJnxW/3ZHDBFOiInwm78Nby/ZzsMfriUhJoJXrj+JbrGRDfbeltQav1Nc5uHF79N45rsUQgMDeHRyf64e2YXARvQplTHGgJPIJm/b78yRXZvBngPFhAQFcGqvOB4Y2IeJfdvayBJjjPFDqsr+wtLDva2VhgpXV5SpR1wkE/q09VoCp26KMvlSmaecP3+6gdcXbuWUXnE8feXQBq//YEmt8SsLUzL5/UdrSdtXwHmD2vPwef2IbxXm67CMMeYQT7mSvDXbTWR3szfPSWRP6xXHuYPaM6GPJbLGGOMPKooyOclqweHE1e11zatUlCm+VSgJ0RGMTfQqyuT2usbUY1EmX8otLOWut5fzw+ZMbhrbjd+d04cgHyToNUpqRWQSMBVnjcaXVfWJSvvF3X8OzhqNN6jqchEJA+YBoe57vaeqj3iddzdwF1AGfKqqv3W3PwjcDHiAe1T1y1rdpfF7mfnFPP7pBmav2ElCdARv3DSCU3vF+TosY0wd8JQr03/cyu4DRbQICSIiNIgWoYFEhATRIjSIyNAgIkICaREaRESo8z08OLBRPRx4ypWlXonsvrxiQoMCOK13HOcMbM/EvvG0CLXPkY0xprHJLy5zk9WCI+a1bs8uZOf+g5R5F2UKDKBTdDhdoiMY0S36UG9rQkwEndtEEB7S8EWZfCltXz63vJHMjv2F/O3igVx+UoLPYjnmX1gRCQSeBc4A0oGlIvKxqq73OuxsoKf7NRJ43v1eDExQ1XwRCQbmi8jnqrpIRMYDk4FBqlosIm3d9+sHXAH0BzoA34hIL1X11NE9Gz9SXq7MWrqDJz7fwMFSD3dPSOTO8Yk+qeRmjKl7JWXl/OrdlXy6OoOQoIAjFn4/GhGIDAkiMjTQ/X6M16FBx9x3vFMYPOXKki1OIvvFusOJ7PjebTnH7ZG1RNYYY3yrvFzZl1/szmstODSvtWLIcFalokxREcF0iY5gUKcozhvUni7RkYfWb23XqnEVZfKlHzbv484ZywkKDGDGLaMY0S3ap/HU5K/tCCBFVdMARGQWTjLqndROBqarqgKLRCRKRNqragaQ7x4T7H5VfNxxB/CEqhYDqOper2vNcrdvEZEUN4YfT/QmjX/akHGAh2avYfn2HEZ1j+bPFw4ksW0LX4dljKkjB0s83P7WMr7/aR8Pnt2H207tQamnnMJiDwUlZRQUl5FfXEZhiYf8YufnghIPBcVlFBaXkV/scbe5+4o97D5QdORxJTX/PDQsOMDpDa5IeEOchLeF21PsnQTvyjnIF2v3kJlfTFiwm8gOdBLZSEtkjTGmQTlFmQ6y3R0i7L0EzvZKRZkCBDpEhdMlJoIz+8eTEB15xBI4thb40akqbyzcymOfbiAxrgUvX59E5+gIX4dVo6S2I7DD6+d0nF7YYx3TEchwe3qXAYnAs6q62D2mF3CyiDwOFAG/VtWl7nmLqriWaSYKisuYOmczr8zfQlR4MP+6bDAXDe3YqIYaGmNqJ/dgKTe/vpTl2/fzxC8GcsUIZ8hScGAArSMCaB1RNw8V5eVKYanncIJc7HET5TI3UfZ4vT6cDBe4CfP+whLS9xce+rmgpIxydRLgCX2cRHZ8b0tkjTGmPqkqOYWlXj2sRw4V3n2gCD08SpiIkEASoiPoFhvJab3jSIiJdOa4RjtFmUKC/Lcoky+VlJXzyMfreHvJdk7vG89/rhjSaEYk1SSKqjIJrekx7rDhISISBcwWkQGqutZ97zbAKOAk4F0R6V7D90NEpgBTABISfDd+29Str9bt5o8fr2NXbhFXjujM/ZP6EBUR4uuwjDF1aF9eMde9uoSUvXk8c9UwzhnYvt7eKyBAaOH2tsbXwfVUlaLScgICIDTIpkEYY0xdKfOUk5FbdChZ3ZbtDhXOcnpdKxdlatsylC4xEYzuEUOX6EgSYsIP9bo21aJMvpRdUMIdby1j8ZZs7jitB785s3ejGopdk6Q2Hejs9XMnYNfxHqOqOSIyF5gErHXP+cAdsrxERMqB2Bq+H6o6DZgGkJSU9LOk1/iX9P2F/PHj9XyzYQ992rXk6auGMryLb8fmG2Pq3o7sQq59ZTF7DhTzyvUncYqfFXwTkWZXCMQYY+pKQXGZVw/rkb2t1RVlSoiOIKlLG3deq5O0NseiTL700548bn5jKXsOFPPvywdz0dBOvg7pZ2qS1C4FeopIN2AnThGnqyod8zFwlzvfdiSQq6oZIhIHlLoJbThwOvA395wPgQnAXBHpBYQAme61ZorIv3AKRfUEltTiHk0jVuop57UFW/j315sBePDsPtw0rptfr9VljKna5j15XPPKYg6WeHjrlpEM79LG1yEZ06Sd6OoV7r6tQB7OShRlqprkbn8SOB8oAVKBG93nvDOAJ3Ce50qA36jqt+45c4H2wEH3rc/0qqVimhBVZW9e8aFlb7a7a7huy3aWwMnM/3lRpoToCAZ2bM25A9u7c1sjSXCLMh1vAT9T9+Zs2MO9s1YSHhLIO1NGMTShcf7tPmZSq6plInIX8CVOo/iqqq4Tkdvd/S8An+E0iCk4jeKN7untgTfcebUBwLuq+om771XgVRFZi9P4Xe/22q4TkXdxClGVAXda5eOmadm2bB6avZaNu/M4vW9b/nhBfzq18f1Ec2NM3Vu1I4frX1tCcGAA794+mj7tWvk6JGOatFquXlFhvKpmVrr018CD7vPh34AHgftxOibOV9VdIjIA57nRuybK1aqaXHd3aHyluMwtyuRWE96e7RZocntci0qPLMrUvrVTlOn0vvEkxEQ4Q4XdZXCsKFPjpapMm5fGE19spH+HVrx0XRLtW4f7Oqxq1Whmr6p+hpO4em97weu1AndWcd5qYGg11ywBrqlm3+PA4zWJzfifnMIS/vbFRt5esoMOrcOYdu1wzuzfztdhGWPqycLUTG59I5noFiG8dfNIusRE+jokY5qD2q5eUSVV/crrx0XAJe72FV7b1wFhIhJascqF8R8VRZm8e1i3uYWZdmQXklGpKFN4cCBdYiLoGhPJKT3jnOHB7lDhjlaUyS8Vl3n43QdreX95OucObM8/Lh3c6Id7N45yVaZZUFVmr9jJ459uIOdgKVNO6c69E3ta1VBjmrCv1u3mrrdX0DUmgjdvHkl8qzBfh2RMc1Gr1StwinR+JSIKvOjWMqnsJuCdKrZfDKyolNC+JiIe4H3gz24ifQQrAtpwKooyVfSuOnNbCw69zis6sihTXMtQukRHMKp7jNPb6i6BkxAdSWwLK8rUlOzNK+L2N5exfHsOvzq9F/dMTPSL/7+WTZgGkbI3n99/uIZFadkMTYjizQsH0q+DDT80/qGW89KigJeBATgPiTep6o8i8kfgVmCfe5nfuaNimoz3l6Xz2/dXM6Bja16/4STaRFolc2MaUK1WrwDGukOJ2wJfi8hGVZ136ESRh3Cmic044oIi/XHqp5zptflqVd0pIi1xktprgek/e2MrAlqnCorLDiWpO9xqwtuzD7I9q4D0SkWZggOFzm2cHtZhCW3chNXpbe0cHU5EiKUMzcHanblMmZ5MdmEJz11dv6sT1DX7F2rqVVGph2e/S+GF71MJDw7kLxcN5IqTOjeqEuDGHE0dzEubCnyhqpeISAjgPXH836r6j/q+B194df4WHv1kPWMTY5h2bZKNyDCm4dVq9QpVrfi+V0Rm4wxnngcgItcD5wETvXtcRaQTMBu4TlVTK7ar6k73e56IzHSv9bOk1hwfVWVfXrGzdmvWkUOFt1dRlKl1uFOUqX/H1pwzsP2hea0J0RG0bx1uRZmauc/XZHDfu6uIigjmvdvHMKBja1+HdFzsKcPUm3k/7ePhj9ayLauQi4Z25Hfn9CWuZaivwzLmeJ3wvDSgADgFuAEO1RI48imjiVFV/v3NZp6as5lJ/dsx9cohtp6rMb5Rm9UrIoEANwmNxOl1fRQOjVy5HzhVVQsrLuSOSvkUp4jUAq/tQUCUqmaKSDBOMvxNvdxxE3SoKFNF4uq1HE7lokwi0KG1swTO6X3j3XmthwsztY6wokzm51SVp79N4V9f/8TQhChevHY4bVv631QhS2pNndt7oIhHP1nPJ6sz6B4bycxbRjImMdbXYRlzomozL60MZ3jxayIyGFgG3KuqBe5xd4nIdUAy8P9UdX/lN/enOWbl5cqjn6zn9YVbuXR4J/76i4EE2fJcxvhELVeviAdmu/PogoCZqvqFu+8ZIBRnSDLAIlW9HbgLSAQeFpGH3WPPxPlw70s3oQ3ESWhfqrcb90M5hSVe81orel0L2JF9kF25B39WlKliWPDJblGmiqHCndpEWFEmc1wOlnj4zXur+GR1Br8Y2pG//GIgYcH++UG0JbWmznjKlRmLt/HkF5so9pRz3xm9uO3U7tZLY/xdbealBQHDgLtVdbGITAUeAB7GGaL8mHvcY8A/cYquHHkRP5ljVuop57fvrWb2ip3cMq4bD53b1y8KSxjTlNVi9Yo0YHA110ysZvufgT9XE8rwGobcJHnKlV05B915rUcmrtuzCjlQqShTbItQusREMLJb9KHe1oqhwnEtQq1tNXVid24Rt05PZu2uXB44uw+3ndLdr/9tWVLbjJSUlXOw1MPBEo/X9zIOlpRTWFLGwVIPRaUeCt39RSWHXx86x91/6LiSI88BOLlnLI9NHkDXWFu2wzQJtZmXpkC6qi52t7+Hk9SiqnsqDhaRl4BP8FNFpR7umrmcbzbs5ddn9uLO8f5RKdEYY+pKYUmlokxec1zT9xdS6jmyKFOnNk6iOrRzG68lcJxtVpTJ1LeVO3KYMj2ZguIyXro2idP7xfs6pFqz35pGLmVvHtuzCzlYUpGQlh1KLI+WeFa8LixxjjlY6jmiyl1NiEBEcCDhIYGEBQcSERJIuPtzTGQIndoEEh4cRHhIABEhQYQFB9K/QyvO7BdvD7SmKTnheWkAIrJDRHqr6iZgIu5c3EprQV4ErK3/W6l7eUWl3PJGMku2ZvPYhQO4dlQXX4dkjDF1TlXZl19caV7r4eVwMvOPXI63VVgQXWIi6de+FZMGtHOGDLu9rVaUyfjSRyt38pv3VtO2ZShv3jyW3u1a+jqkOmFJbSP27cY93PR6crX7Q4ICjkg0w4OdrxahQcS1CHX2hRxOPJ3jggh3E9Qw97yqrhEeEkhoUIAlp6bZq+W8NIC7gRlu5eM0r31/F5EhOL25W4Hb6v9u6lZWfjHXv7aEjRl5/OfyIUwe0tHXIRljzAkrKSsnfb93FeHDQ4W3ZxceGpEGh4sydY4OZ2KftoeqCFf0tkZF2BJmpnEpL1f++fUmnv0ulRHdonn+6mHEtGg6BVwtqW2kdmQX8qt3VtGvfSsev2gAESFBhxLRiu/2KZ8xDeNE56W5+1YCSVVsv7Zuo2xYu3IOcs0ri9m5/yDTrhvOhD7+P3TJGNP05RaWuuu1ukmrV69r5aJMYcEBbhGmSMb1jD00r7VLdAQd24RbzRDjNwqKy/i/d1by9fo9XHFSZx6dPKDJFRWzpLYRKi7zcOfM5ZSr8vw1w+gSY3NTjTGNR9q+fK55eTF5RWW8efNIRnSL9nVIxhgDOEWZMnK9lsDJPrK3Nfdg6RHHx7YIISE6ghEVRZm8elvjWlpRJuP/0vcXcssbyfy0J49Hzu/HDWO6Nsl/15bUNkJ//mQDq9NzmXbtcEtojTGNytqduVz/6hIA3p4yyu8WZzfGNC0FxWU8NWczG3c7NUgqF2UKChA6tQknISaSwZ1bO2u2ei2DExlqj8Km6Vq6NZvb31xGiaec128cwSm94nwdUr2x3+RG5qOVO3lz0TZuO6U7Z/Zv5+twjDHmkCVbsrn59aW0Cg/mzZtH0D2uha9DMsY0czkHS5m9Yid784qr3N8+Koz4VmFEhQcTERKEiDN3Nq+ojKz8EgIDxG/X5TTmaN5duoOHPlxDpzYRvHx9Ej2a+N9sS2obkc178njg/TWM6BrNr8/q7etwjDHmkG837uGOt5bTqU04b948kg5R4b4OyRhj6BgVzpKHTqeguIy9ecXsOVDk9eX8vPdAMSt35LBnXRHFZeU/u0br8GDiW4US3yrM/fJ+7fwc2yKU4MCmNQfRNE2ecuWvn23g5flbGJcYy7NXDaN1RLCvw6p3ltQ2EgXFZdz+1jIiQwN5+qqh1nAaYxqNj1bu5P+9u4q+7Vvx+o0nNalqicaYpiEyNIhuoUF0i61+2paqcuBgGXvyitid6yS+FYnw7twi9uQVk7I3k715xXgqLYMoAjGRobRrHUp8yzDausluOzfxbesmwtERIQRYIU/jIweKSrl75gq+/2kfN4zpyu/P7UtQM8kpLKltBFSVBz5Yw5bMAt66ZSTxrcJ8HZIxxgDw5qJt/OGjtYzoGs3L1yfRMqzpf9prjGmaRITWEcG0jgimV3z1a3N6ypWsgmL2Hig+1OO7+0ARe90e4IzcIlbuyCGroORn5wYHCm1bukluyzDatT78uqLXt2tspHVemDq3NbOAm99YyrasQh6/aABXj2xe68ZbUtsIvLVoG/9btYvfnNWbMT1ifR2OMcagqjz7XQr/+OonTu/blmeuGmbzzowxzUJggJuYtgw7ajG8krJy9uW7ia/b87vHawh0yr58FqRmkldUdsR57VqFcdO4rlw5IsE+KDR1YmFKJnfMWI4IvHnzSEb3iPF1SA3OklofW7kjh0c/Wc/43nHccWoPX4djjDGoKo9/6szHuWhoR/5+ySDrVTDGmEpCggLoGBVOx2PUGCgsKTs0v3fn/oO8tyydv3y2kafnpHDVyARuHNuNdq1tlJ45MW8u2sYfP15H99hIXrn+JBJiInwdkk9YUutD+wtKuHPGctq2DOPflw+xORjGGJ8r85Tz4Adr+O+ydG4Y05U/nNfP2iZjjKmFiJAgusUenu978fBOrE7PYdq8NF76IY1X5m/hgiEdmHJKd/q0a+XjaI2/KPWU8+j/1vPmom1M6NOWqVcMadY9/zX66F1EJonIJhFJEZEHqtgvIvKUu3+1iAxzt4eJyBIRWSUi60TkT17n/FFEdorISvfrHHd7VxE56LX9hbq62cakvFz51bsr2ZdXzPPXDCMqIsTXIRljmrniMg93zVzBf5elc+/EnjxyviW0xhhTHwZ1iuKZq4bx/W/Gc82oLny+ZjeT/vMD17+6hIUpmajqsS9imq2cwhKuf3XJoWVAX7rOal4cs6dWRAKBZ4EzgHRgqYh8rKrrvQ47G+jpfo0Enne/FwMTVDVfRIKB+SLyuaoucs/7t6r+o4q3TVXVISd6U/7gubkpzN20j8cuHMCgTlG+DscY08wVFJcx5c1kFqRk8Yfz+nHTuG6+DskYY5q8ztER/PGC/tw7sSdvLdrGGz9u5aqXFzOgYyumnNKDcwa0azbVa03NpOzN4+Y3ksnIKeIflw7mkuGdfB1So1CT35IRQIqqpqlqCTALmFzpmMnAdHUsAqJEpL37c757TLD71ew/elqQksm/vv6JyUM6cM3IBF+HY4xp5nIKS7j65cUsSsvmH5cOtoTWGGMaWJvIEO6e2JP590/gLxcNpLDYwz1vr+C0f8zltQVbKCguO/ZFTJP33aa9XPTsQgqKy3h7ykhLaL3UJKntCOzw+jnd3VajY0QkUERWAnuBr1V1sddxd7nDlV8VkTZe27uJyAoR+V5ETq7hvfiF3blF3DtrBd3jWvCXiwYiYkP7jDG+s+dAEZe9+CPrMw7w/NXD7A+kMU3IiU4fc/dtFZE17lSwZK/tT4rIRvf42SIS5bXvQfdam0TkLK/tw91rpbjvZw8/1QgLDuSqkQl8c9+pvHjtcOJbhfGn/61nzBPf8o8vN7Evr9jXIRofUFVe/iGNm19fSqfoCD66axzDu0T7OqxGpSZJbVUNT+Xe1mqPUVWPO5S4EzBCRAa4+58HegBDgAzgn+72DCBBVYcC9wEzReRns+ZFZIqIJItI8r59+2pwG75X6inn7reXU1ji4YVrhhEZanW6jDG+sy2rgIufX8jO/Qd5/caTOLN/O1+HZIypI17Tx84G+gFXiki/Sod5Tx+bgvNs5m28qg5R1SSvbV8DA1R1EPAT8KD7fv2AK4D+wCTgOTcG3OtO8XqvSXVyk01YQIBwVv92vH/HGN6/YzSjukfz7NwUxv7tWx78YDWp+/KPfRHTJBSXebj//dX8+dMNnNmvHe/fMfqYFbebo5oktelAZ6+fOwG7jvcYVc0B5uI2ZKq6x014y4GXcIY5o6rFqprlvl4GpAK9KgelqtNUNUlVk+Li4mpwG7735JebWLp1P3/9xUAS21a/6LcxxtS3DRkHuOSFHykoLmPmraNsjWxjmp4Tnj52tIuq6leqWjEWdhHOM1/FtWa5z3FbgBSczoz2QCtV/VGd6kfTgQvr4gabi+Fdonnx2iTm3HcqlwzvxPvLdzLxn99zyxvJJG/N9nV4ph5l5hdzzcuLeTc5nXsmJPLc1cOICLFOsarUJKldCvQUkW4iEoLzKdzHlY75GLjOHcYyCshV1QwRiasYliIi4cDpwEb3Z+9G8yJgrbs9ruKTPRHpjvOJXtqJ3mBj8cXa3Uybl8a1o7oweUjl0dvGGNNwlm3bz+Uv/kigCO/eNprBnaN8HZIxpu7VavoYzoi7r0RkmYhMqeY9bgI+P8a1OrqvjxYH4J+j8BpSxdS1hQ9M4J4JiSRvy+aSF37kF88t4Iu1GXjKm33ZmiZlQ8YBJj+zgNXpuTx95VDuO7O3rUhwFMdMat1P4+4CvgQ2AO+q6joRuV1EbncP+wwn8UzB6XX9pbu9PfCdiKzGSY6/VtVP3H1/d+dXrAbGA79yt58CrBaRVcB7wO2q6tcfQ23NLOA3/13F4E6t+f15fX0djjHmONVyXlqUiLznzkHbICKjK537axFREWmQrtJ5P+3jmpcXEx0Zwn9vH03PeBs1YkwTVavpY8BYVR2GM0T5ThE55YgTRR4CyoAZx7hWTeJwNvrhKDxfiG0Ryn1n9mbhAxP40wX92ZdfzO1vLef0f33PW4u2UVTq8XWIppa+XLebi59fSFl5Of+9fTTnD+7g65AavRr1X6vqZziJq/e2F7xeK3BnFeetBoZWc81rq9n+PvB+TeLyB0WlHu6YsZyAAOHZq4cRGhR47JOMMY1GLZc1A5gKfKGql7ijXSK8rt3Zve72er8R4LM1Gdw7awWJbVsy/aYRxLUMbYi3Ncb4Rq2mj6lqxfe9IjIbZzjzPAARuR44D5iohxdUre5a6RweolxdHOYERIQEcf2YrlwzqgtfrN3Ni/NS+f2Ha/n31z9x3eiuXDu6C9GRIb4O0xwHVeW5uak8+eUmBndqzbTrkohvFebrsPyCLXxVzx75aB0bMg7wn8uH0KlNxLFPMMY0Nic8L80tcncK8AqAqpa49QUq/Bv4LQ2w1NmsJdu5a+ZyBneKYtaUUZbQGtP01Wb6WKSItAQQkUjgTA5PE5sE3A9coKqFla51hYiEikg3nA/5lqhqBpAnIqPcqsfXAR/V2103Q4EBwrmD2vPRnWOZNWUUgztH8e9vfmLME3P4w0dr2Z5VeOyLGJ8rKvXwf++s5MkvN3HB4A68c9toS2iPg800rkfvJu/gneQd3DU+kfF92vo6HGPMialqntjIGhzTEWdo3j7gNREZDCwD7lXVAhG5ANipqquOtrqFO5dtCkBCwomta/3i96n89fONnNorjheuGU54iI0YMaapU9UyEamYPhYIvFoxfczd/wLOKLxzcKaPFQI3uqfHA7PdtikImKmqX7j7ngFCga/d/YtU9Xb32u8C63HavjtVtWIc7B3A60A4zhzcinm4pg6JCKO6xzCqeww/7cnjpXlpvL1kO28t2sbZA9oz5ZTuVkOhkdp7oIhb31zGqh05/Oas3vzytB627OdxsqS2nqzfdYCHP1zLmB4x/OqMnxVvNsb4j9rMSwsChgF3q+piEZkKPCAifwUewun9OCpVnQZMA0hKSjquHl1V5e9fbuL5uamcN6g9/7psCCFBNkDHmOaiFtPH0oDB1Vwz8Sjv9zjweBXbk4EBPz/D1Jde8S158tLB/Pqs3ry2YCszFm/j0zUZjOwWzW2ndue0Xm2t6FAjsSY9l1unJ3OgqJQXrx3OWba83gmxp5t6cKColF/OWEbr8GCmXjGUQGs0jPFntZmXlg6kq+pid/t7OEluD6AbsEpEtrrHLxeROvtL5ilXHvpwLc/PTeWypE5MvWKoJbTGGNPMxLcK44Gz+/DjgxP5/bl92ZFdyE2vJ3PWf+bxbvIOisusqJQv/W/VLi59cSGBAcJ7t4+xhLYWrKe2jqkq97+3mh37D/L2rTZvzZgm4NC8NGAnzry0qyod8zFwl4jMwhmanOvOI0NEdohIb1XdBEwE1qvqGuDQnAQ3sU1S1cy6CvqHzfuYudipP/Vucjqfr9lNTIsQoiNDiI4MJfbQ6xBiWoQQExl66HV0ZIgVtTPGmCakRWgQt5zcnevHdOXT1Rm8OC+N3763mn98uYkbxnbl6pFdaB0e7Oswm43ycuU/3/zEU9+mkNSlDS9cO5zYFpYz1IYltXXslflb+Hztbn53Th9GdIv2dTjGmFqq5bw0gLuBGW6hlrRK++rNmB6xvHxdEnvyisjKLyG7oISsghKyC4pJ31/IqvQc9heUUFbNuoYtQ4OIdhPcmEg36W3hvHaS39BDr6MjQwgLtiTYGGMau+DAAC4c2pHJQzowPyWTafPS+PsXm3j22xSuGJHATeO60TEq3NdhNmmFJWXc984qvli3m0uHd+LPFw2wD5LrgCW1dSh5azZPfL6RM/vFc+vJ3X0djjGmjpzovDR330og6RjX71rrICsJCQrg9H7xRz1GVTlwsIzMgmIn6a1IfvOL3QS4hKyCYtL3H2R1ei7ZR0mCW4QGHUpwY716hGO8en+9E2NLgo0xxndEhJN7xnFyzzjW7crlpXlpvL5wK28s3Mp5g9oz5ZQe9OvQytdhNjk7cw5y6xvJbNx9gN+f25ebx3WzglB1xJLaOpKZX8xdM1fQsU04T1462P6BGmMaPRGhdUQwrSOC6RF37OMrkuCsiiT4UCLslQTnl7Azp4g1O50kuNRTdRIcGRLo9gSHElvR49ui6l7h2BahlgQbY0w96d+hNf+5Yii/mdSHV+dvYdaS7Xy4chcn94zl5nHdGJcYS1Cg1WSorWXb9nPbm8soLvXwyg0nMb63rYxSlyyprQOecuX/Zq0ku7CE2b8cY3MSjDFNkncS3L2mSXBRGdnusOes/JIjkt+KZDgjt4h1uw6QVVBcbRIcERJ4eCh0i1Cv14d7hL3nB9uyRcYYc3w6RoXz8Hn9uGdiT2Yu3s5rC7Zww2tLiY4M4az+7Th3YHtGdY+2BPcEvL8snQc/WEP7qDBmTRlJYtuWvg6pybGktg5MnbOZ+SmZ/O3igfTv0NrX4RhjTKMgIrQOD6Z1eDDdYiOPebyqkldcRnZ+RS9wsddc4MPDovccKGJDxgGy8kso8ZRXea3w4MCfD4U+Yk7wkcOjI0Lsz6ExxgC0Dg/mjtN6cNO4rny3cS+frtnNRyt38vaS7W6CG885A9szunuMJbjH4ClX/v7lRl78Po0xPWJ49qphtIkM8XVYTZL9Fa+luZv28vS3m7lkeCcuS+p87BOMMcZUSURoFRZMq7BgutYwCc4vLqt6KHRFYlxQwr78YjbuziOroISSsqqT4LDgAGLcxPdQVehKvcIVQ6GjI0OICAm0aSbGmCYtNCiQSQPaM2lAe4pKPczdtI9P12Tw0cpdvL1kB20igpk0oJ0luNXIKyrl3lkr+XbjXq4ZlcAj5/cn2P4b1RtLamthZ85BfvXOSnrHt+SxyQPsAccYYxqQiNAyLJiWYcF0ialZElxQ4iE7v8QpjuVVFdq7Vzgrv4Sf3CS4uJokODQo4FCCe6yh0NEtQoi0JNgY48fCggOZNKAdkwa0O5TgfrYmg4+9Etyz+rsJbo+YZp+8bc8q5OY3lpKWWcBjk/tz7eiuvg6pybOk9gSVlJVz54zllHqU564eZvO3jDGmkRMRWoQG0SI0iISYiGMer6oUlnjILighs5qh0BXzg1P25pNVUExRadVJcEhQgFMQy3vYs1dxrMrDo1uEBlkSbIxplConuN//5CS4/1u1i1lLnQT3zH7tOHdQ80xwf0zN4pczllGuMP2mEYxNjPV1SM2CJbUn6C+fbWDljhyeu3oY3eNa+DocY4wxdUxEiAwNIjI0iM7Rx06CwVl/8HBBrOqLY6XuzSe7oISDpZ4qrxMSFHDEOsA/7xX2GhbdIoSWlgQbY3wgLDiQs/q346z+ToI77ydniPKnazJ4J3kHURHBnNWvHecMas+YZpDgzly8nT98tJYuMRG8fP1JNaonYeqGJbUn4H+rdvH6wq3cPK4b5wxs7+twjDHGNBIRIUFERB9/EpxdUN1QaOf1lswCsgtKKCypJgkODDic9Fbq/f3Z8GhLgo0x9SAsOJAz+7fjTK8E97NKCe6Z/ZwiU2MTY5tUglvmKefPn27g9YVbObVXHE9fNZRWYbYaSkOypPY4pezN54H3VzO8SxseOLuPr8Mxxhjjx443CT5Y4ql+nWCv4lhbswrIzi+hoJokODhQDlWFjj1GcayYFqG0CrMk2BhTc5UT3B82Z/LZmgw+X7Obd5PTaR3uJLjnDvL/BDe3sJS73l7OD5szuWVcNx48py+BAdZeNjRLao9DYUkZv5yxjNDgQJ65aqhf/wIaY4zxP+EhgXQKiaBTm5olwUWlHq+Et/hQr3DlHuFtWYVk5RcfNQluE3GModBuchwbGUqrcEuCjTGOsOBAzugXzxn94iku8/DDT5l8uiaDL9bu5r/LDie45wxqz9gesYQE+c/zdeq+fG59I5kd+wv5+8WDuOwkWwnFVyyprSFV5aHZa9m8N5/pN42gfetwX4dkjDHGHFVYcCAdo8LpGFWzv1lFpZ5DQ6ErimNVlQTv2F9IVn4J+cVlVV4nKEBoU0VV6OqKY7UKCybAejaMafJCgwI5vV88p3sluJ95JbitwoI4s79TZKqxJ7jzftrHnTOXExwYwMxbR3FS12hfh9SsWVJbQ28v2cHsFTv51em9OLlnnK/DMcYYY+pcWHAgHaLC6XAcSfD+wpKqi2N5bVu9P4fs/BLyqkmCAwOcnuCaDIWOiQyhdbglwcb4u8oJ7vzNmXy6OoMv1+7mPe8E152D21gSXFXl9YVbeeyT9fSKb8lL1yXVeAqJqT81SmpFZBIwFQgEXlbVJyrtF3f/OUAhcIOqLheRMGAeEOq+13uq+oh7zh+BW4F97mV+p6qfufseBG4GPMA9qvplbW6yttak5/LHj9dxSq847p6Q6MtQjDHGmEYjLDiQ9q3Dazx6qbjMw/6C0qP2AmcXlLB2Zy5ZBSXkFR0tCQ521gH26v2tWBc4plIvcVQzTYJP9PnN3bcVyMN5FitT1SR3+6XAH4G+wAhVTXa3Xw38xuvyg4BhqrpSROYC7YGD7r4zVXVvXd+v8V+hQYFM7BvPxL5eCe6aDL5cdzjBPaNfO84d1I5xiXE+S3BLysp55OO1vL1kB6f3jec/VwyhRaj1ETYGx/y/ICKBwLPAGUA6sFREPlbV9V6HnQ30dL9GAs+734uBCaqaLyLBwHwR+VxVF7nn/VtV/1Hp/foBVwD9gQ7ANyLSS1WrnuhTz3ILS7ljxjJiW4Twn8uHNMs/isYYY0xdCA0KpF3rQNq1DqvR8SVl5ewvPHIodKZbHKtimaSsghLW7zpAVn4xB6pJggOEQz3A0W7y610ZuvI6wVERIX5f6KWWz28VxqtqZqVLrwV+AbzovVFVZwAz3PceCHykqiu9Drm6IgE25mgqJ7gLUjL5dPVuvlq/m/eXp9MyLIgz+sVz3qD2DZrgZheUcPtby1iyJZtfntaDX5/Z2/KCRqQmHy2MAFJUNQ1ARGYBkwHvRnEyMF1VFVgkIlEi0l5VM4B895hg90uP8X6TgVmqWgxsEZEUN4Yfa3pTdaW8XLnv3ZXsOVDEO7eNJjoypKFDMMYYY5qtkKAA4luFEd/q+JLgwwWxjiyOVTE8ekPGAbIKSsg9WFrldQKEQ4WxDi+TFFrl6+jIENo0ziS4ts9vVVLVDe71jvbeVwJv1zJ+YwgNCmRCn3gm9ImnpGwgC1Iy+WR1Bl+v380Hy3ceSnDPHdiecT1jCQ0KrJc4Nu3O45bpS9lzoJipVwxh8pCO9fI+5sTVJKntCOzw+jmdIz/Fq+6YjkCG+0nhMiAReFZVF3sdd5eIXAckA/9PVfe75y2q4loN7sV5aczZuJc/nt+PYQltfBGCMaYRqOUQvijgZWAAzod6N6nqjyLyGM4DZTmw1z1nV8PckTFN0/EmwaWecvZ7DXuubp3gjbvzyC7IIqew6iRYKiXBh+cGh3oNgz6cDLeJCCao/ldQqNXzG0579ZWIKPCiqk47jve+HKd98/aaiHiA94E/u4m0MTUWEhTA+D5tGd+n7aEE99M1GXy17nCC+/B5/bgsqW4rEH+zfg/3zlpBRGgQ7942miGdo+r0+qZu1CSpreqjuMoNUbXHuMOGh7gPdrNFZICqrsUZ4vKYe9xjwD+Bm2r4fojIFGAKQEJCQg1u4/j8mJrFk19u5NxB7bl+TNc6v74xxj/UwRC+qcAXqnqJiIQAFdUknlTVh933uAf4A3B7fd+PMeaw4MAA2rYKo+3xJMGFTgKcnV9CZkEJ2fmV1w0uYdPuPLILSth/lCQ4Kjy4mqHQIYzuEUvvdi1re3u1en4DxqrqLhFpC3wtIhtVdd4x31RkJFDoPutVuFpVd4pIS5yk9lpgehXn1uuznWk6jkhwLxrIgtRMPludQUIdFmxSVV6cl8bfvtjIgA6tmXbdcFv9pBGrSVKbDnh/5NEJqNybcMxjVDXHLRQwCVirqnsq9onIS8Anx/F+uJ8YTgNISkqq00/79h4o4u63V9A1NpK/XTzI1tozpnk74SF8QAFwCnADgKqWACXu6wNe50dy7KkZxhgfCw4MoG3LMNq2rFkSXOYpZ39h6VGHQmcVlLB5bz7bsgoo9TjNwIQ+bXn1hpNqG26tnt8qRo6o6l4RmY3TFh4zqcWpi3LE0GNV3el+zxORme61fpbU1ueznWm6QoICGN+7LeN7t62zaxaVevjdB2v4YMVOzh3Unn9cMpjwkPoZ2mzqRk2S2qVATxHpBuzEaayuqnTMxzhDiWfh9E7kqmqGiMQBpW5CGw6cDvwNoNKcjYtwCg9UXGumiPwLp1BUT2DJCd/hcSrzlHP32yvILy5lxi0jraKZMaY2Q/jKcCq8vyYig3GmYtyrqgUAIvI4cB2QC4yvl+iNMT4TFBhAXMtQ4lqGAlX3vK5Jz+WpbzeTsjeflmFB3Di2GzeP7VYXb1+b57dIIMBNQiOBM4FHj/WGIhIAXIrzYV7FtiAgSlUz3aKh5wHf1P72jKkfe/OKuO3NZazYnsN9Z/Ti7gmJ1sHlB46ZsalqmYjcBXyJM5/sVVVdJyK3u/tfAD7DmUuWgjOf7Eb39PbAG+7wvQDgXVWt6JH9u4gMwemd2Arc5l5vnYi8i9MLUgbc2ZCVj//x1U8s3pLNvy4bXBdDf4wx/q82Q/iCgGHA3aq6WESmAg8ADwOo6kPAQ+4yZncBj/zszW04njFN0qodOTw1ZzNzNu6lVVgQvzq9FzeM7Urr8OA6uX4tn9/icaaMgdOOzVTVLwBE5CLgaSAO+FREVqrqWe55pwDpFSNbXKHAl25CG4iT0L5UJzdpTB1buzOXW6cnk1NYyvNXD+Psge19HZKpIWkK8/STkpI0Obn2VeK/Xr+HW6cnc+WIBP76i4F1EJkxxpdEZFnF2oq1uMZo4I8VD21uAoqq/tXrmBeBuar6tvvzJuA0nMR2kap2dbefDDygqudWeo8uwKeqOuBosdRVW2eM8Z3l2/fz1JzNzN20j6iIYG4Z143rxnSlVdiJJ7N10dY1NtbemYb2+ZoM7nt3FW0igpl2XRIDOrb2dUimkqO1dTa21rU9q5D/9+5KBnRsxSPn9/N1OMaYxuOEh/ABiMgOEemtqpuAibhzcUWkp6puds+/ANhY/7dijPGV5K3ZTJ2zmR82Z9ImIpjfTurNdaO72jQnY3xMVXlqTgr//uYnhiZE8eK1w2s8b940HtaS4kwG/+XMZQA8f/VwwoJtIrgxxlHLIXwAdwMz3MrHaV77nhCR3jhL+mzDKh8b0yQtTsti6pzNLEzNIiYyhAfP7sM1o7oQacmsMT53sMTDr99bxaerM/jFsI785aKBlgf4KWtRgUc/Wc/anQd46bokOtdhKXBjTNOgqp/hJK7e217weq3AndWcuxL42VAZVb24bqM0xjQWqsqPaVlM/WYzi7dkE9silN+f25erRiYQEWKPXsY0Bhm5B7l1ejLrdh3gwbP7MOWU7lYQyo81+5b1g+XpzFy8ndtP7cEZ/eJ9HY4xxhhj/JSqsiAli6fmbGbJ1mzatgzlD+f146qRCdb7Y0wjsmL7fqa8uYzC4jJevi6JiX0tB/B3zTqp3bQ7j4dmr2VEt2h+fWYvX4djjDHGGD+kqszbnMlTczazbNt+2rUK408X9OfykzpbMmtMI/Phip389v3VxLcK5a2bx9pqJ01Es01q84vLuGPGMiJDg3jmyqEEBQb4OiRjjDHG+BFVZe6mfUyds5mVO3Lo0DqMxy4cwGVJnQgNsmTWmMakvFz5x1ebeG5uKiO7RfP8NcOJjgzxdVimjjTLpFZVuf/91WzNLGDGLaNo28oqnBljjDGmZlSVORv28tS3m1mdnkvHqHD+ctFALh7e0ZJZYxqh/OIyfvXOSr5ev4crR3TmTxcMICTIOrSakmaZ1L6xcCufrs7gt5N6M7pHjK/DMcYYY4wfKC9Xvt6wh6fmbGbdrgN0jg7nbxcP5KKhnewB2ZhGakd2IbdOT+anPXn88fx+XD+mqxWEaoKaXVK7blcuj3+2gbYtQxnYsTW7c4uIbxVq/7iNMcYYU6XycuXLdbuZOmczG3fn0TUmgicvGcSFQzsSbNOXjGm0lmzJ5va3llHqKef1G0dwSq84X4dk6kmzS2oPHCwjLDiQvXnFXPvKEgAiQwLp0bYFPeJa0CMu0vnetgVdYiJsGJExxhjTTHnKlc/XZvD0nBQ27cmje2wk/7psMBcM7mC1OIxp5N5Zup3ff7iWzm0ieOn6JHrEtfB1SKYeNbukdnSPGFY/cib78opJ2ZdP6r4CUvfmk7ovnyVbspm9YuehYwMEEqIjDiW5hxLeuBa0sYnlxhhjTJPkKVc+Wb2Lp79NIWVvPj3iIpl6xRDOG9SBwAAb2WVMY1bmKeevn2/klflbOLlnLM9cOYzWEcG+DsvUs2aX1AKICG1bhdG2VRhjesQesa+wpIy0fQWkViS8+/JJ3ZvP/JRMisvKDx0XHRlyRJLbo63zulObCPuDZ4wxxvihMk85/3OT2bR9BfSKb8HTVw7lnIHt7W+7MX7gQFEpd89cwfc/7eOGMV35/bl9bVRFM9Esk9qjiQgJYkDH1gzo2PqI7Z5yZVfOQad3d+/hhPebDXuYtXTHoeNCAgPoFht5KMmt+OoeF0lkqP3nNsYYYxqbMk85H67cxbPfpbAls4A+7Vry3NXDmNS/HQGWzBrjF7ZkFnDLG0vZllXIXy4ayFUjE3wdkmlAlmXVUGCA0Dk6gs7REYzv3faIfTmFJYd7dfflk7q3gI0ZeXy5bg+ecj10XPvWYYfn7bZtQfdYp4e3XaswK1RljDHGNLBSTzmzl+/kme9S2J5dSL/2rXjhmuGc2S/ekllj/MiClEx+OWM5AQJv3TKSUd1tdZPmxpLaOhAVEcLwLiEM79LmiO0lZeVszy4gZa9XwruvgA+W7ySvuOzQcZEhgXSvVKSqR1wLusZaoSpjjDGmrpWUlfP+8nSe/S6F9P0HGdixNS9dl8Tpfdvah8zG+JnpP27lT/9bT4+4SF6+7iQSYiJ8HZLxAUtq61FIUACJbVuS2LblEdtVtcpCVUu37ufDlbsOHRcg0LmiUFWlhDfaClUZY4wxx6W4zMN/k9N5fm4qO3MOMrhTax6d3J/xvS2ZNcbflHrK+dP/1vHWou1M7NOW/1wxhJZhVhCqubKk1gdOpFDVgkqFqtpEBP+sSJVTqCrcJsQbY4wxXopKPbyzdAfPz01l94EihiZE8fhFAzi1V1yTTmZFZBIwFQgEXlbVJyrtF3f/OUAhcIOqLnf3bQXyAA9QpqpJ7vZLgT8CfYERqprsbu8KbAA2uZdfpKq3u/uGA68D4cBnwL2qenh+ljHHaX9BCb+csZwf07K47dTu/PasPlbMrZmzpLaROd5CVXM27uGd5JJDx4UEBtA1NuJnCW/3uBa0sEJVxhhjmpGiUg9vL9nOC9+nsudAMSd1bcM/Lh3M2MSYJp3MAohIIPAscAaQDiwVkY9Vdb3XYWcDPd2vkcDz7vcK41U1s9Kl1wK/AF6s4m1TVXVIFdufB6YAi3CS2knA58d7T8YApOzN4+Y3ksnIKeKflw7m4uGdfB2SaQQsy/ETx1uoatPuPL5af2Shqnatwn5WldkKVRljjGlqDpZ4mLF4Gy/OS2NfXjEju0Xz78uHMLp7009mvYwAUlQ1DUBEZgGTAe+kdjIw3e01XSQiUSLSXlUzqruoqm5wr1ejIESkPdBKVX90f54OXIglteYEfLdpL/fMXEFocCBvTxn1s3o2pvmqUVJ7osNXRCQMmAeEuu/1nqo+UuncXwNPAnGqmnm04SumasdbqGq2Faoy5rjUcghfFPAyMABQ4CZV/VFEngTOB0qAVOBGVc1pkBsypokqLCnjrUXbmDYvjcz8Esb0iOHpK4c210qoHYEdXj+nc2QvbHXHdAQycNqrr0REgRdVdVoN3rObiKwADgC/V9Uf3OulV/EextSYqvLK/C385bMN9GnXipeuT6JjVLivwzKNyDGT2loOXykGJqhqvogEA/NF5HNVXeReu7N73e2V3ra64SvmOFihKmNqrw6G8E0FvlDVS0QkBKgoy/g18KCqlonI34AHgfvr/YaMaYLyi8t488dtvPRDGtkFJZzcM5Z7JvbkpK7Rvg7Nl6rqSq08j/Vox4xV1V0i0hb4WkQ2quq8o7xfBpCgqlnuHNoPRaR/DeNwghGZgjNMmYQEW2PUOIrLPDw0ey3vLUvn7AHt+Odlg4kIscGm5kg1+RdR2+Er+e4xwe6Xd0P2b+C3wEe1uw1zPKxQlTHH5YTbQKAAOAW4AUBVS3B6ZlHVr7zOXwRcUs/3YUyTk1dUynQ3mc0pLOXUXnHcM7GnDUl0pAOdvX7uBOyq6TGqWvF9r4jMxmkLq01qVbUYpzMDVV0mIqlAL/c9vCc9VhVHxTWmAdMAkpKSrJCUITO/mNveXMaybfu5Z2JP/m9iT1tD2lSpJkltrYavuL0cy4BE4FlVXQwgIhcAO1V1VRXzMqoavnIE+zSvflihKmN+pjZtYBmwD3hNRAbjtIX3qmpBpfNvAt6py6CNacpyD5byxsKtvDJ/C7kHS5nQpy13T0hkaIIls16WAj1FpBuwE7gCuKrSMR8Dd7kf1o0EclU1Q0QigQBVzXNfnwk8erQ3E5E4IFtVPSLSHWfkSpqqZotInoiMAhYD1wFP1+F9miZq/a4D3Do9mcz8Yp6+cijnD+7g65BMI1aTLKNWw1dU1QMMceeVzRaRAUAa8BBOI1lZlcNXVPXAERe3T/MalBWqMs1YbdrAIGAYcLeqLhaRqcADwMOHThR5CCf5nVHlm9sHeMYckltYyqsLtvDqgi3kFZVxet947pmYyKBOUb4OrdFxpzbcBXyJUw/gVVVdJyK3u/tfwKlEfA6QglMP4Eb39HicZzZw2rGZqvoFgIhchJOUxgGfishKVT0LZ1TKoyJShrMM0O2qmu1e7w4OL+nzOVYkyhzDl+t286t3VtIqLJj3bh/DwE6tj32SadZqktTWavhKBVXNEZG5OGXcvwS6ARW9tJ2A5SIyQlV3U/XwleQa3pNpYFaoyjRxtWkDFUivGKECvIeT1AIgItcD5wETq1uz0T7AM8ZZk/KV+Vt4feFW8ovLOKt/PHdP6PmzUUXmSKr6GU7i6r3tBa/XCtxZxXlpwOBqrjkbmF3F9veB96s5JxmnWJ4xR6WqPDc3lSe/3MTgzlG8dO1w2rYK83VYxg/UJKmtzfCVOKDUTWjDgdOBv6nqGuBQd5+7wHeSW/24yuErtbtN4wtWqMo0ESfcBgKIyA4R6a2qm4CJuHNx3YrK9wOnqmphw9yKMf4lu6CEl35IY/rCrRSUeDhnYDvuGt+Tfh1a+To0Y0wdKyr18Nv3VvPxql1cOKQDT1w8iLBg69wwNXPMpLaWw1faA2+482oDgHdV9ZNjvOXRhq+YJsAKVRl/Uss2EOBuYIZb+TjNa98zOMudfe2OWLHly4xxZeYX89K8NN5ctI2DpR7OHdieuyf0pHe7lsc+2Rjjd/YcKGLK9GRWpefym7N688vTetjUNHNcpJoRb34lKSlJk5NtdHJTVl2hqrR9+WTmW6EqUzURWaaqSb6Oo65YW2eaur15RUz7Po23Fm+jpKyc8wd34O4JiT8b8WOO1NTaOrD2rjlZtSOHKW8mk1dUxn8uH8KZ/dv5OiTTSB2trbOnfOMXrFCVMcY0XXsOFPHC96nMXLydUk85Fw7pyJ0TEukR18LXoRlj6tHHq3bxm/+uIrZFKO/fMYa+7W1qgTkxltQav2eFqowxxj9l5B7khbmpvL10B55y5aKhHblrfCJdYyN9HZoxph6Vlyv//uYnnv42hZO6tuH5a4YT2yLU12EZP2ZJrWmyrFCVMcY0TjtzDvL83BTeXZpOuSoXD+vEneMTSYiJ8HVoxph6VlhSxn3vrOKLdbu5LKkTf75wICFBVg/F1I4ltabZsUJVxhjjGzuyC3lubirvLdsBwCXDO/PL03rQOdqSWWOag505B7nljWQ27T7Aw+f146axXW0KmKkTltQa4yUiJIgBHVv/bO3D6gpVzdm4h3eSrVCVMcYczfasQp79LoX3l6cTIMLlJ3XmjtMS6RgV7uvQjDENZNm2bG57cxnFpeW8esNJnFapRooxtWFP2cbUgBWqMsaY47c1s4Bnvkth9oqdBAYIV49M4PbTetC+tSWzxjQn7y1L53cfrKFDVBizpiRZRXNT5yypNaaW6qtQVZeYCFt03Bjjl9L25fPMtyl8uHInwYEBXDe6C7ef2oP4VmG+Ds0Y04A85crfvtjItHlpjOkRw3NXDyMqwuqSmLpnSa0x9cQKVRljmpuUvXk8/W0K/1u1i5CgAG4a240pp3anbUtLZo1pbvKKSrnn7RV8t2kf147qwh/O70ew1R0x9cSSWmMamBWqMsY0NT/tyeOpOZv5dE0GYUGB3Hpyd249pbst0WFMM7Utq4Bb3kgmLbOAxy4cwLWjuvg6JNPEWVJrTCNihaqMMf5kQ8YBnv52M5+t2U1kSCC3n9qDW8Z1I8aSWWOarR9Ts7hjxjJU4c2bRjAmMfbYJxlTS/aUa4wfsEJVxpjGZN2uXJ6as5kv1+2hRWgQd41P5OZx3WhjUyOMadZmLt7OHz5aS9fYSF6+LomusZG+Dsk0E5bUGuPnrFCVMaahrEnPZeqczXyzYQ8tw4K4Z2JPbh7bjdYRwb4OzRjjQ2Wech77ZD1v/LiN03rH8dSVQ2kVZu2CaTiW1BrTRFmhKmNMXVm5I4en5mzm2417aRUWxK9O78UNY7vSOtweWo1p7nILS7lz5nLmp2Ry68ndeODsvgQG2Agw07AsqTWmmbFCVcaYmlq2bT9PzdnM9z/tIyoimF+f2Yvrx3SlpfXA+AURmQRMBQKBl1X1iUr7xd1/DlAI3KCqy919W4E8wAOUqWqSu/1S4I9AX2CEqia7288AngBCgBLgN6r6rbtvLtAeOOi+9Zmqurdebto0qJS9+dw6PZn0/YX8/ZJBXJbU2dchmWbKklpjzCFWqMoYA7B0azZPzdnMD5sziY4M4f5Jfbh2dBf7PfYjIhIIPAucAaQDS0XkY1Vd73XY2UBP92sk8Lz7vcJ4Vc2sdOm1wC+AFyttzwTOV9VdIjIA+BLo6LX/6ooE2DQN3/+0j7tmLickMICZt47ipK7Rvg7JNGP218kYc0xWqMqY5mFRWhZPzdnMwtQsYluE8Ltz+nD1yC5EWjLrj0YAKaqaBiAis4DJgHdSOxmYrqoKLBKRKBFpr6oZ1V1UVTe416u8fYXXj+uAMBEJVdXiOrkb02ioKq8t2MqfP11Pr/iWvHx9Ep3aRPg6LNPM2V8pY0yt1LZQVURIYJXzdhtToapaDuGLAl4GBgAK3KSqP1Y3hM+Yhqaq/JiWxdRvNrN4SzZxLUP5/bl9uXpkF8JDGsfvoDkhHYEdXj+nc2QvbHXHdAQycNqrr0REgRdVddpxvPfFwIpKCe1rIuIB3gf+7CbSxs+UlJXzh4/WMmvpDs7sF8+/Lx9iH3qZRsH+FRpj6kV9FKqa0LctbVuGNeh91MEQvqnAF6p6iYiEABUfZ1c3hM+YBqGqLEjJYuqcn1i6dT9tW4byyPn9uHJEQqP5QMnUSlVDYConkkc7Zqw7lLgt8LWIbFTVecd8U5H+wN+AM702X62qO0WkJU5Sey0wvYpzpwBTABISEo71VqaBZeUXc8eM5SzZks1d4xO574xeBFhBKNNI1CipPdFeChEJA+YBoe57vaeqj1Q699fAk0BcxbwNEXkQuBmnOME9qvrlid+iMaYxqWmhqq/W7+HLtbvZllXItxud/ZcndeZvlwxq6JBPeAgfUACcAtwAoKolOAVUqh3CZ0x9U1W+/2kfT83ZzPLtObRrFcajk/tzWVJnS2ablnTAu2pPJ2BXTY9R1Yrve0VkNk5beNSkVkQ6AbOB61Q1tWK7qu50v+eJyEz3Wj9Lat3e4GkASUlJ1pPbiGzcfYBb3khmb14xU68YwuQhHY99kjEN6JhJbS17KYqBCaqaLyLBwHwR+VxVF7nX7uxed7vX+/UDrgD6Ax2Ab0Skl6p6an23xphGa8+BIhakZDI/JZOFKVnsPlAEQKc24YxLjGVMYiwT+rQ9xlXqRW2G8JUB+3CG3Q0GlgH3qmpB/YVrTNVUle827WXqnBRW7cihQ+swHrtwAJcldSI0yJLZJmgp0FNEugE7cZ6trqp0zMfAXe6HdSOBXFXNEJFIIMBNQiNxel0fPdqbuVMtPgUeVNUFXtuDgChVzXSfBc8DvqmTOzQN4uv1e/i/WSuIDA3i3dtGM6RzlK9DMuZnatJTW9tCA/nuMcHul/cnb/8Gfgt8VOlas9x5GFtEJMWN4cfjvjtjTKOVe7CURWlZLEzJZEFqFil7naYiOjKE0T1iGJcYy9gesSTE+Lz4RG2G8AUBw4C7VXWxiEwFHgAervGb23A8U0uqyjcb9vLUnM2s2ZlLx6hw/nLRQC4Z3omQIFuCq6lS1TIRuQunCnEg8KqqrhOR2939LwCf4YyyS8EZaXeje3o8MNsdSRIEzFTVLwBE5CLgaSAO+FREVqrqWcBdQCLwsIhUtHFn4oxY+dJNaANxEtqX6vXmTZ1QVV74Po2/f7mRgR1bM+3aJNq1btgpQMbUVE2S2loVGnB7epfhNHTPqupiABG5ANipqqsqDb/rCCyq4lrGGD9WVOph+bb9LEjNZH5KFmvScyhXCA8OZES3aC5P6syYxBj6tmvV2Obo1GYInwLpFe0e8B5OUltjNhzPnKjycuWr9Xt4as5m1mccoHN0OH+7eCC/GNaJYFtPullQ1c9wElfvbS94vVbgzirOSwMGV3PN2ThDjCtv/zPw52pCGV7zqE1jUFTq4cEP1jB7xU7OG9SeJy8ZbIXjTKNWk6S2VoUG3GHDQ9xhKbPdtcvSgIc4sojA8byf9V4Y08h5ypV1u3IPDSdeujWb4rJyAgOEoZ2juGtCT8YlxjKkc1Rj7y064SF8ACKyQ0R6q+omYCJHjnIxps6VlytfrNvNU3M2s3F3Hl1jIvjHpYOZPKSDJbPGmGPam1fElOnLWLkjh/93Ri/umpBo9R9Mo1eTpLZWhQYqqGqOiMwFJuEMhekGVPTSdgKWi8iIGr6f9V4Y08ioKlsyC1iQksmClCx+TMsi92ApAH3ateTqkV0Y1zOGEd1iaOFH5f9rOYQP4G5ghlv5OK1i31GG8BlzQjzlymdrMnj62838tCef7nGR/PvywZw/qANBlswaY2pg7c5cbp2eTE5hKS9cM4xJA9r7OiRjaqQmT5a1KTQQB5S6CW04cDrwN1VdAxyq+CIiW4Ekt4jAx8BMEfkXTqGonsCSWt2lMaZe7D1Q5Awn3pzFwtRMMnKd4k4do8KZ1L8dYxJjGNMjlriWoT6OtHZOdAifu28lkFTF9iqH8BlzvDzlyierd/H0tymk7M0nsW0Lpl4xhPMGdSCwcQ3lN8Y0Yp+uzuD//Xcl0REhvHfHaPp3aO3rkIypsWMmtbXspWgPvOHOqw0A3lXVT47xfutE5F2cIXplwJ1W+diYxuFAUSmL07Ld3thMNrvFndpEBDOmRyxjEp0CTwnRETZUyZh6VuYp5+NVu3jm2xTSMgvoFd+CZ64aytkD2lsya4ypsfJy5alvN/OfbzYzLCGKF69N8vsPo03zU6MxgLUoNLAaGFqD63et9PPjwOM1ic0YU3+Kyzws27afhSlZLEjNZHV6Lp5yJTw4kJO6RXNpUifG9IilX/tGV9zJmCar1FPOhyt28ux3KWzNKqRPu5Y8f/Uwzurfzn4PjTHH5WCJh1//dxWfrsngF8M68tdfDLQlvoxf8p+JbcaYeucpV9bvOsCCVKcndunWbIpKneJOgzu15s7TejAmMZahCVH2R8+YBlbqKeeD5ek8+10q27ML6d+hFS9eO5wz+sZbMmuMOW4ZuQe5dXoy63Yd4Hfn9OHWk7vbKCvjtyypNaYZU1W2ZhW6FYoz+TEti5xCp7hT7/iWXDkigXGJsYzoFk3LsGAfR2tM81RSVs57y9J59rsUduYcZGDH1rx8XRIT+7a1B1BjzAlZsX0/U95cxsESD69cn8SEPvG+DsmYWrGk1phmZm9ekTOc2J0Xu8uruNMZfeMZ1zOW0T1iaNvSFlg3xpeKyzy8m5zO89+lsCu3iMGdo/jzhQM4rXecJbPGmBM2e0U697+/hnatwphxy0h6xbf0dUjG1JoltcY0cXlucaf5KZksTM3kpz1OcaeoiGDG9Ijhlz1iGZcYS5cYK+5kTGNQVOrhnaU7eH5uKrsPFDEsIYq/XjyIU3rG2u+oMeaElZcrT361iefnpjKyWzTPXzOc6MgQX4dlTJ2wpNaYJqa4zMOK7TmHemJXucWdwoIDOKlrNL8Y1olxiVbcyZjGpqjUw8zF23nh+1T25hVzUtc2/OPSwYxNjLFk1hhTK/nFZfzfrBV8s2EvV45I4E8X9CckyNavNk2HJbXG+LnycmV9xgEWpGQyv1Jxp0GdWvPL03owpkcsw7pYcSdjGqODJR5mLN7GC9+nkZlfzMhu0fzniiGM7m7JrDGm9nZkF3LLG8mk7MvnTxf057rRXaxtMU2OJbXG+BlVZVtW4aEKxT+mZrHfLe7Us20LrjgpgbGJsYzsHk0rK+5kTKNVUFzGW4u28dIPaWTmlzCmRwzPXDWUUd1jfB2aMaaJWJyWxR0zllPmKef1G0/i5J5xvg7JmHphSa0xfmBfXjEL3SR2QUoWO3MOAtChdRgT+8YzLjGWMT1iaNvKijsZ09jlF5cx/cetvPzDFrILSji5Zyz3TOzJSV2jfR2aMaYJeWfpdn7/4Vo6R0fw8nVJdI9r4euQjKk3ltQa0wjlF5exOC2LBW6V4k178gBoHR7M6O4x3H5aD8b2iKFbbKQNITLGTxwoKmX6wq28PH8LOYWlnNorjnsm9mR4lza+Ds0Y04SUecr5y2cbeXXBFk7uGcszVw2jdbiN3DJNmyW1xjQCJWXlrNi+3+mJTc1i1Y4cysqV0KAARnSL5sKhHZ3iTh1aEWjFnYzxK7kHS3l9wVZemZ/GgaIyJvRpyz0TezKkc5SvQzPGNDG5B0u5++0VzPtpHzeO7cpD5/QlKNAKQpmmz5JaY3ygvFzZsPvAoeHES7Zkc7DUQ4DAoE5R3HZqd8YmxjIsoQ1hwVbcyRh/lFNYwqsLtvLagi3kFZVxet947p3Yk4GdWvs6NGNME5S2L59bpiezPauQv/5iIFeOSPB1SMY0GEtqjWkAqsr27MJDw4l/TMsiu6AEgMS2Lbj8pM6M6RHDyO4xNkTIGD+3v6CEV+Zv4fWFW8kvLuOs/vHcPaEnAzpaMmsalohMAqYCgcDLqvpEpf3i7j8HKARuUNXl7r6tQB7gAcpUNcndfinwR6AvMEJVk72u9yBws3vOPar6pbt9OPA6EA58BtyrqlovN91Mzd+cyS9nLCMwQHjrlpFWcM40O5bUGlNPMvOLWZiaxYLNmSxIzSR9v1PcqV2rMMb3bsvYxBjGJsYSb8WdjGkSsvKLeXn+FqYv3EphqYdzBrTnrgmJ9G3fytehmWZIRAKBZ4EzgHRgqYh8rKrrvQ47G+jpfo0Enne/VxivqpmVLr0W+AXwYqX36wdcAfQHOgDfiEgvVfW4150CLMJJaicBn9fFfTZ3qsqbi7bxp/+tJzGuBS9fn0Tn6Ahfh2VMg7Ok1pg6kl9cxpIth4s7bdztFHdqFRbE6B4x3HZKd8YkxtLdijsZ06Rk5hfz0rw03ly0jYOlHs4b1IG7JyTSK76lr0MzzdsIIEVV0wBEZBYwGfBOaicD091e00UiEiUi7VU1o7qLquoG93qVd00GZqlqMbBFRFKAEW6PbytV/dE9bzpwIZbU1lqpp5w/fryOGYu3c3rftvzniqG0CLVHe9M82b98Y05QSVk5K3fkuPNiM1npFncKCQrgpK5t+O2k3oztEcuAjq2tuJOfq+UQvijgZWAAoMBNqvqjiEQD7wBdga3AZaq6vyHux9SNvXlFTPs+jbcWb6OkrJwLBnfgrgmJJLa1ZNY0Ch2BHV4/p3NkL2x1x3QEMnDaq69ERIEXVXVaDd5vURXXKnVfV95uamF/QQl3zFjGorRs7jitB78+s7c9a5hmzZJaY2qovFzZuDvPrVCcyZIt2RSWOMWdBnaKYsop3RmXGMuwLlbcqSmpgyF8U4EvVPUSEQkBKsaFPQDMUdUnROQB9+f76/2GTK3tOVDE83NTeXvJdko95Vw4tCN3jk+kh60BaRqXqjKcyvNYj3bMWFXdJSJtga9FZKOqzjuB96tJHM4FRKbgDFMmIcGKHFVn8548bn4jmd25RfzrssH8YlgnX4dkjM9ZUmvMUezILmS+2xO7MPVwcacecZFcMrwTYxNjGWXFnZq6Ex7CBxQApwA3AKhqCVDidc5p7us3gLlYUtuoZeQe5Pm5qcxaugNPufILN5ntGhvp69CMqUo60Nnr507Arpoeo6oV3/eKyGyctvBoSW1110p3Xx8tDtz3mgZMA0hKSrJCUlX4buNe7n57BWHBgcy6bRTDEmyda2PAklpjjpBVUdzJ7Y3dke0Ud4pvFcppveMY2yOWsYmxtGttxZ2akdoM4SsD9gGvichgYBlO1c8CIL5i3pqqZri9IaYR2plzkOe+S+G/yemUq3LJ8E788rREEmKsGItp1JYCPUWkG7ATp4jTVZWO+Ri4y/2wbiSQ67ZHkUCAqua5r88EHj3G+30MzBSRf+EUiuoJLFFVj4jkicgoYDFwHfB0Hd1js6GqvPRDGn/9fCP92rfipeuS6BAV7uuwjGk0LKk1zVpBcRlLtma7FYqz2JBxAICWYUGM7h7DLeOc9WJ7xFlxp2asNkP4goBhwN2qulhEpuIMM364xm9uw/F8Zkd2Ic/NTeW9Zc7nFZcmdeaOU3tYZVHjF1S1TETuAr7EqQfwqqquE5Hb3f0v4FQiPgdIwakHcKN7ejww2/27FwTMVNUvAETkIpykNA74VERWqupZ7rXfxRnFUgbc6VY+BriDw0v6fI4ViTouxWUefvfBWt5fns7ZA9rxz8sGExFij/DGeKvRb8SJFkkRkTCcoSqh7nu9p6qPuOc8hjP8rhzY656zS0S6AhuATe7lF6nq7bW6S2NcpZ4jizut2H64uFNSlzb85qzejE2MZUCHVgQFBvg6XNM41GYInwLpqrrY3f4eTlILsKeiyqg7VHlvVW9uw/Ea3vasQp79LoX3l6cTIMLlJ3XmjtMS6Wi9IsbPqOpnOImr97YXvF4rcGcV56UBg6u55mxgdjX7Hgcer2J7Mk6xPHOc9uUVc/tby1i2bT/3TuzJvRN7EmAFoYz5mWMmtbUsklIMTFDVfBEJBuaLyOequgh4UlUfdt/jHuAPQEXymqqqQ+riBk3zVl6ubNqTdyiJXbIlm4ISDyIwsGNrbj2lO2N7xJLU1Yo7mWqd8BA+ABHZISK9VXUTMJHDc3E/Bq4HnnC/f1Tvd2KOaktmAc9+l8LsFTsJDBCuHpnA7af1oH1rS2aNMQ1v/a4D3Do9mayCYp69ahjnDmrv65CMabRq0lNb23XO8t1jgt0vBVDVA17nR1JNJTxjjteO7EJ3TmwWC1MyyXKLO3WPi+QXw5ziTqO7x9A6woo7mWOr5RA+gLuBGW7l4zSvfU8A74rIzcB24NKGuB/zc6n78nn22xQ+XLmT4MAArh/dldtO7U58K5s7b4zxjS/W7uZX76ykdXgw790+hgEdW/s6JGMatZoktbVa58zt6V0GJALPeg3DQ0QexykYkAuM9zq/m4isAA4Av1fVH2p2O6Y5yi4oYWFqJgtSnAJP27MLAWjbMpRTesUxNjGWsYkx1ttiTtiJDuFz960EkqrYnoXTc2t8ZPOePJ75LoX/rdpFSFAAN4/rxq2ndKdtS0tmjTG+oao8820K//z6J4Z0jmLatcNpax+wGXNMNUlqa7XOmVskYIiIROEUHRigqmvdfQ8BD4nIg8BdwCM4C34nqGqWiAwHPhSR/pV6dq14SjNWWFLGki3Z7pDiLNZXFHcKDWJUjxhuGtuVcT1j6RHXwoo7GWN+ZtPuPJ76djOfrckgPDiQW0/pzq0ndye2RaivQzPGNGNFpR5+895q/rdqFxcO6cATFw+yqVHG1FBNktparXNWQVVzRGQuMAlYW+n8mcCnwCOqWowzFxdVXSYiqUAvILnS9ax4SjNR6ilndXoO8zdnsSA1kxXb91PqUUICAxjepQ2/PrMXYxNjGdixtRV3MsZUa0PGAZ6as5nP1+4mMiSQO07twS0ndyc6MsTXoRljmrnduUVMeTOZNTtz+e2k3txxag/7YN6Y41CTpLY265zFAaVuQhsOnA78DUBEeqrqZvf8C4CN7vY4INtd16w7TvGptFrdpfErqhXFnZzhxIvTsg4VdxrQoTU3j+vO2MQYkrpEEx5in2AaY45u7c5cnpqzma/W76FlaBB3T0jkprHdaGPJrDGmEVi1I4dbpydTUFzGtGuTOKNfvK9DMsbvHDOprWWRlPbAG+682gDgXVX9xN33hIj0xlnSZxuHKx+fAjwqImWAB7hdVbNrf6umMUvfX8jClCzmp2SyMDWLzPxiALrFRnLRsI6M7RHL6B4xREXYQ6gxpmZWp+fw1JzNfLNhLy3Dgrh3Yk9uGtvNisQZYxqNj1bu5LfvrSauZSjTbx5Dn3atfB2SMX6pRuvU1mKds9XA0GqueXE1298H3q9JXMZ/ZReU8GOqM5x4QUom27Kc4k5xLUMZlxjjFneKpYOtC2mMOU4rd+Qw9Zuf+G7TPlqHB3PfGb24fkxXWodbMmuMaRzKy5V/f/MTT3+bwoiu0Tx/zTBibF6/MSesRkmtMbVVWFLG0q37D60Xuz7jAKrQIjSIUd2juWFMV8YmxtKzrRV3MsacmGXb9jN1zmbm/bSPqIhgfnNWb64b3YWWYZbMGmMaj4LiMu57dyVfrtvD5UmdeezCAYQEWU0QY2rDklpTL8o85axKzz2UxC73Ku40rEsU953ei7E9YxlkxZ2MMbW0dGs2U7/ZzPyUTKIjQ7h/Uh+uHd2FFqH2J84Y07ik7y/kljeS+WlPHn84rx83ju1qH+YbUwfsL76pE6rK5r35zN+cycLUTBalZZNfXIYI9O/QipvGdmNsYiwndbXiTsaYuvFjahZPzdnMj2lZxLYI4Xfn9OGaUV2ICLE/bcaYxid5aza3vbmMEk85r904glN7xfk6JGOaDPvLb07YzpyDh3piF6ZmsS/PKe7UNSaCyUM6MDYxltHdY6zCqDGmzqgqP6Zm8Z85m1myJZu4lqH8/ty+XD2yi31gZoxptP6bvIPfzV5Dx6hwXr7+JBLbtvB1SMY0KZbUmhrLKXSKO1VUKN6SWQBAbItQxibGMLZHLGMSY+jUJsLHkRpjmhpVZX5KJlO/2Uzytv3EtwrlkfP7ceWIBMKCLZk1xjROnnLlic838NIPWxibGMOzVw2zlRyMqQeW1JpqHSzxsHRr9qEKxet2HS7uNLJbNNeO6sLYxFh6xVtxJ2NM/VBVvv9pH1PnbGbF9hzatw7j0cn9uSypsyWzxphG7UBRKfe+vYLvNu3j+tFd+P15/Qi2OiLG1AtLas0hZZ5yVu/MZcHmTBakZrJ8Ww4lnnKCA4WhCW341em9GJsYw6BOUdYoG2Pqlary3aa9TJ2TwqodOXSMCufPFw7g0qROhAZZMmuMady2ZRVw8xvJbM0s4M8XDuCaUV18HZIxTZoltc2YqpKyN5/5KZksSMlicVoWecVlgFPc6YaxXd3iTm2s8IoxpkGoKt9s2MtTczazZmcundqE89dfDOTiYZ1syQtjjF9YmJrJL2csB2D6zSMY0yPWxxEZ0/RZptLM7KpU3GmvW9ypS0wE5w3uwLjEWEb3iCHaijsZYxpQebny1fo9PDVnM+szDpAQHcHfLx7ERcM62sgQY06QiEwCpgKBwMuq+kSl/eLuPwcoBG5Q1eXuvq1AHuABylQ1yd0eDbwDdAW2Apep6n4RuRr4jdflBwHDVHWliMwF2gMH3X1nqureur7fxuCtRdv448fr6BobySvXJ9ElJtLXIRnTLFhS28TlFJawKM0t7pSSRdqh4k4hjOkRy9jEGMb0iKVztBV3MsY0vPJy5Yt1u3lqzmY27s6ja0wE/7h0MJOHdLBk1phaEJFA4FngDCAdWCoiH6vqeq/DzgZ6ul8jgefd7xXGq2pmpUs/AMxR1SdE5AH35/tVdQYww33vgcBHqrrS67yrVTW5zm6wkSn1lPPYJ+uZ/uM2xveOY+qVQ2kVFuzrsIxpNiypbWKKSt3iTilZLEzNZM3OXFQhMiSQkd1juGpkAuN6xtI7vqUVdzLG+IynXPl0TQZPz9nM5r35dI+L5N+XD+b8QR0IsmTWmLowAkhR1TQAEZkFTAa8k9rJwHRVVWCRiESJSHtVzTjKdScDp7mv3wDmAvdXOuZK4O1a34GfyCks4c6Zy1mQksWUU7pz/6Q+BAbYM5YxDcmSWj9X5ilnzc5cFqZmMX9zJsu276ekzC3u1LkN/zfRKe40uLMVdzLmRNXTEL7BwAtAC5whfFer6oGGuB9f8pQr/1u1i6e/3UzqvgIS27Zg6hVDOG9QB3sINKZudQR2eP2czpG9sNUd0xHIABT4SkQUeFFVp7nHxFckvaqaISJtq3jvy3GSX2+viYgHeB/4s5tI+72Uvfnc8sZSduUU8eQlg7g0qbOvQzKmWbKk1s+oKqn78pm/OZMFqVksSssir8gp7tS3fSuuH92FMYmxjOgaTWSo/e81prbqcQjfy8CvVfV7EbkJZy7aw/V0Gz5X5inno5W7ePa7FNIyC+gd35JnrhrKOQPaE2DJrDH1oapfrMqJ5NGOGauqu9yk9WsR2aiq8475piIjgUJVXeu1+WpV3SkiLXGS2muB6VWcOwWYApCQkHCst/K5uZv2cvfbKwgNCmDmrSNJ6hrt65CMabYs6/EDGbkHneHEKc5SO3sOOMWdEqIjOG9Qe8YmxjK6ewwxLUJ9HKkxTVJ9DeHrDVQ8IH4NfEkTTGpLPeXMXrGTZ79LYVtWIX3ateT5q4dxVv92lswaU7/SAe9uw07Arpoeo6oV3/eKyGyctnAesKeifROR9kDlgk9XUGnosarudL/nichM91o/S2rd3uBpAElJSY22J1dVeXXBVh7/dD2927XipeuG06mN1SYxxpcsqW2EcgtL+TEty6lSnJpJ2j6nuFNMZAije8QwLjGWsYlW3MmYBlJfQ/jWAhcAHwGXcuSD5SH+1nNRoaSsnA+Wp/Ps3BR2ZB+kf4dWvHjtcM7oG2/JrDENYynQU0S6ATtxks2rKh3zMXCX+2HdSCDXTVYjgQA3CY0EzgQe9TrneuAJ9/tHFRcTkQCc9uwUr21BQJSqZopIMHAe8E2d320DKSkr5+EP1/JO8g7O6h/Pvy4bYiPjjGkE7LewESgq9bBs2363QrFT3KlcISIkkJHdorlqRAJjE53iTvYwaEyDq68hfDcBT4nIH3AeEkuqenN/6bmoUFJWzn+X7eC571LZmXOQQZ1a88h5/ZnYt60VpzOmAalqmYjchTMKJBB4VVXXicjt7v4XgM9wagGk4NQDuNE9PR6Y7f7OBgEzVfULd98TwLsicjOwHSeJrXAKkF4xssUVCnzpJrSBOAntS3V9vw0hK7+YO95azpKt2dw9IZFfnd7LnsuMaSQsqfUBT7myZmfuofVik7c5xZ2CAoShCVHcPaEn43rGMrhTFCFBVtzJGB+rlyF8qroRp/cDEekFnFsv0TeQ4jIP7y7dwfNzU9mVW8TgzlH8+cIBnNY7zpJZY3xEVT/DSVy9t73g9VqBO6s4Lw0YXM01s4CJ1eybC4yqtK0AGH6coTc6G3cf4ObXk8nML2bqFUOYPKSjr0MyxnixpLYBOMWdCliYmsn8zZksSsvigFvcqU+7llw3qgtjE2M5qVs0LWwIizGNTb0M4RORtm6iGwD8HqcSst8pKvUwa8l2Xvg+jd0HihiWEMVfLx7EKT1jLZk1xjQJX6/fw//NWkFkaBDv3jaawZ2jfB2SMaYSy6Dqye7cokNzYhekHC7u1KlNOOcMbM+YxFjG9Igh1oo7GdOo1eMQvitFpKKH5APgtYa4n7pysMTDzCXbefH7VPbmFXNS1zb849LBjE2MsWTWGNMkqCrPf5/Kk19uYmDH1ky7Nol2rcN8HZYxpgo1SmpPdI1GEQnDqZQX6r7Xe6r6iHvOYzgVQ8txKufdUDFMT0QeBG7GWdfxHlX9srY3Wt9yD5ayKM2pUDw/JZNUt7hTtHdxpx6xJMRYcSdj/E09DeGbitNu+pXCkjJmLNrOi/PSyMwvZlT3aP5zxRBGd7dk1hjTdBSVenjg/dV8uHIX5w/uwJOXDCIsONDXYRljqnHMpLaWazQWAxNUNd8tEDBfRD5X1UXAk6r6sPse9wB/AG4XkX44w/v6Ax2Ab0Skl6p66uaW68clzy9k8958woMDGdEtmitOSmBMYgx927WyIgLGmCbjljeSWZiaxdjEGJ6dMJSR3WN8HZIxxtS5381ew4crd/HrM3tx5/hE+9DOmEauJj21tV2jMd89Jtj9UgBVPeB1fiSHK4VOBmapajGwRURS3Bh+PJEbbCgPntOHFqHBDOlsxZ2MMU3XPRN7ct8ZvUjqGu3rUIwxpt7cM6EnZ/Vvx1n92/k6FGNMDdQkqa3VGo1uT+8yIBF4VlUXVxwkIo8D1wG5wHivay2q4lqN2oQ+8b4OwRhj6t0o65k1xjQDXWMj6Rob6eswjDE1VJMuxVqt0aiqHlUdgrPExQgRGXDoANWHVLUzMAO46zjeDxGZIiLJIpK8b9++Y9+FMcYYY4wxxpgmpyZJba3WaKygqjnAXGBSFe8xE7j4ON4PVZ2mqkmqmhQXF3fMmzDGGGOMMcYY0/TUJKk9tEajiITgFHH6uNIxHwPXiWMUh9dojBORKAARCQdOBza6P/f0Ov+Ciu3uta4QkVB3XciewJITuz1jjDHGGGOMMU3ZMefU1nKNxvbAG+682gDgXVX9xN33hIj0xlnSZxtQcb11IvIuTiGqMuDOxl752BhjjDHGGGOMb9RondparNG4GhhazTUvrmq7u+9x4PGaxGaMMcYYY4wxpvmytWeMMcYYY4wxxvgtS2qNMcYYY4wxxvgtcUYO+zcR2YczL9fXYoFMXwdRQ/4UK/hXvP4UK/hXvMcbaxdVbTLl0a2tOyH+FCv4V7z+FCv4V7zNuq2DRtPe+dO/GfCveC3W+uNP8dZZW9ckktrGQkSSVTXJ13HUhD/FCv4Vrz/FCv4Vrz/F2pT50/8Hf4oV/Ctef4oV/Ctef4q1KfO3/w/+FK/FWn/8Kd66jNWGHxtjjDHGGGOM8VuW1BpjjDHGGGOM8VuW1Natab4O4Dj4U6zgX/H6U6zgX/H6U6xNmT/9f/CnWMG/4vWnWMG/4vWnWJsyf/v/4E/xWqz1x5/irbNYbU6tMcYYY4wxxhi/ZT21xhhjjDHGGGP8liW1J0BEJonIJhFJEZEHqtgvIvKUu3+1iAzzRZxuLMeK9Wo3xtUislBEBvsiTjeWo8bqddxJIuIRkUsaMr4q4jhmvCJymoisFJF1IvJ9Q8foFcex/h20FpH/icgqN9YbfRGnG8urIrJXRNZWs7/R/H41ddbW1Q9r6+qPtXXmRFhbV3/8qb2ztq5+NFhbp6r2dRxfQCCQCnQHQoBVQL9Kx5wDfA4IMApY3IhjHQO0cV+f3Zhj9TruW+Az4JJG/u8gClgPJLg/t23Esf4O+Jv7Og7IBkJ8FO8pwDBgbTX7G8XvV1P/srbOd7F6HWdtXd3Ham2dfZ3Iv5tG8f/Cn9q6msbrdZxP2ztr6+o13gZp66yn9viNAFJUNU1VS4BZwORKx0wGpqtjERAlIu0bOlBqEKuqLlTV/e6Pi4BODRxjhZr8dwW4G3gf2NuQwVWhJvFeBXygqtsBVNVXMdckVgVaiogALXAav7KGDdMNRHWe+/7VaSy/X02dtXX1w9q6+mNtnTkR1tbVH39q76ytqycN1dZZUnv8OgI7vH5Od7cd7zEN4XjjuBnnkxJfOGasItIRuAh4oQHjqk5N/tv2AtqIyFwRWSYi1zVYdEeqSazPAH2BXcAa4F5VLW+Y8I5bY/n9auqsrasf1tbVH2vrzImwtq7++FN7Z22d79TJ71dQnYXTfEgV2yqXkK7JMQ2hxnGIyHicxm9cvUZUvZrE+h/gflX1OB88+VRN4g0ChgMTgXDgRxFZpKo/1XdwldQk1rOAlcAEoAfwtYj8oKoH6jm2E9FYfr+aOmvr6oe1dfXH2jpzIqytqz/+1N5ZW+c7dfL7ZUnt8UsHOnv93AnnU5DjPaYh1CgOERkEvAycrapZDRRbZTWJNQmY5TZ6scA5IlKmqh82SIRHqum/g0xVLQAKRGQeMBho6MavJrHeCDyhzuSGFBHZAvQBljRMiMelsfx+NXXW1tUPa+vqj7V15kRYW1d//Km9s7bOd+rm9+tEJuI25y+cDwLSgG4cnpzdv9Ix53LkhOcljTjWBCAFGNPY/7tWOv51fFs8pSb/bfsCc9xjI4C1wIBGGuvzwB/d1/HATiDWh/99u1J9QYFG8fvV1L+srfNdrJWOt7aubmO1ts6+TuTfTaP4f+FPbV1N4610vM/aO2vr6j3mem/rrKf2OKlqmYjcBXyJU33sVVVdJyK3u/tfwKnedg5Oo1KI82lJY431D0AM8Jz7KVmZqiY10lgbjZrEq6obROQLYDVQDrysqlWWM/d1rMBjwOsisganUblfVTMbOlYAEXkbOA2IFZF04BEg2CvWRvH71dRZW+fTWBsNa+vqj7V1jYO1dT6Pt1Gwtq7+NFRbJ26GbIwxxhhjjDHG+B2rfmyMMcYYY4wxxm9ZUmuMMcYYY4wxxm9ZUmuMMcYYY4wxxm9ZUmuMMcYYY4wxxm9ZUmuMMcYYY4wxxm9ZUmuMMcYYY4wxxm9ZUmuMMcYYY4wxxm9ZUmuMMcYYY4wxxm9ZUmuMMcY0IiIyV0T2i0hopW23VDruNBFJ9/pZROQeEVkrIgUiki4i/xWRgQ0ZvzHGGNPQLKk19UJEtorIHhGJ9Np2i4jMdV+r+9CVLyJZIjJHRC6v4jpnicg8EckTkX0i8r2IXOC1v72IvCQiu9xrpYnI6yLSp9J1gkTkNhFZICKZIrJTRD4UkfFVvKd3bPki8nKl/b8Skd0ikisir3o/eBpjTG2ISFfgZECBC45+9M9MBe4F7gGigV7Ah8C5dRehMcYY0/hYUmvqUxDOA1Z1BqtqC6A38DrwjIg8UrFTRC4B/gtMBzoB8cAfgPPd/THAQiAC5yGwJTAM+B44w+s6kcDXwOnA/wM6Az2A54AnROQP1cXmft3ida2zgAeAiUBXoDvwpxr91zDGmGO7DliE0yZeX9OTRKQncCdwpap+q6rFqlqoqjNU9Yn6CdUYY4xpHIJ8HYBp0p4Efisiz6lqTnUHqWom8KaIHATeEpFngGzgX8BjqurdU/q9+wXwK+AAcK2qlrvbcoDXKr3F08APqlo5ef1KRL4HvhGRuao6rwb3dD3wiqquAxCRx4AZOImuMcbU1nU4bd9iYJGIxKvqnhqcNxFIV9Ul9RqdMcYY0whZT62pT8nAXODXNTz+I5wPWkbg9N52Bt47yvGnA7O9EtqfEZFu7vX+KCJRIjLbHTo8S0T+B7TDSUjvqXTqPPe4D9zhgBX6A6u8fl4FxLu9xsYYc8JEZBzQBXhXVZcBqcBVNTw9Bsior9iMMcaYxsySWlPf/gDcLSJxxzpQVUuBTJy5YBVJ4tEe0mKB3RU/iMgFIpLjzr/9yt08EXjfTXwfxOnZ7YLTizwBEGAl4D0H91ScocV9gF3AJyJSMaqhBZDrdWzF65bHuj9jjDmG64Gv3NErADM5PAS5DAiudHwwUOq+zgLa13uExhhjTCNkSa2pV6q6FviEGgzPFZFgIA5n6HGWu/loD2lHPMSp6seqGoUzLDnE3dwW2Om+Hgi84841Wwasc7d39joGVZ2nqiXukOl7gW5AX3d3PtDKK4aK13nHuj9jjKmOiIQDlwGnuqNEduO0ZYNFZDCwHefDNm/dgG3u6zlAJxFJaqCQjTHGmEbDklrTEB4BbgU6HuO4yTi9EUuATcAO4OKjHD8HuFBEjvbvOJPDie8a4DIRCRWRYThDidvjzLl98SjXUJweXXAS4cFe+wYDe1Q162dnGWNMzV0IeIB+wBD3qy/wA84823eAG0VkhLt0Ty+cpHcWgKpuxil+97a71E+IiISJyBUiYnP+jTHGNGmW1Jp6p6opOA9kleetAiAi0SJyNfAs8DdVzVJVBe4DHhaRG0WklYgEiMg4EZnmnvovoA1Okake7oNeS5yHwQrfAReJiAB/BVrj9Hj8AfgS+A/wkqp+4MbSX0SGiEigiLQA/onTi7vBvd504GYR6ScibYDf41QpNcaY2rgeeE1Vt6vq7oov4BngapwP8R7AKYSXC3wGvAFM87rGPe7xz+IUzUsFLgL+11A3YYwxxviCOLmDMXVLRLYCt6jqN+7PnYHNwCJVPU1EFCjE6QUtwSm49JKqzqx0nUnAQ8BQ4CBOT+mTqvqpu78D8BhwDs681j3AfOAJVd3gHjMTWKuqf6kiziBVLfP6eQLwPM4SQgU4Swb9xu0FqTjmPuB+IBx4H7hdVYtP/L+WMcYYY4wx5kRZUmuaPBFpBXyB09v6b/d7G+BG4Eog6WgVlI0xxhhjjDGNlw0/Nk2eqh4AxuP08r6BM892OZAIXGQJrTHGGGOMMf7LemqNMcYYY4wxxvitWvXUisgkEdkkIilVVVd0C/c85e5f7Vacrdh3r4isFZF1IvJ/lc67273uOhH5e21iNMYYY4wxxhjTdAWd6IkiEohTYfEMIB1YKiIfq+p6r8POBnq6XyNxCvCMFJEBOEu8jMApEvSFiHyqqptFZDzO0i6DVLVYRNqeaIzGGGOMMcYY8//bu+/4Ksvzj+OfKxMTNgREIOwpygrLPStSlWq1joqUKojbWq3WTmvtz9HWUa0UhSoOcCuOqrhxMMLeEHbYEGYCmdfvj3PAQwiSkHHOSb7v1ysvcp7nfk6uo/DkfM9zP9ct1dtRh1oCgTTD3VcAmNkEAmE0NNQOBsYFl2eZYmb1zawZgbX3prh7TvDYLwksO/AwcAOBzrW5AO6++UiFNG7c2Fu3bl2OlyIi1dGMGTO2untKuOuoKDrXiUhJqtu5TkSkrMoTapsDa0MeZxK4GnukMc2B+cADZtaIwDItg4D04JiOwKlm9gCwD7jT3af/UCGtW7cmPT39h4aISA1kZqvDXUNF0rlOREpS3c51IiJlVZ5QayVsK951qsQx7r7IzB4CJgF7CKxRun+t0DgCy630B/oAr5pZWy/W0crMRgAjAFJTU4/6RYiIiIiIiEj0Kk+jqEygZcjjFsD60o5x9zHu3svdTwOygGUhx7zpAdOAIqBx8R/u7qPdPc3d01JSNONGRERERESkJipPqJ0OdDCzNmaWAFwBTCw2ZiJwTbALcn9gp7tvANjfAMrMUoFLgPHBY94Gzgru6wgkEFhXVEREREREROQgRz392N0LzOxm4CMgFhjr7gvMbGRw/yjgAwL3y2YAOcCwkKd4I3hPbT5wk7tvD24fC4w1s/kEOiMPLT71WERERERERATKd08t7v4BgeAaum1UyPcO3HSYY089zPY84Ory1CUiIiIiIiI1Q3mmH4uIiIiIiIiEVbmu1Erlyc4tYPKyLXyTsY3ateJo0yiZ1o2Tad04iZTaiZiV1FhaREREIpm7s2tfATty8sjKzmN7Th7bs/PZfuBxPn1aN+CSXi3CXaqISNRQqI0gm3bt45NFm/hk4Sa+Wb6NvIIikhNiyS0ooqDo+9uKayfG0apREq0bJx8Iu20aJ9G6UTINkxMUeEVERKpAaQLq9uw8snLy2B58vCMn76Df6SUpLCpSqBURKQOF2jBydxZv3M2khZv4ZNEm5mbuBCC1YRJD+rfinC5NSWvdAAPW7djLyq3ZrNqazaptOazcms38dTv5cP5GCkN+OdapFUebxsm0LhZ22zROpn5SQpheqYiISGTbH1C37w+nOXlkZecfElhLG1BjY4wGSfE0SEqgQXICbVMCHzw3SEo4sK1hcjz1kxKIj4nhz+8uYMbq7fzipNb8/sddqvjVi4hEN4XaKpZXUMS0lVl8smgTkxZuYt2OvZhBj5b1ueu8TpzbtSkdmtQ+5Gprq0bJtGqUDJ0Ofr78wiLWZuWwals2K7fmBENvNjPXbOe9uesJ/V1bPyn+QMANhN6kwPeNk6lbK74KXr2IiEjlK3tAzWNHTn6pA2q7lNo0SA48bpicQP2kQEANDax1a8WVaubUyq3ZXPf8dFZvy+FvF5/AVf1SK/o/h4hItadQWwV27s3niyWb+WTRZr5Yspnd+wqoFR/DKe1TuPXs9pzZuQlN6tQ6queOj42hbUpt2qbUPmRfbkEha7NyWLk1h9XbsgNXerdlM21lFm/PXkfoQkmNkhMC9+w2Cl7dDbnaWztRf01ERCQ8QgNqVk5eMJjmFwus30/1LV1ATQiE1AoOqGX1TcZWbnxpJmbwwrX9GNCuUYX/DBGRmkBppZKszco5MK142sosCoqcxrUTGNStGed0bcop7RtzTEJspdaQGBdL+yZ1aN+kziH79uUXsiYrJ2RKcyD0fpOxlTdm7jtobEqdxOC9uwffx9u6UXKlvwaRSGBmA4HHCazJ/ay7P1hsfz3gRSCVwHn17+7+XzNrCYwDjgWKgNHu/njIcbcANwMFwPvu/puqeD0i4XI0AXV7Tv5Bt9mE2h9Q90/jDQTUQGA9MNW3WGCtrIBaVi98t4o/v7uQdinJPHtNH1IbJYW7JBGRqKVQW0GKipy563bySTDILt64G4AOTWoz/LS2nNu1KT1a1CcmJvy/SAFqxcfSsWkdOjY9NPDm5BWweltgKvPKbcHQuzWHz5dsYUt65kFjj61b68A05laNkmlWrxZJCXEkJ8SSlPj9n0nxsSQlxpIQGxMRbyZESsvMYoGngHOBTGC6mU1094Uhw24CFrr7hWaWAiwxs5cIhNVfu/tMM6sDzDCzSe6+0MzOBAYDJ7p7rpk1qdpXJlI+xQPq9mKNkQ5M9Q02TqrogNogOYE6iZERUMsiv7CI+95dwItT1nB25yY8dkUP6ugWIBGRclGoLYd9+YV8u3wrkxZu5tNFm9i8O5fYGKNP6wb8/sddOKdLU1o3Tg53mWWWlBBHl2Z16dKs7iH79uQWHLiyu2pr8D7ebdl8vGAT27LzjvjccTFGUkIsSQlxJCXGkpwQF3wcEoKD25ITg38mxHFMQizJibHBwBw4NilkbHysllyWStMXyHD3FQBmNoFAGA0NtQ7UscC769pAFlDg7huADQDuvtvMFgHNg8feADzo7rnB/Zur6PWIHKKoyNm9ryBwpbQCAmpcjB00jXd/QA2d1hu4chof1QG1rHbk5HHjSzP5dvk2rj+9Lb85rzOxEfJht4hINFOoLaOte3L5bPFmPlm4icnLtrI3v5DaiXGc3jGFc7o24YyOTWiQXH27DNdOjKNb83p0a17vkH079+azZXcue/MKyc4rOPBnTm7wz7xCcvIKyM4N/Bl4XEh2bgFb9+SRk5Vz4HFOXuERlzwIlRAXcyAAJ4VcHT4QhBNjOSY+7qDHSQlxnNEphca1EyvyP5FUP82BtSGPM4F+xcY8CUwE1gN1gMvdvSh0gJm1BnoCU4ObOgKnmtkDwD7gTnefXuHVS41TUkDNyg7cZxraGGl/o6QdFRRQ919VrSkBtawyNu/m2ufT2bBjH/+4rDs/7a0le0REKopC7RG4O8u3ZB9YP3bGmu24w3H1anFZWgvO6dKUfm0bkhine0vrHRNPvWMqZgqVu5NXWBQMxoXk5BYE/jwkJBfbVyw4b9iZf1BQzskrOKgj9Ns3naxQK0dS0jvz4u/+zwNmA2cB7YBJZjbZ3XcBmFlt4A3g9v3bCJx/GwD9gT7Aq2bW1t0Pem4zGwGMAEhNVVfUmmZ/QM3af3W0AgLqgfCZlECHJrUPaYykgFrxPl+ymVtfnkVifAzjR/Snd6sG4S5JRKRaUagtQUFhETPX7GDSwo18smgzK7dmA9CteV1uO7sD53RpyvHH1dUv+UpkZiTGxZIYF0v9Cuyd4e7kFhQdCLkpdRRo5YgygZYhj1sQuCIbahiBqcQOZJjZSqAzMM3M4gkE2pfc/c1iz/tm8JhpZlYENAa2hD6xu48GRgOkpaWVfvqCRJzQgBoIpiHLy+yf6lsssO7YW7aAGvr4+/tQE2iYlED95HgF1Crm7oz5eiV/+2ARnY+tyzND02he/5hwlyUiUu0o1AbtyS1g8tItTFq0ic8Xb2Z7Tj7xscaAdo355cmtObtLU47TL6KoZ2bUio+lVnwsWjhBSmk60MHM2gDrgCuAq4qNWQOcDUw2s6YEVpReEbzHdgywyN3/WeyYtwlc2f3CzDoCCcDWSnsVUqGOJqBuz8njcHdV7A+oDZMC95kqoEa/3IJCfv/WfF6bkcnA44/ln5d3JylBb7tERCpDjT67bty5LzCteNEmvs3YRl5hEfWT4jmrUxPO6dqUUzs0VkdCkRrO3QvM7GbgIwJL+ox19wVmNjK4fxRwP/Ccmc0jMF35bnffamanAEOAeWY2O/iU97r7B8BYYKyZzQfygKHFpx5L1SgeUA9eXia/xMBa2oDaIPn7gLo/sH4/vff7MbUVUKuVrXtyGfnCDNJXb+fWsztw+9kdImb1AxGR6qjGhdo9uQWM/XolkxZuYt66nQDExxpndGrCT3o057SOjfXmQkQOEgyhHxTbNirk+/XAj0o47mtKvicXd88Drq7YSqWoyNm1L5/tOfkVElDjY4NNkhRQpZQWbdjFdc+ns3VPLv+6sicXdj8u3CWJiFR7NS7UfrJwE/+ctPSgbfmFzqSFm5i0cBMAZhzoopucGNIxt9iyM7UTD16WJjD2+/0Hd96N1ZscEZEyKCmgfr+8TH6xwBqY6nukgLq/GVKD5Hg6Nq0dEli/b4zUMGSMAqqUxUcLNvKrV2ZTp1Ycr40cwIkt6oe7JBGRGqFcodbMBgKPE5iS96y7P1hsvwX3DwJygF+4+8zgvtuA4QSuYjzj7o8Ft/85uH1/s5T9U/UqxE96NqdPm4bs3pd/oENudu733XL3d9rdU+xxdl4B27LzWJ2Vc6D7bnZuwWHfPBVXPCjvX34mOfHgoJycGAzHxccGtykoi0g02h9Qs0pc/7T8AbXTsXUOG1D3r4eqgCqVxd359xfLeeSjJXRvUY/R16TRtG6tcJclIlJjHHWoNbNY4CngXAJdPKeb2UR3Xxgy7HygQ/CrH/A00M/MuhEIrn0J3Ev2oZm97+7Lgsc96u5/P9rajiTQebD8TZ+Kd9LNDllKJjt3/zIyBYcsSbMn9+CgvCYrJzA+uCTN4TpdFne4oJx0IBgffMW4duKhQTkpITa4XUFZRErncAF1e4mBNbBtRykC6v7w2enYOiGBNbDczP7AqoAqkWZffiF3vzGXd2avZ3CP43jopydSK17L/ImIVKXyXKntC2S4+woAM5sADAZCQ+1gYFyw+ckUM6tvZs2ALsAUd88JHvslcDHwcDnqqXKV0Ul3f1Dev7Zq8aB84MpysaC8P0Rn5xWQlZ3H2qwccvIK2ZNb9qCcFP/9VOqDgnKxK8WhU7IPCcwJcQembisoi0SugwPq9+udVlVAbZCcQHKCzhESnTbt2seIcenMydzJXed14sYz2unvsohIGJQn1DYH1oY8ziRwNfZIY5oD84EHzKwRsJfA9OT0kHE3m9k1wW2/dvft5agzqoQG5YbJCRXynMWD8vdh99Bp19nFgnLgyvLBQXn/mLIG5f3TrA9Mrz7kfuTi9y5/Px07NFzXToxTUBY5gsIi5+uMrWzate+QgLo9pFFSaQNqg6SEAwE1EFgDAXV/YFVAlZpmbuYOho9LZ/e+Av4zpDfnHX9suEsSEamxyhNqS3rXUvytUYlj3H2RmT0ETAL2AHOAguD+pwksj+HBP/8B/PKQH242AhgBkJqaejT11xhVFZSzD3N/cnZeyFTskKvO2yswKB++cdehQXl/MC5+FfqY+FgtuSDVxrfLtzJ07LQDj+NijIbJRw6ooeuhKqCKlOzdOeu587U5NK6dyBs3nESXZnXDXZKISI1WnlCbCbQMedwCWF/aMe4+BhgDYGZ/C47F3TftH2xmzwDvlfTD3X00MBogLS1NaztWscoKynmFRSH3IwfvMw5pzHXQtOsSpmdvz84jc/veYLguf1D+4cZdBwflA1eWFZQlApzSvjFPXdWLcd+tYurKLGJijFM7pHDNgFZ0b1k/3OWJRKWiIuexT5byxGcZ9GndgKev7k3j2onhLktEpMYrT6idDnQwszbAOuAK4KpiYyYSmEo8gcDU5J3uvgHAzJq4+2YzSwUuAQYEtzfbP4bAfbbzy1GjRBEzIzEulsS4ig/KObnf318cGpQPbtxV/D7lg4NyoCt22YIycHAILkXjrh+anq2gLKVlZvz4xGb8+MRmLNm4mxemrOLNmet4Y2Ym3VvUY8iA1lxwYjM1tBEppZy8Au54ZQ4fLtjIZb1b8NeLu5EYp38/IiKRwAI9nI7yYLNBwGMElvQZ6+4PmNlIAHcfFVzS50lgIIElfYa5e3rw2MlAIyAfuMPdPw1ufwHoQWD68Srg+pCQW6K0tDRPT0//oSEiFSY0KO/vWL0n9+Cg/H3jrpIbepU0PbugjEE5EIwPXRO5xMAcbNx1SFAO/lldg7KZzXD3tHDXUVHKe67bvS+fN2euY9x3q1i+JZsGSfH8rE9Lru7XipYNkyqwUpHqZd2OvQx/Pp3FG3dx76AuXHtKm4iaml/dznUiImVVrlAbKRRqpTrILSg8KCjvv1IcGpQPCcw/0BX7aINy8g90ui6xK3ax6dn7p2UnRUBQrm5v9CrqXOfufLd8G+O+W82kRZsocuesTk0YMqAVp3VICfv/N5FIMmN1Fte/MIPc/CKeuKonZ3ZqEu6SDlHdznUiImVVnunHIlKB9k+9blBBU68B8oLrKIcG5R9aLmpPscc79uazfsfeA4G5PEH54GB8mCWhSpx2HXr/shoXVQQz46T2jTmpfWM27NzLy1PXMH7aGj7972ZaN0ri6v6tuKx3S+olxYe7VJGwen1GJve+OY9m9WsxYUQa7ZvUCXdJIiJSAl2pFZEyySsoOrDUU/Gg/EPLRe0p9nj/2LIE5WEnt+ZPFx5f6lqr29WLyjzX5RUU8b/5G3jhu9Wkr95OrfgYBndvzpABrejWvF6l/EyRSFVY5Dz84WL+89UKTmrXiH//vBf1kyruA8eKVt3OdSIiZaUrtSJSJglxMSTEJVToG7z9Qfn7APx96B391QpmrN5O49qJDDqhWYX9TDlYQlwMg3s0Z3CP5ixYv5MXp6zm7VnreSV9Lb1S63PNgNacf8Kxaowj1d7uffncNmE2ny3ezJD+rfjjhV2Jj40Jd1kiIvIDdKVWRCLSlt253PnaHL5cuoWzOzfhoUtPLPPSGdXt6kVVn+t27s3n9RmZvDhlNSu3ZtO4dgKX92nJVf1a0bz+MVVWh0hVWbMth2ufn86Krdn8+cKuDBnQOtwllUp1O9eJiJSVPnoUkYjz2eJNDHzsK6as2MZfBh/Ps0PTwroWpJkNNLMlZpZhZveUsL+emb1rZnPMbIGZDQtub2lmn5vZouD220o49k4zczNrXBWvpSzqHRPPtae04dM7TmfcL/vSo2UDnv5iOac+9BkjxqXz9bKtVIcPRkUAvlu+jcFPfc3m3bm88Mu+URNoRURE049FJILsyy/k/z5YxPPfrabzsXUYP6I/HZuGtzGLmcUCTwHnApnAdDOb6O4LQ4bdBCx09wvNLAVYYmYvAQXAr919ppnVAWaY2aT9x5pZy+DzrqnK11RWMTHGaR1TOK1jCmuzcnh52hpemb6Wjxduom1KMkP6t+KnvVtQt5YaS0l0ennqGv74znxaNUpizNA+tG6cHO6SRESkDBRqRSQiLN64i9vGz2bJpt0MO7k1dw/sTK34iLh/sy+Q4e4rAMxsAjAYCA21DtQJrs1dG8gCCoJrbG8AcPfdZrYIaB5y7KPAb4B3quKFVISWDZO4e2Bnbju7Ax/M28C471Zz37sLeeSjJfykZ3OuGdCKzsfWDXeZIqVSUFjEX99fxHPfruL0jin866qe+nBGRCQKKdSKSFi5O899u4r/+99i6taK57lhfTgjstaBbA6sDXmcCfQrNuZJYCKwHqgDXO7uRaEDzKw10BOYGnx8EbDO3edE4zJFteJjuaRXCy7p1YJ5mTsZ990q3piRyctT19C3dUOGDGjFwG7HqsGORKydOfnc9PJMvs7YynWntOG3g7oQqzWaRUSikkKtiITNlt253PX6HL5YsoWzOjfh4aNoBlUFSnqXW/xG0vOA2cBZQDtgkplNdvddAGZWG3gDuN3dd5lZEvA74EdH/OFmI4ARAKmpqUf7GirVCS3q8chl3bl3UBdem7GWF6es4Zbxs0ipk8iVfVO5qm8qx9arFe4yRQ5YvmUP1z2fTub2HB6+9ER+ltYy3CWJiEg5KNSKSFh8vngzd70+h937CvjL4OMZ0r8VEXrFMhMIfcfbgsAV2VDDgAc90DUpw8xWAp2BaWYWTyDQvuTubwbHtwPaAPuv0rYAZppZX3ffGPrE7j4aGA2B7scV+soqWIPkBEac1o7rTmnLl0u3MO67Vfzrs2U89XkG5x3flCH9W9O/bcNI/f8sNcRXS7dw08szSYiN4eXh/enTumG4SxIRkXJSqBWRKrUvv5AH/7eY575dRedj6/Dy8PA3gzqC6UAHM2sDrAOuAK4qNmYNcDYw2cyaAp2AFcF7bMcAi9z9n/sHu/s84MAcazNbBaS5+9bKfCFVJSbGOLNzE87s3ITV27J5aWqgsdQH8zbSsWlthvRvxcW9WlA7Ub+CpOrsv9Xh/vcW0rFpHZ65Jo2WDZPCXZaIiFQAvaMQkSoTwc2gDsvdC8zsZuAjIBYY6+4LzGxkcP8o4H7gOTObR2C68t3uvtXMTgGGAPPMbHbwKe919w+q/IWESatGydw7qAt3nNuRiXPW88J3q/nDOwt46MMlXNIr0FiqfZOI/lBDqoG8giL+NHE+46et5dyuTXns8h4k60MVEZFqw6rDGoNpaWmenp4e7jJE5DCKN4N65LITObMKmkGZ2Qx3T6v0H1RFqsO5zt2ZvXYHL3y3mvfmbiCvsIgBbRtxzYBWnNWlCYlxkf0hh0SfrOw8Rr44g2krs7jpzHb8+txOxFSzhlDV7VwnIlJW+phSRCpVaDOoMzul8Mhl3SOxGZRUETOjZ2oDeqY24Hc/7sIr6Wt5acoabnhpJolxMfRKbUC/tg3p16YRPVPrR/yVfIlsSzbu5trnp7N5dy6PX9GDwT2ah7skERGpBAq1IlJp9jeD2rWvgPsuOp5rBkRsMygJg0a1E7nxjPZcf1o7vlq2ha+XbWXKim08/uky3JeREBtDj5b1D4TcXq3qk5SgX1tSOp8s3MRtE2aRnBjHq9cPoEfL+uEuSUREKoneHYhIhQttBtWpaR1euq4/nY7VfZNSstgY48xOTQ5MSd+5N5/0VVlMXZnF1BXb+PcXy/nXZxnExRgntqhHv7aN6NemIWmtG6rZlBzC3fnPVyt46MPFdDuuHs9ck6YlpUREqrlyvRsws4HA4wSapzzr7g8W22/B/YOAHOAX7j4zuO82YDiBpirPuPtjxY69E3gESKkuHUFFaoIlG3dz6/hZLNm0m1+c1Jp7zo/8ZlASWeodE8/ZXZpydpemAOzJLTgo5D7z1Qqe/mI5sTFGt+Pq0r9tI/q1DYTcurXiw1y9hNO+/ELufXMeb85axwUnNuORS7tzTILOPyIi1d1Rh1oziwWeAs4lsI7jdDOb6O4LQ4adD3QIfvUDngb6mVk3AoG2L5AHfGhm77v7suBztww+75qjrU9Eqpa78/y3q/jb/xZTt1Yc/x3Wp0qaQUn1VzsxjjM6NeGM4N+nnLwCZq7ewZQV25i6chv//WYV//lqBTEGXY+rS782gSu5fds0pH5SQpirl6qyefc+rn9hBrPW7OCOcztyy1ntdbuDiEgNUZ4rtX2BDHdfAWBmE4DBQGioHQyM80CL5SlmVt/MmgFdgCnunhM89kvgYuDh4HGPAr8B3ilHfSJSRbbuyeWu1+bwebAZ1MOXdieljppBSeVISojjlA6NOaVDYyBwdW7mmu1MXZHF1JXbeHHKasZ8vRIz6NS0TuBKbjDkNlKTsmpp/rqdDB+Xzo6cfJ7+eS/OP6FZuEsSEZEqVJ5Q2xxYG/I4k8DV2CONaQ7MBx4ws0bAXgLTk9MBzOwiYJ27z9EnrCKR7/Mlm7nrtUAzqD9f2JWhJ7XW1RGpUrXiYzmpXWNOahcIubkFhcxZu5OpK7YxdWUWr0xfy3PfrgKgQ5Pa9GvbkP5tG9G3TUOa1NG9ltHug3kbuOPV2TRMSuD1GwZw/HH1wl2SiIhUsfKE2pLetRZf9LbEMe6+yMweAiYBe4A5QIGZJQG/A350xB9uNgIYAZCamlqWukWkAhRvBvXidf3ofGzdcJclQmJcLH2DV2ZvAfIKipi3bidTV25jyoos3pq5jhenBO5uaZuSTL82jegf7LCshkLRw9154tMMHv1kKb1S6/OfIWmaISIiUkOVJ9RmAi1DHrcA1pd2jLuPAcYAmNnfgmPbAW2A/VdpWwAzzayvu28MfWJ3Hw2MBkhLSysepkWkEi3ZuJvbJsxi8UY1g5LIlxAXQ+9WDejdqgE3ngEFhUXMX7/rwJXc9+asZ/y0QMht1SiJfm0CAbdf24a0aJAU3uKlRHvzCrnz9Tm8P3cDl/Rqzv9dcgKJcToHiYjUVOUJtdOBDmbWBlgHXAFcVWzMRODm4P22/YCd7r4BwMyauPtmM0sFLgEGuPt24EBnGTNbBaSp+7FIZHB3xn23mgc+WKRmUBK14oLr3/ZoWZ/rT29HYZGzaMOuYOOpLD5asIlX0zMBaF7/mMB05TaN6N+2ES0bHqPp9WG2Yedeho9LZ8H6Xdw7qDPDT22r/yciIjXcUYdady8ws5uBjwgs6TPW3ReY2cjg/lHABwTul80gsKTPsJCneCN4T20+cFMw0IpIhNq6J5ffvD6XzxZv5oxOKTyiZlBSTcTGGN2a16Nb83pcd2pbioqcJZt2H7iS+8WSLbw5cx0AzerVol+bhgxo14jTOqbQrN4xYa6+Zpm1ZjsjXpjB3rxCnr0m7cCyTyIiUrNZoDFxdEtLS/P09PRwlyFSbX2xZDN3vjaXXfvyuff8zlHTDMrMZrh7WrjrqCg614WHu7Ns8x6mrtjGlJVZTF2RxdY9uUCgu/IZnVI4vVMKaa0akhAXE+Zqq6+3ZmVy9xvzaFo3kTFD+9CxaZ1wlxQxqtu5TkSkrMoz/VhEqrl9+YU89OFi/vvN/mZQfdUMSmocM6Nj0zp0bFqHIQNa4+4s3bSHL5du5oslWxj7zUr+89UKkhNiOal940DI7Zii+3ErSFGR88jHS3j6i+X0a9OQp6/uTcNkrT8sIiLfU6gVkRKpGZRIycyMTsfWodOxdRhxWjv25Bbw3fJtfLEkEHInLdwEQPsmtTmjY+Aqbt82DdXI6CjsyS3g9gmz+WTRJq7sm8p9Fx2vq+EiInIIhVoROcj+ZlB/+2ARdWrF8d9f9OHMzjW7GZSZDQQeJ9A/4Fl3f7DY/nrAi0AqgfPq3939v2bWEhgHHAsUAaPd/fHgMY8AFwJ5wHJgmLvvqJpXJBWpdmIc53Ztyrldm+LuLN+SzRdLNvPl0i2M+241z369kmPiYzmpXSNO75TCGR2bkNpIV3GPZG1WDsPHpbNs8x7uu+h4rhnQKipuexARkaqnUCsiB2zdk8vdr8/lUzWDOsDMYoGngHMJLD023cwmuvvCkGE3AQvd/UIzSwGWmNlLQAHwa3efaWZ1gBlmNil47CTgt8Gmew8BvwXursrXJhXPzGjfpDbtm9TmulPbkpNXwJQV2/hiyRa+WLKFTxdvBhbQtnEyp3VM4YxOKfRv20izIIqZtjKLkS/OoKCwiOeG9eHUDinhLklERCKYQq2IAPDl0i38+tU57NqXz58u7MovoqQZVBXoC2S4+wqA4BJlg4HQUOtAHQv8B6sNZAEFwSXMNgC4+24zWwQ0JxCAPw45fgpwaaW/EqlySQlxnNW5KWd1DnTpXbn1+6u446et4blvV5EYF0P/to04o1MKZ3RqQutGSTX6394r09fw+7fn07JBEs8OTaNtSu1wlyQiIhFOoVakhtuXX8jDHy5h7Dcr6di0tppBHao5sDbkcSaBdbdDPUlgXe71QB3gcncvCh1gZq2BnsDUEn7GL4FXKqheiWBtGifTpnEbhp3chn35hcElgzbz5ZIt3PfuQu57dyGpDZOCATdwFTcpoWb8qi4oLOJvHyxm7DcrObVDY568shf1kuLDXZaIiESBmvGbUkRKtHTTbm4dH2gGNXRAK347qIumQR6qpEtmxddCOw+YDZwFtAMmmdlkd98FYGa1gTeA2/dvO/DkZr8jME35pRJ/uNkIYARAamrq0b8KiTi14mM5vWOgUzIXwpptOQc6Kr+Wnsm471aTEBdDvzYNOT04VbldSu1qeRV35958bhk/i6+WbuEXJ7Xm9z/uQlysGkKJiEjpKNSK1EDuzgtTVvPA+4uonRjH2F+kHZgeKYfIBFqGPG5B4IpsqGHAgx5Y+DvDzFYCnYFpZhZPINC+5O5vhh5kZkOBC4Cz/TCLhrv7aGA0BNaprYDXIxEqtVESQwa0ZsiA1uQWFDJ95fYDU5X/+v4i/vr+IprXPybYbCqFk9o3pnZi9P8aX7k1m2ufn86abTn83yUncGVffXgjIiJlE/2/DUWkTLbtyeU3wWZQp3dM4ZHLTqRJnVrhLiuSTQc6mFkbYB1wBXBVsTFrgLOByWbWFOgErAjeYzsGWOTu/ww9INhR+W7gdHfPqeTXIFEmMS6WUzo05pQOjfk9kLk9hy+XbuHLJVt4Z9Y6Xp66hvhYI61VwwP34nZsGn1Xcb9etpWbXp5JjMGL1/Wjf9tG4S5JRESikB3m4kBUSUtL8/T09HCXIRLxQptB/fb8zgwd0JqYmOh6E1wWZjbD3dMq4HkGAY8RWNJnrLs/YGYjAdx9lJkdBzwHNCMwXflBd3/RzE4BJgPzCCzpA3Cvu39gZhlAIrAtuH2Ku4/8oTp0rhOAvIIi0ldnHQi5izfuBqBZvVoHpimf1L4xdWtF9v2o475bxX3vLqRdSjJjhvahZUMtc3S0KupcJyISrRRqRWqA4s2gnriyZ41oBlXd3ujpXCcl2bBzL18tDSwZ9PWyrezOLSAuxujVqgFndArcs9u1Wd2IuYqbX1jEfe8u4MUpazi7cxMeu6IHdSI8gEe66nauExEpK00/Fqnmlm3azS1qBiVSbTWrdwyX90nl8j6p5BcWMWvNjgP34j784RIe/nAJf7+sO5f2bhHuUtmenceNL83kuxXbGHl6O+46rxOx1Xi2iIiIVA2FWpFqyt15ccpq/qpmUCI1RnxsDH3bNKRvm4b8ZmBnNu/ax5dLt3Bax8bhLo1lm3Zz7fPpbNy5j3/+rDuX9Ap/yBYRkepBoVakGtq2J5e735jLJ4vUDEqkJmtStxaXpbU88sBK9vnizdwyfha14mMZP6I/vVs1CHdJIiJSjSjUilQzXy3dwq9fm8POnHz+eEFXfnFS9W4GJSKRy915dvJK/va/RXRtVpdnrknjuPrHhLssERGpZhRqRaqJ3IJCHvpfoBlUhya1GffLvnRpVv2bQYlIZMotKOR3b83n9RmZnN/tWP7xs+4kJehth4iIVLyY8hxsZgPNbImZZZjZPSXsNzN7Irh/rpn1Ctl3m5nNN7MFZnZ7yPb7g2Nnm9nHwaUyROQHLNu0m5889S1jv1nJNQNa8e4tpyjQikjYbN2Ty1XPTOX1GZncdnYHnrqqlwKtiIhUmqP+DWNmscBTwLlAJjDdzCa6+8KQYecDHYJf/YCngX5m1g0YDvQF8oAPzex9d18GPOLufwj+jFuBPwI/uHajSE3l7rw4dQ1/fW8hyYlxjBmaxtld1AxKRMJn4fpdDB+XzrbsXJ68qicXnKjPpkVEpHKV52PTvkCGu68AMLMJwGAgNNQOBsZ5YDHcKWZW38yaAV2AKe6eEzz2S+Bi4GF33xVyfDIQ/QvpilSCQDOoeXyyaBOndUzh72oGJSJh9uH8jfzqldnUOyae164/iRNa1At3SSIiUgOUJ9Q2B9aGPM4kcDX2SGOaA/OBB8ysEbAXGASk7x9kZg8A1wA7gTPLUaNItRTaDOoPF3RlmJpBiUgYuTtPfZ7B3z9eSveW9XlmSG+a1NWHbCIiUjXKE2pLegdd/KpqiWPcfZGZPQRMAvYAc4CCkAG/A35nZr8Fbgb+dMgPNxsBjABITU09qhcgEm1yCwp5+MMljPk60Azq+WF96Xqc7p0VkfDZl1/IXa/P5d056/lJj+N48KcnUis+NtxliYhIDVKeUJsJhC5+1wJYX9ox7j4GGANgZn8Lji3uZeB9Sgi17j4aGA2QlpamKcpS7S3btJtbJ8xm0YZdDOnfit/9uIveOIpIWG3atY/h49KZt24nvxnYiRtOb4eZZo2IiEjVKk+onQ50MLM2wDrgCuCqYmMmAjcH77ftB+x09w0AZtbE3TebWSpwCTAguL1DsGEUwEXA4nLUKBL1ijeDevaaNM7pqmZQIhJec9buYMQL6ezeV8B/ru7Nj44/NtwliYhIDXXUodbdC8zsZuAjIBYY6+4LzGxkcP8o4AMC98tmADnAsJCneCN4T20+cJO7bw9uf9DMOgFFwGrU+VhqsKzsPH7z+lw+WbSJUzs05h+Xddd9aiISdhPnrOeu1+bQuHYib9xwkpYQExGRsCrXonHu/gGB4Bq6bVTI9w7cdJhjTz3M9p+WpyaR6mLysi3c8aqaQYlI5Cgqch79ZCn/+iyDPq0bMOrq3jSqnRjuskREpIaLCXcBInKw3IJC/vreQoaMmUb9Y+J5+6aTufaUNgq0YWRmA81siZllmNk9JeyvZ2bvmtkcM1tgZsOC21ua2edmtii4/baQYxqa2SQzWxb8s0FVviaRssrOLeCGl2bwr88y+FlaC166rr8CrYiIRIRyXakVkYqVsXk3t46fzcJgM6h7B3XhmAQ1gwonM4sFngLOJdDQbrqZTXT30DW5bwIWuvuFZpYCLDGzlwh0df+1u880szrADDObFDz2HuBTd38wGJTvAe6uytcmUlqZ23MYPm4GSzbu4g8XdOWXJ7dWQygREYkYCrUiEcDdeWnqGv76/kKSEtQMKsL0BTLcfQVAsPHdYCA01DpQxwLv8msDWUBBsDHeBgB3321miwis1b0w+BxnBI9/HvgChVqJQDNWZ3H9CzPILSjiv8P6cnrHlHCXJCIichCFWpEwy8rO4+435jJpoZpBRajmwNqQx5kEurmHepJAt/f1QB3gcncvCh1gZq2BnsDU4Kam+7vBu/sGM2tS8aWLlM9r6Wv53VvzOa5+LSaM6EP7JrXDXZKIiMghFGpFwii0GdTvf9yFX56se2cjUEn/Q4qvjX0eMBs4C2gHTDKzye6+C8DMagNvALfv31bqH242AhgBkJqaWrbKRY5SYZHz0IeLGf3VCk5u34inrupF/aSEcJclIiJSIoVakTDILSjk7x8t4ZnJK2nfpDbPDevD8cfVC3dZUrJMoGXI4xYErsiGGgY8GOz4nmFmK4HOwDQziycQaF9y9zdDjtlkZs2CV2mbAZtL+uHuPhoYDZCWllY8TItUuN378rl1/Cw+X7KFawa04g8XdCU+Vn0lRUQkcinUilSxjM17uHX8LBZu2MXV/VP53aCuagYV2aYDHcysDbAOuAK4qtiYNcDZwGQzawp0AlYE77EdAyxy938WO2YiMBR4MPjnO5X3EkRKZ/W2bK59Pp2VW7O5/yfdGNK/VbhLEhEROSKFWpEq4u68PG0N978XaAb1zDVpnKtmUBHP3QvM7GbgIyAWGOvuC8xsZHD/KOB+4Dkzm0dguvLd7r7VzE4BhgDzzGx28CnvDa7x/SDwqpldSyAUX1alL0ykmG+Xb+XGl2YC8MK1fTmpXeMwVyQiIlI6CrUiVUDNoKJbMIR+UGzbqJDv1wM/KuG4ryn5nlzcfRuBq7siYffS1NX86Z0FtG6czJihabRqlBzukkREREpNoVakkn29bCt3vDqbHWoGJSIRpqCwiPvfW8jz363mzE4pPH5lT+rWig93WSIiImWiUCtSSUKbQbVLSea/agYlIhFkZ04+N708k68ztjL81Dbcc34XYvWBm4iIRCGFWpFKkLF5D7dNmMWC9WoGJSKRJ2PzHoaPSydzew4PX3oiP0treeSDREREIpRCrUgFCm0GdUx8rJpBiUjE+WLJZm4ZP4uE2BjGD+9PWuuG4S5JRESkXBRqRSpIVnYe97wxl4/VDEpEIpC7M/abVTzw/kI6Nq3Ds0PTaNEgKdxliYiIlJtCrUgF2N8MantOnppBiUjEySso4o/vzGfC9LX8qGtTHr28B8mJegsgIiLVg36jiZRDXkERf/94CaO/WkG7lGTG/qIP3ZqrGZSIRI5te3K54cWZTFuVxS1ntedX53TUh24iIlKtxJTnYDMbaGZLzCzDzO4pYb+Z2RPB/XPNrFfIvtvMbL6ZLTCz20O2P2Jmi4Pj3zKz+uWpUaSyZGzew8X//obRX63g5/1See+WUxVoRSSiLN64i8FPfcOczB08fkUPfv2jTgq0IiJS7Rx1qDWzWOAp4HygK3ClmXUtNux8oEPwawTwdPDYbsBwoC/QHbjAzDoEj5kEdHP3E4GlwG+PtkaRyuDuvDx1DRf8azLrd+xl9JDePHDxCepuLCIRZdLCTfz039+SV1DEq9cPYHCP5uEuSUREpFKUZ/pxXyDD3VcAmNkEYDCwMGTMYGCcuzswxczqm1kzoAswxd1zgsd+CVwMPOzuH4ccPwW4tBw1ilSo7dl53PPmXD5asIlT2jfmHz/rTlM1gxKRCOLuPP3lch75aAknNK/H6CFpHFtP5ykREam+yhNqmwNrQx5nAv1KMaY5MB94wMwaAXuBQUB6CT/jl8Ar5ahRpMJ8kxFoBpWVncfvBnXh2lPUDEpEIsu+/ELueWMub89ezwUnNuORS7trFomIiFR75Qm1Jb2b99KMcfdFZvYQganGe4A5QMFBB5r9LrjtpRJ/uNkIAlOaSU1NLVvlImWQV1DEPz5ewujJK2jbOJkxQ9UMSkQiz+Zd+xjxwgxmr93Br8/tyM1ntcdMH7yJiEj1V55Qmwm0DHncAlhf2jHuPgYYA2BmfwuOJfh4KHABcHZw6vIh3H00MBogLS2txDEi5bV8yx5umzCL+et2cVW/VP7w46666iEiEWf+up0MH5fOjpx8Rl3dm4Hdjg13SSIiIlWmPKF2OtDBzNoA64ArgKuKjZkI3By837YfsNPdNwCYWRN332xmqcAlwIDg9oHA3cDp+++5Falq7s6E6Wv5y7sLqRUfw3+G9Oa84/UmUUQiz/tzN/Dr12bTMCmB128YwPHHaSaJiIjULEcdat29wMxuBj4CYoGx7r7AzEYG948CPiBwv2wGkAMMC3mKN4L31OYDN7n79uD2J4FEYFJw2tQUdx95tHWKlFVoM6iT2zfinz/roWZQNVzww7bHCZzrnnX3B4vtrwe8CKQSOK/+3d3/G9w3lsDMk83u3i3kmB7AKKAWgVstbnT3aZX/aqS6KCpynvhsGY99sozerRow6urepNRJDHdZIiIiVa48V2px9w8IBNfQbaNCvnfgpsMce+phtrcvT00i5RHaDOreQZ257pS2agZVw4UsX3YugdskppvZRHcP7fR+E7DQ3S80sxRgiZm95O55wHMEPqwbV+ypHwbuc/f/mdmg4OMzKvfVSHWRk1fAna/N4YN5G/lprxb87ZJuJMbp1ggREamZyhVqRaqL0GZQbdQMSg5WmuXLHKhjgekltYEsgs3v3P0rM2tdwvM6UDf4fT0O7UkgUqL1O/YyfFw6Czfs4t5BnRl+als1hBIRkRpNoVZqvOVb9nD7hNnMW7dTzaCkJKVZvuxJAj0E1gN1gMvdvegIz3s78JGZ/R2IAU6qkGqlWpu5Zjsjxs1gX34hY4amcVbnpuEuSUREJOwUaqXGCm0GlahmUHJ4pVm+7DxgNnAW0I5AT4DJ7r7rB573BuBX7v6Gmf2MQDf4cw754Vq+TILenJnJPW/O49i6tRg/vB8dmtYJd0kiIiIRQaFWaiQ1g5IyKM3yZcOAB4N9BDLMbCXQGfihxk9DgduC378GPFvSIC1fJkVFzsMfLWHUl8vp37YhT/+8Nw2SE8JdloiISMRQqJUa59uMrdzx6hy2ZeeqGZSURmmWL1sDnA1MNrOmQCdgxRGedz1wOvAFgSu8yyqwZqkm9uQWcPuEWXyyaDNX9UvlvouOJz42JtxliYiIRBSFWqkx8gqK+MekJYz+KtAM6tmhJ6sZlBxRKZcvux94zszmEZiufLe7bwUws/EEuho3NrNM4E/uPgYYDjxuZnHAPoJTjEX2W5uVw3XPp5OxZQ9/GXw8Q/q3UkMoERGREijUSo2wYssebgs2g7qybyp/uKALSQn66y+lU4rly9YDPzrMsVceZvvXQO8KLFOqkakrtjHyxRkUFjnPD+vLKR0ah7skERGRiKV39VKtuTuvTF/LfcFmUKOu7s3AbmoGJSKRa8K0Nfz+7fmkNkri2WvSaJtSO9wliYiIRDSFWqm2duTkcc8b8/hwwUZOahdoBnVsPTWDEpHIVFBYxAMfLOK/36zitI4p/OvKntQ7Jj7cZYmIiEQ8hVqplr5dvpU7Xgk0g/rt+Z0ZfqqaQYlI5Nq5N5+bX57J5GVb+eXJbbh3UGfi1BBKRESkVBRqpVrJKyjin5OW8p+vltOmkZpBiUjkW7FlD9eNS2dtVg4PXnICV/TVesQiIiJloVAr1cbBzaBa8ocLuqoZlIhEtMnLtnDTSzOJi43hxWv70a9to3CXJCIiEnX0jl+inrvzavpa/jxRzaBEJDq4O+O+W81f3ltI+5TaPDs0jZYNk8JdloiISFRSqJWotiMnj9++OY//zVczKBGJDvmFRfxp4gJenrqGc7o04bErelI7Ub+ORUREjpZ+i0rUUjMoEYk227PzuOGlGUxZkcUNZ7Tjzh91IlbnLRERkXJRqJWok1dQxKOfLGXUl4FmUM9cczIntFAzKBGJbEs37ea659PZuGsfj17enYt7tgh3SSIiItVCudYLMLOBZrbEzDLM7J4S9puZPRHcP9fMeoXsu83M5pvZAjO7PWT7ZcFtRWaWVp76pPpZsWUPl476lqe/WM4VfVry3q2nKNCKSMT7bPEmLvn3t+TkFTJhRH8FWhERkQp01FdqzSwWeAo4F8gEppvZRHdfGDLsfKBD8Ksf8DTQz8y6AcOBvkAe8KGZve/uy4D5wCXAf462Nql+QptBJcTFMOrqXgzs1izcZYmI/CB355nJK/i//y2ma7O6PHNNGsfVPybcZYmIiFQr5Zl+3BfIcPcVAGY2ARgMhIbawcA4d3dgipnVN7NmQBdgirvnBI/9ErgYeNjdFwW3laM0qU6KN4P6x8+606ye3hSKSGTLLSjk3jfn88bMTAadcCx/v6y7lhkTERGpBOX57docWBvyOJPA1dgjjWlO4GrsA2bWCNgLDALSy1GLVFPfLd/GHa/OZsvuXO45vzMj1AxKRKLAlt25XP9COjPX7OD2czpw61kddO4SERGpJOUJtSX9dvbSjHH3RWb2EDAJ2APMAQrK9MPNRgAjAFJTU8tyqESB/MIi/jnp+2ZQb92oZlAiEh0WrN/J8OfTycrJ46mrevHjE3WrhIiISGUqT6OoTKBlyOMWwPrSjnH3Me7ey91PA7KAZWX54e4+2t3T3D0tJSWlzMVL5Fq5NZufPh1oBnV5mppBSfiVoilePTN718zmBBvdDQvZN9bMNpvZ/BKOuyX4vAvM7OHKfh1S+T6cv4FLn/4OB14feZICrYiISBUoz5Xa6UAHM2sDrAOuAK4qNmYicHPwftt+wE533wBgZk3cfbOZpRJoDDWgHLVINeDuvJaeyZ/fXUB8bAxP/7wX55+gN4QSXqVsincTsNDdLzSzFGCJmb3k7nnAc8CTwLhiz3smgb4DJ7p7rpk1qYKXI5XE3Xnyswz+MWkpPVrWZ/SQ3jSpWyvcZYmIiNQIRx1q3b3AzG4GPgJigbHuvsDMRgb3jwI+IHC/bAaQAwwLeYo3gvfU5gM3uft2ADO7GPgXkAK8b2az3f28o61TosPOnHx++9ZcPpi3kQFtG/HPy9UMSiJGaZriOVDHAh3uahOYfVIA4O5fmVnrEp73BuBBd88Njttcaa9AKtW+/ELuen0u785Zz8U9m/N/l5xArfjYcJclIiJSY5SrDaO7f0AguIZuGxXyvRO4glHSsaceZvtbwFvlqUuiy5QV2/jVK4FmUHcP7MyI09oSq4YqEjlK0xTvSQIzU9YDdYDL3b3oCM/bETjVzB4A9gF3uvv0iilZqsrGnfsY8UI689bt5O6BnRl5elt17xcREaliWltAwia/sIhHJy3l6S+X07pRMm/eeBIntqgf7rJEiitNU7zzgNnAWUA7YJKZTXb3XT/wvHFAA6A/0Ad41czaBj8M/P6HqylexJq9dgcjxqWTnVvA6CFpnNu1abhLEhERqZEUaiUsVm7N5vYJs5iTuZPL01ryxwu7kpyov44SkUrTFG8YganEDmSY2UqgMzDtCM/7ZvCYaWZWBDQGtoQOcvfRwGiAtLS04mFawuSd2ev4zetzSamTyLhrT6LzsXXDXZKIiEiNpRQhVUrNoCQKlaYp3hrgbGCymTUFOgErjvC8bxO4svuFmXUEEoCtFVi3VIKiIuefk5by5OcZ9G3TkKd/3otGtRPDXZaIiEiNplArVWZnTj73vjWP9+dtUDMoiRqlbIp3P/Ccmc0jMF35bnffCmBm44EzgMZmlgn8yd3HAGOBscGlfvKAocWnHktkyc4t4FevzObjhZu4ok9L/jK4Gwlx5VkZT0RERCqCQq1UiSkrtnHHK7PZrGZQEoVK0RRvPfCjwxx75WG25wFXV2CZUokyt+dw3fPpLN20mz9e0JVhJ7dWQygREZEIoVArlSq/sIjHPlnKv78ININ644aT6N6yfrjLEhEptfRVWVz/wgzyCov477C+nN4xJdwliYiISAiFWqk0q7Zmc5uaQYlIFHs1fS2/e2sezesfw7ND+9C+Se1wlyQiIiLFKGFIhXN3XpuRyZ8nqhmUiESnwiLn/z5YxLNfr+Tk9o146qpe1E9KCHdZIiIiUgKFWqlQoc2g+rdtyD9/1oPj6qsZlIhEj1378rl1/Cy+WLKFoQNa8fsLuhIfq4ZQIiIikUqhVirM1BXb+FWwGdRvBnbi+tPaqRmUiESVVVuzuW5cOqu2ZvPAxd34eb9W4S5JREREjkChVsottBlUq4ZJagYlIlHp2+VbufGlmQC8cG0/BrRrFOaKREREpDQUaqVcVm3N5rZXZjNn7Q5+ltaCP114vJpBiUjUeWHKau6buIA2jZN5dmgarRolh7skERERKSWlDzkq7s7rwWZQsTHGv3/ei0FqBiUiUSa/sIi/vLuQF6as5sxOKTxxZU/q1IoPd1kiIiJSBgq1UmY7c/K59+15vD93A/3aNOTRy9UMSkSiz46cPG58aSbfLt/GiNPacvfAzuoDICIiEoUUaqVMQptB3XVeJ0aermZQIhJ9Mjbv5rrn01m/Yx9/v6w7l/ZuEe6SRERE5Cgp1Eqp5BcW8fgny/j3FxmkqhmUiESxL5Zs5paXZ5EYH8P4Ef3o3aphuEsSERGRclColSNavS2bWyeoGZSIRDd3Z+w3q3jg/YV0OrYuzw5No7lunRAREYl65VpN3swGmtkSM8sws3tK2G9m9kRw/1wz6xWy7zYzm29mC8zs9pDtDc1skpktC/7ZoDw1ytHb3wxq0OOTWbllD09d1YuHL+2uQCsiUSevoIh73pjH/e8t5NyuTXl95AAFWhERkWriqEOtmcUCTwHnA12BK82sa7Fh5wMdgl8jgKeDx3YDhgN9ge7ABWbWIXjMPcCn7t4B+DT4WKrYzr353DJ+Fne+Noduzevx4e2n8eMT1d1YRKLP1j25/PzZKbySvpZbz2rP0z/vrQ/nREREqpHyXKntC2S4+wp3zwMmAIOLjRkMjPOAKUB9M2sGdAGmuHuOuxcAXwIXhxzzfPD754GflKNGOQrTVmYx6PHJfDh/I3ed14mXh/dXd2Op0UoxK6Wemb1rZnOCs0+Ghewba2abzWz+YZ77TjNzM2tcma+hplq0YReDn/yGuZk7eeLKntzxo07EqLmdiIhItVKeUNscWBvyODO4rTRj5gOnmVkjM0sCBgEtg2OauvsGgOCfTUr64WY2wszSzSx9y5Yt5XgZsl9+YRH/+HgJV4z+jvhY4/UbTuKmM9uru7HUaKWclXITsNDduwNnAP8ws4TgvueAgYd57pbAucCaiq9cPl6wkZ8+/S0FRUW8ev0ALup+XLhLEhERkUpQnvlXJSUdL80Yd19kZg8Bk4A9wBygoCw/3N1HA6MB0tLSiv9cKaPV27K5bcJsZq/dwWW9W/Dni9QMSiTowKwUADPbPytlYcgYB+qYmQG1gSyC5zR3/8rMWh/muR8FfgO8Uzml10zuzr+/WM7fP17Cic3rMfqaNJrWrRXuskRERKSSlCe1ZPL91VWAFsD60o5x9zHAGAAz+1twLMAmM2vm7huCU5U3l6NGOQJ3542Z6/jTO/OJjTGeuqqX7p0VOVhJM076FRvzJDCRwPmtDnC5uxf90JOa2UXAOnefE8jCUhH25RdyzxtzeXv2ei7qfhwPX3oiteJjw12WiIiIVKLyhNrpQAczawOsA64Ario2ZiJwc/DKRj9g5/6pxWbWxN03m1kqcAkwIOSYocCDwT91BaOS7Nybz+/emsd7czfQt01DHr28h7qBihyqNLNSzgNmA2cB7YBJZjbZ3XeV+ISB2y5+B/zoiD/cbASBRnukpqaWvuoaaPOufQx/YQZz1u7grvM6ceMZ7dAHBiIiItXfUYdady8ws5uBj4BYYKy7LzCzkcH9o4APCNwvmwHkAMNCnuINM2sE5AM3ufv24PYHgVfN7FoC95lddrQ1yuFNW5nFr16ZzaZd+7jrvE6MPL2d7p0VKVlpZqUMAx50dwcyzGwl0BmYdpjnbAe0AfZfpW0BzDSzvu6+MXSgbrUonXmZOxk+Lp1d+/IZdXVvBnY7NtwliYiISBUp102T7v4BgeAaum1UyPdOoIFKSceeepjt24Czy1OXHF5+YRFPfLqMpz7PoGXDJF6/4SR6tKwf7rJEIllpZqWsIXDemmxmTYFOwIrDPaG7zyOkCZ6ZrQLS3H1rxZZeM7w3dz13vjaHRsmJvD7yJLoeVzfcJYmIiEgVUiegGiS0GdSlwWZQtdUMSuQHlXJWyv3Ac2Y2j8B05bv3B1QzG0+gI3JjM8sE/hTsKSDlVFTkPPbpMp74dBlprRowakhvGtdODHdZIiIiUsWUaGoAd+fNmev44zvziYkxnryqJxecqKUtREqrFLNS1nOY+2Pd/cpSPH/rcpZY4+TkFfDrV+fwv/kbuax3C/56cTcS49QQSkREpCZSqK3mdu7N5/dvz+fdOevp27ohj16hZlAiEt3W79jLdc+ns3jjLn7/4y5ce0obNYQSERGpwRRqq7Hpq7K4fcJsNqoZlIhUEzNWb+f6F2aQm1/ImKF9OLNzkyMfJCIiItWaQm01VBBsBvVksBnUG2oGJSLVwBszMvntm/NoVr8W44f3o0PTOuEuSURERCKAQm01s2ZbDre9MotZa9QMSkSqh8Ii5+GPFvOfL1cwoG0j/v3zXjRITgh3WSIiIhIhlHaqCXfnrVnr+OM7CzCDf13Zkwu7qxmUiES33fvyuX3CbD5dvJmf90vlzxcdT3xsTLjLEhERkQiiUFsN7NqXz+/fms9ENYMSkWpkzbYcrhs3neVbsrl/8PEMGdA63CWJiIhIBFKojXKhzaDu/FFHbjijvZpBiUjUm7JiGze8OIMih3G/7MvJ7RuHuyQRERGJUAq1USq0GVSLBkm8PnIAPVMbhLssEZFyGz9tDX94ez6pjZIYM7QPbRonh7skERERiWAKtVEotBnUT3u14L7BagYlItGvoLCIv76/iOe+XcVpHVP415U9qXdMfLjLEhERkQinJBRl3pqVyR/eVjMoEaledubkc/P4mUxetpVrT2nDb8/vTJwaQomIiEgpKNRGiV378vnD2/N5Z3agGdQ/L+9OiwZJ4S5LRKTcVmzZw3XPp7N2ew4P/fQELu+TGu6SREREJIoo1EaB9FVZ3BZsBvXrczty45lqBiUi1cPkZVu46aWZxMXG8NJ1/enbpmG4SxIREZEoo1AbwQoKi3jiswye/GwZLRok8drIAfRSMygRqQbcnee/XcX97y+iQ5PaPHNNGi0bavaJiIiIlJ1CbYRam5XDbRNmMXPNDi7p1Zz7LjqeOrXUMEVEol9eQRF/mriA8dPWcE6Xpjx2RQ81uxMREZGjVq4uHGY20MyWmFmGmd1Twn4zsyeC++eaWa+Qfb8yswVmNt/MxptZreD27mb2nZnNM7N3zaxueWqMRm/NyuT8xyezbPMenriyJ//8WQ8FWpEwKsW5rl7wfDUneF4bFrJvrJltNrP5xY55xMwWB8+Nb5lZ/Sp4KWGXlZ3HkDFTGT9tDTee0Y7RQ3or0IqIiEi5HHWoNbNY4CngfKArcKWZdS027HygQ/BrBPB08NjmwK1Amrt3A2KBK4LHPAvc4+4nAG8Bdx1tjdFm1758bpswi1+9Mocuzerwv9tO5SJ1NxYJq1Ke624CFrp7d+AM4B9mlhDc9xwwsISnngR0c/cTgaXAbyu++siydNNuBj/1NbPW7uCxy3vwm4GdiVF/ABERESmn8lyp7QtkuPsKd88DJgCDi40ZDIzzgClAfTNrFtwXBxxjZnFAErA+uL0T8FXw+0nAT8tRY9RIX5XFoMcn897cDfz63I5MGDFA3Y1FIkNpznUO1DEzA2oDWUABgLt/FXx88AHuH7t7QfDhFKBFJdUfET5dtImLn/qGfflFvDKiPz/p2TzcJYmIiEg1UZ5Q2xxYG/I4M7jtiGPcfR3wd2ANsAHY6e4fB8fMBy4Kfn8Z0LKkH25mI8ws3czSt2zZUo6XEV4FhUU8OmkpP/vPd5jBayMHcMvZHdTdWCRylOZc9yTQhcCHc/OA29y9qAw/45fA/8pTZKRyd/7z5XKuG5dOm5RkJt58Mj3V8E5EREQqUHlCbUmpy0szxswaELjS0QY4Dkg2s6uD+38J3GRmM4A6QF5JP9zdR7t7mrunpaSkHNULCLe1WTlcPnoKj3+6jJ/0aM4Ht56q7sYikac057rzgNkEzmc9gCdL2w/AzH5H4KruS4fZH7Uf4O3LL+TXr83h//63mEEnNOO160+iWb1jwl2WiIiIVDPl6c6RycFXUVvw/RTiI405B1jp7lsAzOxN4CTgRXdfDPwouL0j8ONy1Bix3p61jj+8PR8MHr+iB4N7aCqeSIQqzbluGPCguzuQYWYrgc7AtB96YjMbClwAnB089hDuPhoYDZCWllbimEi0efc+Rr4wg5lrdnDHuR255az2BGZni4iIiFSs8oTa6UAHM2sDrCPQ6OmqYmMmAjeb2QSgH4FpxhvMbA3Q38ySgL3A2UA6gJk1cffNZhYD/B4YVY4aI86uffn88e35vD17PX1aN+DRy3vo3lmRyFaac90aAuexyWbWlEBvgBU/9KRmNhC4Gzjd3XMqvOowmr9uJyPGpZOVk8e/f96LQSc0O/JBIiIiIkfpqEOtuxeY2c3ARwS6F4919wVmNjK4fxTwATAIyAByCFzNwN2nmtnrwEwC0+5mEbwSQaCz6E3B798E/nu0NUaaGauzuG3CbDbs3Mcd53bkxjPaERdbrlWVRKSSlfJcdz/wnJnNIzBd+W533wpgZuMJdERubGaZwJ/cfQyB+3ATgUnBK5hT3H1k1b66ive/eRu449U51E+K5/WRJ9Gteb1wlyQiIiLVnB1mxltUSUtL8/T09HCXcVgFhUX867MM/vXZMpo3OIbHLu9J71a6d1akspnZDHdPC3cdFSWSz3XuzhOfZvDoJ0vpmVqf/wzpTZM6tcJdlkiNUN3OdSIiZaUV7yvZ2qwcbn9lNjNWb+eSns25b/Dx1KkVH+6yREQqzN68Qu58fQ7vz93AJT2b87dLTqBWfGy4yxIREZEaQqG2Er0zex2/f2s+oGZQIlI9bdy5j+Hj0pm/fif3nN+Z609rq4ZQIiIiUqUUaivBrn35/OmdBbw1ax1prQLNoFo2VDMoEaleZq/dwYhx6WTnFvDsNWmc3aVpuEsSERGRGkihtoKFNoP61TkduelMNYMSkernndnruOv1uTStm8gL155Mp2PrhLskERERqaEUaitIQWERT36ewb8+y+C4+rV49foBagYlItVOUZHzj0lLeOrz5fRt05BRV/emYXJCuMsSERGRGkyhtgIUFTlXj5nKlBVZagYlItXa7a/MZuKc9VzRpyV/GdyNhDjNRBEREZHwUqitADExxo+6HsuVfVPVDEpEqrVzujalZ2p9fnFSazWEEhERkYigUFtBfnlKm3CXICJS6S7qfly4SxARERE5iOaNiYiIiIiISNRSqBUREREREZGopVArIiIiIiIiUUuhVkRERERERKKWQq2IiIiIiIhELYVaERERERERiVoKtSIiIiIiIhK1zN3DXUO5mdkWYHW46wAaA1vDXUQpRVOtEF31RlOtEF31lrXWVu6eUlnFVDWd645KNNUK0VVvNNUK0VVvjT7XiYiUVbUItZHCzNLdPS3cdZRGNNUK0VVvNNUK0VVvNNVanUXT/4doqhWiq95oqhWiq95oqlVEJBJo+rGIiIiIiIhELYVaERERERERiVoKtRVrdLgLKINoqhWiq95oqhWiq95oqrU6i6b/D9FUK0RXvdFUK0RXvdFUq4hI2OmeWhEREREREYlaulIrIiIiIiIiUUuh9iiY2UAzW2JmGWZ2Twn7zcyeCO6fa2a9wlFnsJYj1frzYI1zzexbM+sejjqDtfxgrSHj+phZoZldWpX1lVDHEes1szPMbLaZLTCzL6u6xpA6jvT3oJ6ZvWtmc4K1DgtHncFaxprZZjObf5j9EfPvq7rTua5y6FxXeXSuExGpodxdX2X4AmKB5UBbIAGYA3QtNmYQ8D/AgP7A1Aiu9SSgQfD78yO51pBxnwEfAJdG+N+D+sBCIDX4uEkE13ov8FDw+xQgC0gIU72nAb2A+YfZHxH/vqr7l8514as1ZJzOdRVfq851+tKXvvRVDb90pbbs+gIZ7r7C3fOACcDgYmMGA+M8YApQ38yaVXWhlKJWd//W3bcHH04BWlRxjfuV5r8rwC3AG8DmqiyuBKWp9yrgTXdfA+Du4aq5NLU6UMfMDKhN4I1eQdWWGSzE/avgzz+cSPn3Vd3pXFc5dK6rPDrXiYjUUAq1ZdccWBvyODO4raxjqkJZ67iWwKfC4XDEWs2sOXAxMKoK6zqc0vy37Qg0MLMvzGyGmV1TZdUdrDS1Pgl0AdYD84Db3L2oasors0j591Xd6VxXOXSuqzw614mI1FBx4S4gClkJ24q3kC7NmKpQ6jrM7EwCb/ROqdSKDq80tT4G3O3uhYEP2cOqNPXGAb2Bs4FjgO/MbIq7L63s4oopTa3nAbOBs4B2wCQzm+zuuyq5tqMRKf++qjud6yqHznWVR+c6EZEaSqG27DKBliGPWxD4xLesY6pCqeowsxOBZ4Hz3X1bFdVWXGlqTQMmBN/kNQYGmVmBu79dJRUerLR/D7a6ezaQbWZfAd2Bqn6jV5pahwEPursDGWa2EugMTKuaEsskUv59VXc611UOnesqj851IiI1lKYfl910oIOZtTGzBOAKYGKxMROBa4KdC/sDO919Q1UXSilqNbNU4E1gSBg+VQ91xFrdvY27t3b31sDrwI1hepMHpft78A5wqpnFmVkS0A9YVMV1QulqXUPgKgtm1hToBKyo0ipLL1L+fVV3OtdVDp3rKo/OdSIiNZSu1JaRuxeY2c3ARwQ6LY519wVmNjK4fxSBbpWDgAwgh8Anw5Fa6x+BRsC/g1cFCtw9LUJrjRilqdfdF5nZh8BcoAh41t1LXLoh3LUC9wPPmdk8AlPe7nb3rVVdK4CZjQfOABqbWSbwJyA+pNaI+PdV3elcF9ZaI4bOdZVH5zoRkYpjgRk4IiIiIiIiItFH049FREREREQkainUioiIiIiISNRSqBUREREREZGopVArIiIiIiIiUUuhVkRERERERKKWQq2IiIiIiIhELYVaERERERERiVoKtSIiIiIiIhK1/h9bbij8UnS4GgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plot_recommendation_over_lambda(sub_df, ['F1@10', 'NDCG@10', 'F1@50', 'NDCG@50', 'AUC'], ncol = 3)" + ] }, { "cell_type": "code", "execution_count": null, - "id": "22ce1d41", + "id": "f1b752f8", "metadata": {}, "outputs": [], "source": [] diff --git a/Training Observation.ipynb b/Training Observation.ipynb index 6336fcd..b1741ad 100644 --- a/Training Observation.ipynb +++ b/Training Observation.ipynb @@ -694,16 +694,35 @@ "outputs": [], "source": [ "ROOT=\"/home/sl1471/workspace/experiments/\"\n", + "group_feature = 'activity'\n", "best_setting = {'ml-1m': {'MF': [], \n", " 'FedMF': [], \n", " 'FairMF': [\n", + " f'/logs/f2rec_train_and_eval_FairMF_lr0.00003_reg0.1_losspairwisebpr_lambda-0.7_g{group_feature}.log'\n", + " ,f'/logs/f2rec_train_and_eval_FairMF_lr0.00003_reg0.1_losspairwisebpr_lambda-0.5_g{group_feature}.log'\n", + " ,f'/logs/f2rec_train_and_eval_FairMF_lr0.00003_reg0.1_losspairwisebpr_lambda-0.3_g{group_feature}.log'\n", + " ,f'/logs/f2rec_train_and_eval_FairMF_lr0.00003_reg0.1_losspairwisebpr_lambda-0.1_g{group_feature}.log'\n", + " ,f'/logs/f2rec_train_and_eval_FairMF_lr0.00003_reg0.1_losspairwisebpr_lambda0.1_g{group_feature}.log'\n", + " ,f'/logs/f2rec_train_and_eval_FairMF_lr0.00003_reg0.1_losspairwisebpr_lambda0.3_g{group_feature}.log'\n", + " ,f'/logs/f2rec_train_and_eval_FairMF_lr0.00003_reg0.1_losspairwisebpr_lambda0.5_g{group_feature}.log'\n", + " ,f'/logs/f2rec_train_and_eval_FairMF_lr0.00003_reg0.1_losspairwisebpr_lambda0.7_g{group_feature}.log'\n", + " ,f'/logs/f2rec_train_and_eval_FairMF_lr0.00003_reg0.1_losspairwisebpr_lambda0.9_g{group_feature}.log'\n", + " ],\n", + " 'F2MF': []\n", + " },\n", + " 'amz_Movies_and_TV': {'MF': [], \n", + " 'FedMF': [], \n", + " 'FairMF': [\n", "# '/logs/f2rec_train_and_eval_FairMF_lr0.00003_reg0.1_losspairwisebpr_lambda-0.1_gactivity.log'\n", - " '/logs/f2rec_train_and_eval_FairMF_lr0.00003_reg0.1_losspairwisebpr_lambda0_gactivity.log'\n", - " ,'/logs/f2rec_train_and_eval_FairMF_lr0.00003_reg0.1_losspairwisebpr_lambda0.1_gactivity.log'\n", - " ,'/logs/f2rec_train_and_eval_FairMF_lr0.00003_reg0.1_losspairwisebpr_lambda0.3_gactivity.log'\n", - " ,'/logs/f2rec_train_and_eval_FairMF_lr0.00003_reg0.1_losspairwisebpr_lambda0.5_gactivity.log'\n", - " ,'/logs/f2rec_train_and_eval_FairMF_lr0.00003_reg0.1_losspairwisebpr_lambda0.7_gactivity.log'\n", - " ,'/logs/f2rec_train_and_eval_FairMF_lr0.00003_reg0.1_losspairwisebpr_lambda0.9_gactivity.log'\n", + "# '/logs/f2rec_train_and_eval_FairMF_lr0.00001_reg1.0_losspairwisebpr_lambda-0.7_gactivity.log'\n", + "# ,'/logs/f2rec_train_and_eval_FairMF_lr0.00001_reg1.0_losspairwisebpr_lambda-0.5_gactivity.log'\n", + "# ,'/logs/f2rec_train_and_eval_FairMF_lr0.00001_reg1.0_losspairwisebpr_lambda-0.3_gactivity.log'\n", + "# ,'/logs/f2rec_train_and_eval_FairMF_lr0.00001_reg1.0_losspairwisebpr_lambda-0.1_gactivity.log'\n", + " '/logs/f2rec_train_and_eval_FairMF_lr0.00001_reg1.0_losspairwisebpr_lambda0.1_gactivity.log'\n", + " ,'/logs/f2rec_train_and_eval_FairMF_lr0.00001_reg1.0_losspairwisebpr_lambda0.3_gactivity.log'\n", + " ,'/logs/f2rec_train_and_eval_FairMF_lr0.00001_reg1.0_losspairwisebpr_lambda0.5_gactivity.log'\n", + " ,'/logs/f2rec_train_and_eval_FairMF_lr0.00001_reg1.0_losspairwisebpr_lambda0.7_gactivity.log'\n", + "# ,'/logs/f2rec_train_and_eval_FairMF_lr0.00001_reg1.0_losspairwisebpr_lambda0.9_gactivity.log'\n", " ],\n", " 'F2MF': []\n", " }}" @@ -711,29 +730,26 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "/home/sl1471/workspace/experiments/ml-1m/logs/f2rec_train_and_eval_FairMF_lr0.00003_reg0.1_losspairwisebpr_lambda0_gactivity.log\n", - "/home/sl1471/workspace/experiments/ml-1m/logs/f2rec_train_and_eval_FairMF_lr0.00003_reg0.1_losspairwisebpr_lambda0.1_gactivity.log\n", - "/home/sl1471/workspace/experiments/ml-1m/logs/f2rec_train_and_eval_FairMF_lr0.00003_reg0.1_losspairwisebpr_lambda0.3_gactivity.log\n", - "/home/sl1471/workspace/experiments/ml-1m/logs/f2rec_train_and_eval_FairMF_lr0.00003_reg0.1_losspairwisebpr_lambda0.5_gactivity.log\n", - "/home/sl1471/workspace/experiments/ml-1m/logs/f2rec_train_and_eval_FairMF_lr0.00003_reg0.1_losspairwisebpr_lambda0.7_gactivity.log\n", - "/home/sl1471/workspace/experiments/ml-1m/logs/f2rec_train_and_eval_FairMF_lr0.00003_reg0.1_losspairwisebpr_lambda0.9_gactivity.log\n" + "/home/sl1471/workspace/experiments/amz_Movies_and_TV/logs/f2rec_train_and_eval_FairMF_lr0.00001_reg1.0_losspairwisebpr_lambda0.1_gactivity.log\n", + "/home/sl1471/workspace/experiments/amz_Movies_and_TV/logs/f2rec_train_and_eval_FairMF_lr0.00001_reg1.0_losspairwisebpr_lambda0.3_gactivity.log\n", + "/home/sl1471/workspace/experiments/amz_Movies_and_TV/logs/f2rec_train_and_eval_FairMF_lr0.00001_reg1.0_losspairwisebpr_lambda0.5_gactivity.log\n", + "/home/sl1471/workspace/experiments/amz_Movies_and_TV/logs/f2rec_train_and_eval_FairMF_lr0.00001_reg1.0_losspairwisebpr_lambda0.7_gactivity.log\n" ] } ], "source": [ "from utils import extract_args, extract_epochwise_result\n", "import numpy as np\n", - "group_feature = 'activity'\n", - "groups = ['active','inactive']\n", - "data_key = 'ml-1m'\\\n", - "# data_key = 'amz_Movies_and_TV'\n", + "groups = []\n", + "# data_key = 'ml-1m'\n", + "data_key = 'amz_Movies_and_TV'\n", "# data_key = 'amz_Books'\n", "training_curves = {} # {fair_lambda: {group_feature: [values]}}\n", "D = {} # {fair_lambda: {group_feature: [values]}}\n", @@ -741,6 +757,8 @@ " log_file_path = ROOT + data_key + log_name\n", " args = extract_args(log_file_path)\n", " observation_result = extract_epochwise_result(log_file_path, 'Previous statistics:')\n", + " if len(groups) == 0:\n", + " groups = [G for G in observation_result[0]]\n", " training_curves[args.fair_lambda] = {G: np.array([epoch_result[G] for epoch_result in observation_result])\n", " for G in groups}\n", " D_log = extract_epochwise_result(log_file_path, 'D:', next_line = False)\n", @@ -751,26 +769,30 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "{0.0: array([0.00699968, 0.02528767, 0.0682647 , 0.07989027, 0.07853503,\n", - " 0.07246088, 0.0667517 , 0.06653187, 0.06844732, 0.07181886,\n", - " 0.07860752, 0.08657329]), 0.1: array([0.00699968, 0.02444966, 0.06585834, 0.07744314, 0.07533493,\n", - " 0.06858894, 0.06259927, 0.0621724 , 0.06385371, 0.06768331,\n", - " 0.07436195, 0.08216105]), 0.3: array([0.00699968, 0.02259737, 0.0603399 , 0.07195588, 0.06813846,\n", - " 0.05989987, 0.05323786, 0.05183435, 0.05377611, 0.05785473,\n", - " 0.06517027, 0.0726402 ]), 0.5: array([0.00699968, 0.02050162, 0.05333548, 0.06502569, 0.05960417,\n", - " 0.04891379, 0.04111828, 0.03796819, 0.0396662 , 0.04429818,\n", - " 0.05235181, 0.05978268]), 0.7: array([0.00699968, 0.01807009, 0.04297601, 0.05538249, 0.04796289,\n", - " 0.03280931, 0.02146218, 0.01479615, 0.0139653 , 0.01966721,\n", - " 0.02801967, 0.03724073]), 0.9: array([0.00699968, 0.01503903, 0.01962022, 0.03511883, 0.02303117,\n", - " 0.00295082, 0.0258041 , 0.08545615, 0.19851124, 0.14136206,\n", - " 0.02475526, 0.11851057])}\n" + "{0.1: array([0.00027719, 0.0005916 , 0.0019003 , 0.00153554, 0.00293763,\n", + " 0.00605801, 0.01107891, 0.01479256, 0.0148782 , 0.01497167,\n", + " 0.01753546, 0.0199757 , 0.02047253, 0.02018394, 0.01981026,\n", + " 0.0198364 , 0.02104794, 0.02118506, 0.02165251, 0.0228815 ,\n", + " 0.02359744, 0.02461774, 0.02453127, 0.02445596, 0.02407771,\n", + " 0.02413054, 0.02450641, 0.02460804, 0.02427547]), 0.3: array([0.00027719, 0.00058164, 0.00107111, 0.00116215, 0.00182029,\n", + " 0.00373691, 0.00724065, 0.00979276, 0.00951237, 0.00870101,\n", + " 0.00972246, 0.01119996, 0.01171017, 0.01137573, 0.01087045,\n", + " 0.01088986, 0.01176676, 0.011707 , 0.01180801, 0.01287945,\n", + " 0.01367372, 0.01464599, 0.01470833, 0.01464954, 0.01440611,\n", + " 0.01425413, 0.01453497, 0.01490729]), 0.5: array([0.00027719, 0.00057036, 0.00041977, 0.00091842, 0.01084737,\n", + " 0.0002029 , 0.00020554, 0.00340427, 0.02161226, 0.01599234,\n", + " 0.00061567, 0.00967191, 0.01054475, 0.02428451, 0.05157193,\n", + " 0.03428373, 0.01060978, 0.00524064, 0.0124911 , 0.01924613,\n", + " 0.04866329, 0.03760308, 0.01379983, 0.00719852, 0.02131899,\n", + " 0.00850757, 0.04351939, 0.0402744 , 0.02167428, 0.0012792 ]), 0.7: array([0.00027719, 0.00055809, 0.00388186, 0.00105354, 0.01317562,\n", + " 0.02664223, 0.0082273 , 0.0027987 , 0.0097995 , 0.02117853])}\n" ] } ], @@ -791,7 +813,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ @@ -803,12 +825,12 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 8, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAGZCAYAAAB/vMMOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAADJdklEQVR4nOydd3iUVfq/7zPpvSeQkA6E0KQERJReRbGgiGLXBd1VsKDuT3dXXb+uu1YQWFfBgq7dBXuhhiKIhKZAEkoakEB678mc3x/vJEzCJJmEmUwSzn1dc03mvKc8bwjzec85z3keIaVEoVAoFApF90ZnawMUCoVCoVBcOErQFQqFQqHoAShBVygUCoWiB6AEXaFQKBSKHoASdIVCoVAoegBK0BUKhUKh6AEoQVcoLIwQIl0IIQ2vJ9qoe8io7rNG5RMNZelmjmknhJgrhHhRCLFFCFFsaL+3jXbPGo2f2Ebdx4zqtmiXEGKqoc4j5tje2TTcgwX6afg32moBs9oay08IUSKE+NLaYym6L0rQFQrrcmdLF4QQI4HBFhrHA/gceAKYBHh2oI9YIcSoVq63eC8NCCF0wKtAFvCfDthwQRg9oDzb2WMb2WBxoZdS5gOvA9cJISZaql9Fz0IJukJhPfYBA4UQcS1cbxDIVmfRZlILfAg8AowDrm5n+33NbGqCEGIE2sNHW7beDgwFXpFSVrXThs4i1vC6UPYY+rnDAn2Zw6tAJfByJ42n6GYoQVcorMf7hvfzRFII4QDcAqQD2y90IClluZTydinlMinlz0B5O7vYBmQAtwghHE1cb7iH901cM2YRUAd81M7xOw0pZbKUMtkC/VQY+jppCbvMGK8I+AqIE0Jc2hljKroXStAVCuuxFTiJJpIOza5dBfgD/wW6QvxliWaLL81m90YPHxlowm8Sw3L9SGC9lDLHxPVwIcRTQohtQojTQohqIUSeEGK9EKLVFQUhxFAhxBqDf0JDuz1CiL8JITwNddKBZwxNnjHa72/un9BkD10IMaTBL0AIIVoYP1QIUS+EyG944DG1tC6EWAPEGz5OaGbDVqFx1PB5WCv3e9hQp7lwf2B4/2Nrvy/FxYkSdIXCejSIpB+agBvTMOP9gK5Dw+y7+RLyLCCAth8+rjW8b27h+u3AP4BA4BDabDMVmA58K4R43FQjIcQCtC2BO4EK4EvgV7Tf63NAlKHq/4DfDD//ZrifhtfBloyWUh4CDgDhwIQWqt2G9n35qZSypqW+gJ+B9Yafs5vZ8JPUkme8Ybh+v6kOhBDjgEHAASnlr80ub0dbAZnd0sOH4iJGSqle6qVeFnyhLaNLtD3nfoafvzS67g/UAD8bPr9iqPOsUZ2JhrL0DtrQ0H5vG/WeNdR7xfB5p8G2AKM66wx1+hnuyaRdaGImgctaGGsUEGOi/FKgGM0PILTZtcvQBKwKmGei7Vgg0MT9PNvKPUvtq69J2cOG8ndbaJNouD7axO94awu/+60t9OUFlAGlgIeJ6x8Z2i9oof1+w/VLbP23rl5d66Vm6AqFFZFSHgd+Aa4SQvgbiucDDrS9H20L3kez7RbQjkuhrS7sMtxLawwzvCeZuiilTJBSHjVR/iuwErAHrml2+SnADnheSvmZiba7pInl/Q7wMdqDw41CCBfjCwanxljgqJRyz4UOJKUsRnNgdEeb+RuP5Q/cAJQYbDJFw+93+IXaouhZKEFXKKxPE5FEWzquQjtm1tX4DM22hi2B+YAjbTx8CCHcADegHm223VI9FyHEHCHEC0KIVYZ98TVos1qA/kZ17YDJho/vtv9WzMfwUPAj2vG/65pdbtiCsOQD2L8N7833wu8GnID/SilbcmzMN7wHWtAeRQ/A3tYGKBQXAZ+hnSG+QwgRD4wAPjPM1LoUUspiIcQ3wE1CiEFowl5N2w8fXob3MimlyX12IcTlhn6CW+nH+Py8P+AKlEsps8yx/wL5AJiNJuCfAAgh7IGbAT3arNoiSCkPCSG2A+OFEJdLKXca9sQXGqq82UrzEsO7t6XsUfQM1AxdobAyUjtu9A0QB7xoKO6Ky+0NNNj2IprX+teGe2iNhuvuppy1DDP4dWhivhrtocYLsJNSCuC+hqom+u6sUwDfAoXANCFEL0PZlWgOgfFSylMWHq9hlt7gHDcV6AvskFIebqVdw8NToYXtUXRzlKArFJ1Dg0jOAs4CG2xoS1usR7OxwTO/zYcPKWUF2tl3O84JjjHj0JaI90kpF0opD0gpS6SUesP1viba5KF5tbsLIVqb1VsEKWU18CnaPcw3FFtjub2BdWgR9eYafBUalt/birDna3i3hO+AogehBF2h6BzWA8fQ9j/fkVLW29ieFjHY9g6arcc4dwyrLQ4Y3geauNYgQufNcg3nuue0YEfDEbi7zLSh4UhZR7cTG44R3iGE8EZbgi9DE19zMcsGKWUdsAptz/wvhrFygbVt9N/w+z3Qai3FRYcSdIWiE5BS1kkpY6SU/lLKv9ranraQUv7VYGtMOx4+GoLOjDFxrSEy22QhxICGQkPQmmVAdAt9voDmaPc3IcQNzS8KIS4TQhg7h2Ua3jsU2lVKuRs4ClwC/B+a2K5txUHNFA029DXswbfGW2jH9R5BewB4V7Zyzl0I4Yp2dLAA7Sy/QtGIcopTKLo2vYUQu1u5/qmUchmAEOINtL1pOOdcNqBZ+/+TUn5veTMBzU/gL2ie6a8ZX5BS7hdC/IC25XBQCLEF7Rz2ZWgBYlaghY2lWbvdQog/oi1D/09oGeF+R/NGj0ULKjOcc8vP69GW6ecYnM5S0B4IvpFSfmPmfXyAFgDnQcPndi23SykzhBAHDHb9LoTYh+ZYeFRK+XKzumeFEOuAeWiOd2+10f0EtO/t71tyPlRcvChBVyi6No5ogVdawlisB5qo69asLMBCdp2HlHKPQchmCCECpJS5zarMQcsGdwtaRrgStPC4z9LKPUopVwstDewStONtN6AdjUtFO86WYlT3rCGM7NNognoFmqPdabQHDnP4L9rsXIcWunerme2MmYPmVDgB7X7t0FYwTCVW2YQm6OullGlt9Hu74b3TM9kpuj5CPeQpFApLIYS4G01kH5VSLrW1Pd0Bw2rFJOAaKeW3rdTzRlvOT5JStpTBT3ERowRdoVBYDEMwmINoTnDRsuumUO0SCCHGo83cU4D+Rl7/pur+H/BXYIqUcksnmajoRiinOIVCYTEMDnSPop03/5ONzemyCCHeFkJ8BvxgKPpLG2LuBzyEFhNAibnCJGqGrlAoFJ2MIX1rPVoin9eklG+03kKhaBsl6AqFQqFQ9ADUkrtCoVAoFD0AdWzNyvj7+8uIiAhbm6FQKBSKHsK+ffvypJTnHUFVgm5lIiIi2Lt3r63NUCgUCkUPQQiRYapcLbkrFAqFQtEDUIKuUCgUCkUPQAm6QqFQKBQ9ACXoCoVCoVD0AJSgKxQKhULRA7CpoAshdEKIR4QQyUKIKiHEKSHEq0IINzPa+gghHhJCbDC0qxRCHBVCrBJChLbQxksIsUIIkWkY74gQ4o9CCNFC/VlCiF1CiHIhRIEQ4gshROSF3rdCoVAoFJbG1jP0pWh5kxPRciF/ASwGvhVCtGXbpcCrgARWouUu/gG4DTgkhBhoXFkI4QhsBO4HPjOMdxR4A3imeedCiDnAd4AL8Dha2sPxwE4hRHAH7lWhUCgUCqths3PoQohBaKK6Tkp5g1F5GrAcuBn4uJUukoEYKWWKcaEQ4ns04X4OuNHo0h+AUcBiKeUKQ9lqIcRa4CkhxHtSygxDHw7ACuAUME5KWWYo/xHYh5a/eWFH7rslqqqqyM3Npaqqirq6Okt2rTDC3t4eZ2dnAgICcHZ2trU5CoVCYTFsGVjmFkAAy5qVrwb+hTbTblHQpZTpLZRvEkIUAIObXZoPVBj6N2YZMAeYB7xkKJuAli3q6QYxN/R9UAixFZgnhHhASlnbkn3tobi4mOzsbAICAujVqxf29va0sAuguACklNTV1VFWVsbJkycJCgrCy8vL1mYpFAqFRbDlkvsoQA/sMS405E8+aLjeboQQXoAHkG1UpgNGAAdM5GfeY7DDeLyGn38xMcRuwBPo3xH7TJGXl0efPn3w8fHBwcFBibmVEELg4OCAj48Pffr0IT8/39YmKRQKhcWwpaAHA3lSymoT1zIBf8O+d3v5K+AAvG9U5oO2F57ZvLJh/HwgpJltmKpvVBZi4hoAQoiFQoi9Qoi9ubm5bRpcU1ODi4tLm/UUlsPFxYXqalN/egqFQtE9saWguwItfaNWGdUxGyHEjcASYD3wXrOxaGM847Faq9+mbVLKVVLKOCllXEDAefHzTaJm5Z2L+n0rejIFWaepV744Fx22FPQKwKmFa85GdcxCCDEL+AjNae0m2TTRe0M/rY1nPFZr9dttm0KhUHQWVWVlfPD4g+xe96mtTVF0MrYU9Cy0ZXVTohmCthxfY05HQoiZwDrgCDBdSlnSrEohUImJZXLD+H40XV7PMrLDlG1gejleoVAobEp22gnq6+o4vGUD+vp6W5uj6ERsKegJhvFHGxcKIZyBYYBZOUeFEDOAL9GOsU2VUhY2ryOl1AP7geEmHiBGG+wwHi/B8H6ZiSHHACXAMXPsszZbt25FCMGaNWtsZsNdd91lkSVsS/WjUFzM5KRpJ3nLCgtIO7jPxtYoOhNbCvpnaEFhHm5WvgBtf/qjhgIhRG8hxAAhRJN9ayHEdOArNHGdIqUsaGW8Twz9Nj8//jBQB3xuVLYNOAP8QQjhbjTeJcBE4AtLHVlTKBQKS5KdloK7rx+uXt4cjt9ga3MUnYjNzqFLKQ8JIf4NPCiEWIcW5S0WLVLcNpqeQf8ncCcwCdgKIISIA75GO8v+HnBl89mdlPJDo4+rgbuB14QQEUASMAu4HnheSplm1K5WCPEQ2kPHDiHEarSjao8AuZiILKdQKBRdgZy0E/SK7od3r2D2//A15UWFuHn72NosRSdgy8AyoM2O09FmzVcBeWgR2p42LJO3xmDOOagtbaFOo6BLKWuEEFOB59GC2vgBKWjR6v7dvKGU8gshRCXaMbhX0DzeNwN/llKq/XOFQtHlqK6ooPBMFrHjJtF/zBXs/XYdidu3MOqaG9purOj22DSWu5SyXkr5qpQyRkrpJKUMkVI+ahydzVDvLimlkFJuNSpbYyhr8WVivCIp5YNSymDDeAOllCubecQb1/9OSjlGSukqpfSRUt7YPNRsV0Ov1/OPf/yD8ePH06tXLxwdHQkLC+OPf/zjeYFU0tPTEULw7LPP8vnnnzNs2DBcXFzo27cv772nnfo7efIkN954I76+vnh4eHDbbbdRWlpqcuzc3FzuuOMO/Pz8cHNzY8qUKRw4cOC8elVVVTz++OMEBwfj4uLC6NGj2bDB9NLgnj17uOuuu+jfvz+urq54eHhw+eWX8+WXX17gb0qh6HnkpqcCEBTVF7+QUIJjBnIofiMtfMUpehi2nqErLExNTQ0vv/wyN9xwA9deey1ubm4kJCTwzjvv8PPPP7Nv3z4cHZvG6/nuu+948803+dOf/oSvry/vvPMO99xzD46Ojjz11FNMnjyZF154gYSEBN59912cnZ15++23zxt75syZ+Pr68uyzz3L27FlWrlzJ+PHj+eWXXxg8+Fwk3ltuuYWvvvqK2bNnM2PGDFJSUpgzZw6Rkecnsvvyyy9JTk7mpptuIjw8nPz8fN5//33mzJnDRx99xPz58y3/S1QouinZBoe4oMi+AAyZNI31b75O1tEkQgYMbK2poicgpVQvK75Gjhwp2yIxMbHNOi0RHx8vAfnee+9JKaXU6/WyoqLivHpvv/22BORnn33WWJaWliYB6erqKtPT0xvLc3JypJOTkxRCyFdffbVJP9dff710cHCQpaWljWV33nmnBOT1118v9Xp9Y/nevXulEELOmDGjsWz9+vUSkHfeeWeTfr/88kuJ5iTZpLysrOy8eykvL5f9+/eXsbGxrfxm2uZCfu8KRVfkhxWvyP/cd3vj5+rKCvn6HTfKH99YajujFBYH2CtN6I2t06cqLIwQojGMbH19PUVFReTl5TF58mQAfv311/PaXHfddYSHhzd+DggIICYmBp1OxwMPPNCk7rhx46itrSU9Pf28fp544okmx85GjhzJtGnT2LRpE2Vl2i7KV199BcDjjz9+ng0xMTHn9enm5tb4c0VFBfn5+VRUVDB58mSSkpIoKWkeckChuHjJTkshKDK68bOjswsDxo7j2C8/U1OpYmH1dJSg90A+//xzLr30UlxcXPDx8SEgIICoqCgACgvPO6bfeM0YHx8fevfujZOT03nlgMnEJrGxseeVDRw4kPr6ejIyMgBITU1Fp9PRv//5uW1Mtc/JyWHhwoUEBQXh5uaGv78/AQEBvPnmmwAUFRWd10ahuBipra6iIPM0gUaCDjB40nRqq6tI3rXDRpYpOgu1h97DWLduHfPmzWP06NG8/vrrhIaG4uzsTH19PTNnzkSvP//wgJ2dncm+WioHzHayaV6vtXam6k6fPp2kpCQWL17MqFGj8PLyws7Ojvfee4+PP/7Y5P0oFBcjuRnpSKk/T9B794vBr08Yh+M3MHTKDBtZp+gMlKD3MP773//i7OxMfHw8rq7n4vAkJydbfeykpCTGjBlzXpmdnV3jkn50dDQbNmzg2LFjDBo0qEnd5jb+/vvv/Pbbbzz99NP8/e9/b3LNlFOeQnExk9PoENdU0IUQDJ40jW3/fYe8Uxn4h4abaq7oAagl9x6GnZ0dQogmM1cpJc8//7zVx37ppZeazLL379/Ppk2bmDJlCu7uWsC9a6+9FoCXX365SduvvvqKo0ePNilrWCFoPnM/fPiwOramUDQjOy0FZw9PPPzOz/A4cPxkdHb2KnJcD0fN0HsYN954I2vXrmXy5Mnccccd1NbW8tVXX1FRYX2HmIyMDGbMmME111zDmTNnWLlyJS4uLk3Ee8aMGcyePZv333+fgoICZs6cSUpKCm+99RaDBw/m8OHDjXVjY2MZNGgQL730EhUVFcTExHDs2LHGuvv377f6PSkU3YUcg0OcqXwIrp5eRMeNJnF7POPm34WdvYMNLFRYGzVD72HcfPPNrFq1irKyMh577DFeeuklYmJiWL9+vdXH/umnnwgKCuKZZ55h6dKljBw5km3btjF06NAm9T777DMeffRR9uzZw5IlS9i+fTtr165l5MiRTerZ2dnx/fffNz4APPTQQ2zbto3333+f2bNnW/1+FIruQl1tLXmnMs7bPzdmyKTpVJaWkLL3/JMuip6BMNe5SdEx4uLi5N69rSeOS0pKMunhrbAu6veu6Clkp57gwycf5uqH/x8xl11hso5eX8/qB+/FPzScG578u8k6iu6BEGKflDKuebmaoSsUCkU3JzvtBHC+Q5wxOp0dgydOJf23/ZTk5XaWaYpORAm6QqFQdHNy0lJwcnXDK6hXq/UGT5wKUnJk26ZOskzRmShBVygUim5OdloKgRFRJh3ijPEK7EXY4Es4HL8JqWI49DiUoCsUCkU3pr6ujtyMtFYd4owZPHk6JbnZnDzyu5UtU3Q2StAVCoWiG1OQdZr62tpW98+N6TfqMpzd3Dkcv9HKlik6GyXoCoVC0Y1piBAXaEiZ2hb2jo4MuGIix/fsorKs1JqmKToZJegKhULRjclOO4G9kxM+wcFmtxkyeTr1tbUk7dhqNbsUnY8SdIVCoejG5KSlEBgehU7XcjKl5gRGRBEYGc3h+A1mJ1pSdH2UoCsUCkU3Rer15KSlmu0QZ8yQSdPJzUhrXLJXdH+UoCsUCkU3peBMJrXVVWY7xBkz4IoJ2Ds4cmiLStjSU1CCrlAoFN2UxpSpUeY5xBnj7OZOv0vHkrxzG7U11ZY2TWEDlKArFApFNyU7LQU7Bwd8Q0I71H7wpOlUV5Rz/NddFrZMYQuUoCsUCkU3JScthYCwCOzsO5YJO3TgYLyDenNYLbv3CJSgKzodvV7P0qVLGTBgAM7OzoSGhrJkyRLKy8vN7uOHH35g7NixuLm54evry9y5c0lLS7Oi1QpF10JKqXm4d2D/vAGh0zF40jROJR6i6OwZC1qnsAU2FXQhhE4I8YgQIlkIUSWEOCWEeFUI4WZm+5uEEO8JIX4TQtQKIaQQIqKFulsN11t6bWxH/fPS1inM55FHHuHRRx9l4MCBrFixgrlz57J8+XJmz56N3oz40uvWrePqq6+msrKSl19+mccff5zt27dz+eWXk5WV1Ql3oFDYnuKcbKorygkyM6BMSwycMBkhdBzeqiLHdXc6tk5jOZYCi4EvgVeBWMPn4UKIqVLKtr7d/wRcCvwGpAAxrdT9B/C2ifJ5wNXAtyau5QGPmChPbcMuRQscOXKEFStWMGfOHNauXdtYHhkZyeLFi/n000+ZP39+i+1ra2tZtGgRoaGh7NixA3d3dwCuvPJKRo4cybPPPsuqVausfh8Kha3JMaRMvZAZOoCHrz+Rw0dyZOsmxs69FZ2d+efZFV0Lm83QhRCDgEXAOinlHCnlainlo8CjwCTgZjO6uQPwkFKOAVrNByil3Cil/LD5C+gHVAMfmmhWbqqNlLKgPfeqOMcnn3yClJKHH364SfmCBQtwdXXlww9N/TOcY9u2bWRlZfGHP/yhUcwBhg0bxsSJE/nss8+ora21hukKRZciOy0FnZ0d/qHhF9zX4EnTKCssIP23/RawTGErbLnkfgsggGXNylcDFcBtbXUgpTwppazrqAFCiHFos/ovWxJpw7aAp2grL6HCLBISEtDpdIwePbpJubOzM8OGDSMhIaHN9gCXXXbZedfGjBlDSUkJx44ds5zBCkUXJSctBb8+Ydg7Ol5wX1EjRuPq5c2hLestYJnCVthS0EcBemCPcaGUsgo4aLhube41vJtaigcIAcqAYqBMCLFOCDGgE+zqsWRlZeHv74+Tk9N510JCQsjLy6OmpqbV9g11TbUHyMzMtJC1CkXXREqp5UC/wOX2Buzs7Rk4fjKp+xMoLyq0SJ+KzseWe+jBQJ6U0lREg0xgrBDCUUrZ8rf7BSCE8ATmAmnAFhNV0oCdwO9APdpe/YPAFCHEFVLKQ630vRBYCBAWFtZhG//+7RESs0o63N4aDAz25JnZgzrcvqKiwqSYgzZLb6jj2MKso6KiAsBkH8btFYqeTFlBPpUlxR2KENcSgydNY++360jcvoVR19xgsX4VnYctZ+iuaHvXpqgyqmMtbjH0/640kZ1ASnm3lPIvUsrPpJT/k1I+DkwH3IHXWutYSrlKShknpYwLCAiwivHdFVdXV6qrTf+zV1VVNdZprT1gsg9z2isUPYHsVM0hriMR4lrCLySU4P6xHIrfqBK2dFNsOUOvAAJbuOZsVMda3Is2837P3AZSyh1CiO3AJCGEi5Sy0mrWwQXNhLsqwcHBJCYmUl1dfd4sOzMzE39//xZn5w3tG+rGxsae1x5ML8crFD2J7LQUhNAREBZp0X4HT57GhjeXk3U0iZABAy3at8L62HKGngX4CyFMrb+GoC3HW2u5fQjaHv1PUsr2brimA3aAj6XtuhgYNWoUer2ePXuauE5QVVXFwYMHiYtr/Yj/qFGaa8Uvv/xy3rXdu3fj6elJ//79LWewQtEFyUk7gW9IHxycnduu3A5iLhuHg7MLh+JV5LjuiC0FPcEwfhN3ZyGEMzAM2GvFsf9geG/JGa41+gF1gDq61gHmzZuHEIJly5Y1KV+9ejUVFRXceuutjWVnzpwhOTm5yZ74hAkT6N27N2+//TZlZWWN5b/99htbt25l7ty5ODg4WP0+FApbcqER4lrC0dmFmMvGceyXn6mpVL4o3Q1bCvpngAQebla+AG1v+6OGAiFEbyHEACHEBW+OGlYEbgWyge9aqOMlhDgvuoIQ4irgcmCjwRtf0U6GDBnCAw88wLp165gzZw5vv/02S5Ys4dFHH2XChAlNgso8+eSTxMbGNpnNOzg48Prrr3Pq1CnGjRvHG2+8wb/+9S+mT59OQEAAf//7321xWwpFp1FeVEhZYYFFHeKMGTJ5OrXVVSTv2mGV/hXWw2Z76FLKQ0KIfwMPCiHWAT9wLlLcNuBjo+r/BO5ECziztaFQCDEeGG/42LBW+6AQosgwxvMmhr4O8ANeauUM+yTgNSHEt2hR4erQVhJuQ4se97D5d6pozrJly4iIiGDVqlV8//33+Pv7s2jRIp577jl0urafMefOnYuLiwvPP/88jz32GE5OTkyZMoUXX3xR7Z8rejwNKVOtMUMH6N0vBr8+YRyO38DQKTOsMobCOtg69OvDaHvSC4Gr0MRyBfC0GWFfASYDzzQrW2L0sylBbzh7/k4r/R4F9qGFhA0CHIDTwJvACx3Yd1cYYWdnx5IlS1iyZEmr9dasWcOaNWtMXrv66qu5+uqrrWCdQtG1yW4Q9Igoq/QvhGDwpGls++875J3KsEgkOkXnYNPkLFLKeinlq1LKGCmlk5QyREr5qJSyrFm9u6SUQkq5tVn5s4Zyk68WxpxuuN5iODEpZZKUcq6UMlpK6W6wLVpK+YASc4VCYUty0lLw7tUbJ1ezclh1iIHjJ6Ozs+ewco7rVqj0qQqFQtGN0CLEWe78uSlcPb2IjhtN4vZ46utUboTughJ0hUKh6CZUlpVSkpttNYc4Y4ZMmk5laQkpe3+1+lgKy6AEXaFQKLoJ1naIMyb8kuG4+/lzKF7lSe8uKEFXKBSKbkJjyNdOEHSdzo7BE6aQ/tt+SvJyrT6e4sIxW9CFEH2FEDOblV0qhPhWCLHTkJBEoVAoFFYiJy0Fz4BAXDw8O2W8QROngZQc2bapU8ZTXBjtmaG/CPy54YMQwh/4EZgBDAb+I4S4zqLWKRQKhaKRnPQUAiOsPztvwDuoF2GDh3I4fhNSb85JYoUtaY+gxwHGj2m3AJ7ACCAA+BV4yHKmKRQKhaKB6ooKCs9kdcpyuzGDJ02nJDebk0d+79RxFe2nPYIegJZQpYGZwE4p5WFDEpVPAZWeR6FQKKxAbnoqAIFRnSvofUdfhpObG4eVc1yXpz2CXg54AxjinF8BbDe6Xok2Y1coFAqFhWmIEBdk5TPozXFwdCL2ikkc37OLqrKythsobEZ7BP0IcLsQwg8tgYo7YPzIFg4oV0iFQqGwAjlpJ3Dz8cXNu/MzNw+ZPJ362lqSfo7v9LEV5tMeQX8ZGArkAP8GDgDG6XimA/stZ5pCoVAoGshOS+n0/fMGAiOiCIyM5tCWDUgpbWKDom3MFnQp5fdoyVCWAX8HpkvDv6xh1n4aWGN5ExUKheLipra6ioLM050SUKYlhkyaTm5GWmNwG0XXo12BZaSU26WUS6SUz0kpC4zK86WUc6SUX1ncQkWPQ6/Xs3TpUgYMGICzszOhoaEsWbKE8vJys9p//vnn3H333VxyySU4ODgghCA9Pd26RisUNiQ3Ix0p9TYV9AFXTMDewZFDW1TClq7KBUWKE0LYCyFuEEIsEEL0spRRip7NI488wqOPPsrAgQNZsWIFc+fOZfny5cyePRu9GWdd33jjDT799FNcXFyIjrbdF5xC0Vnk2MghzhhnN3f6XTqW5J3bqK2ptpkdipZpT6S4l4QQCUafBdq59M+Bt4BDQgj17apolSNHjrBixQrmzJnDunXrWLBgAa+99hqvvfYa8fHxfPrpp2328cEHH1BaWsru3buZOnVqJ1itUNiW7LQTuHh44uHnb1M7Bk+aTnVFOcd/3WVTOxSmac8MfSZNneBmA+PRnOXmG8r+n4XsUvRQPvnkE6SUPPzww03KFyxYgKurKx9++GGbfYSFhWFvb28lCxWKroeWMjUabR5lO0IHDsYrqBeH1bJ7l6Q9gh4KHDf6PBtIk1L+Pynlp8CbwBRLGqfoeSQkJKDT6Rg9enSTcmdnZ4YNG0ZCQkILLRWKi5O62lryT2XYzMPdGKHTMXjiNE4lHqLo7Blbm6NoRnsE3RGoN/o8iaahYFOB3pYwStFzycrKwt/fHycnp/OuhYSEkJeXR01NjQ0sUyi6JvmnMtDX1xNow/1zYwZNnIIQOg5vVZHjuhrtWbc8BYwBVgkhBgFRwNNG1wMBFUbIkvz4/+DsIVtb0ZReQ+DKf3W4eUVFhUkxB22W3lDH0dGxw2MoFD2J7LTOS5lqDh6+/kQMG8GRrZsYO/dWdHZ2tjZJYaA9M/RPgTuFEN8B3wElwA9G14cD6oCiolVcXV2prjbtIVtVVdVYR6FQaOSkpeDk6oZXUNc5SDRk8nTKCgtI/03FEutKtGeG/k+0ffTrgGLgDillEYAQwgu4BlhqYfsubi5gJtxVCQ4OJjExkerq6vNm6pmZmfj7+6vZuUJhRHZaCoERUTZ3iDMmasRoXL28ObRlPVEjRtnaHIWB9kSKq5ZS3iul9JNSRkkpvzG6XIq2f/6spQ1U9CxGjRqFXq9nz549Tcqrqqo4ePAgcXFxNrJMoeh61NfVkZuRZtOAMqaws7dn4PjJpO5PoLyo0NbmKAxcUGCZBqSUeillsZSy1hL9KXou8+bNQwjBsmXLmpSvXr2aiooKbr311sayM2fOkJycTEVFRSdbqVB0DQqyTlNfW9tl9s+NGTxpGvr6ehK3b7G1KQoD7TrMK4RwA54ArkdzigPNu30d8LKU0rzYnYqLliFDhvDAAw+wcuVK5syZw6xZs0hKSmL58uVMmDCB+fPnN9Z98sknef/994mPj2fixImN5du3b2f7di1z7969ewFYuXIl3t7eAPz1r3/ttPtRKKxJQ4S4ruLhboxfSCjB/WM5FL+RuNlzutSWwMWK2YIuhPBFCywTC+ShZVsD6I/m7T5XCDHOOMa7GX3qgIeA+4AItPSrnwNPm/NwIIS4CbgSGAEMNNxPpJQy3UTdiUBLuf++l1JebaLNLOCvwCVANbAZeEJKmdaWbYqWWbZsGREREaxatYrvv/8ef39/Fi1axHPPPYdO1/ai0ZYtW/j73//epOzVV19t/FkJuqKnkJ12AgcnZ3yCg21tikkGT57GhjeXk3U0iZABA21tzkWPMDcVnhBiJfBHYBHwlpSy3lBuBywEVgBvSCkXmz24EK8Di4EvgR/RHhYWoT04TJVSthrYWwixFbgU+A3wBmJoW9BX0TTiHcBpKeXWZvXnAP8z9L0a8AIeRjuLHyelzDLnHuPi4mTDLLIlkpKSiI2NNac7hQVRv3dFV+eTp58A4JbnXrKxJaapqarkzfvuoP+Yy5n5x4dtbc5FgxBin5TyPIej9iy5XwO8LaV8w7jQIOz/EUIMR/OAN0vQDWfZFwHrpJQ3GJWnAcuBm4GP2+jmDiBLSllneOCIMWPoX6SUrcYXFUI4oD2gnALGSSnLDOU/AvvQnP8WmjGWQqFQdAi9vp7c9FQGT5pma1NaxNHZhZjLxnF013Ym37UQRxd15NSWtMcpLohzy+ym2G+oYy63AAItv7oxq4EK4La2OpBSnpRS1rVjTEDzBRBCOLdSZQIQjPYA0xgsR0p5ENgKzDOIvkKhUFiFwjNZ1FZXdTkP9+YMmTyN2uoqknc1X/hUdDbtEfRstOAxLTHcUMdcRgF6oMn5JSllFXDQcN0avI4W0a5SCHFMCPGQON+bo2HsX0y03w14ovkOKBQKhVU4lzK1awt6734D8A0J5XC8Sthia9oj6N8C9woh7jM4swGaY5sQYiFwD/BNi63PJxjIk1KaChuWCfgLISwZYaQWzb4n0LYP7geK0FYI3jVhW4MdpmwDCGlpICHEQiHEXiHE3tzc3AswWaFQXKxkp6Vg5+CAb0iorU1pFSEEQyZN48zxo+SfPmlrcy5q2iPoT6MdUXsDyBJCbBNCbAOygP8Yrj3Tjv5c0TzHTVFlVMciSCl3SimvlVK+JaX8Vkr5Flps+vXAXUKIK5rZRgv2tWmblHKVlDJOShkXEBBgEfsVCsXFRU5aCgFhEdh1g1TBA8dPRmdnxyGVVtWmtCdSXD4QB/wLyEdblh6FdoTtn8AoQx1zqQBMZ+kAZ6M6VsPgRf9Pw8dZRpcaxjVlX6fYplAoLl6klOQYcqB3B1y9vImOu5TE7Vuor1PxxWxFuyLFSSlLpJR/kVIOklK6Gl6DpZR/lVKWtHPsLLRldVOiGYK2HN8ZeTTTDe/+RmUNR9JMLas3lJlajlcoFIoLpjgnm+qKcoK6YECZlhgyaTqVpSWk7P3V1qZctFgk9GsHSTCMP9q40OB9Pgxo/fC25ehneDd26EswvF9mov4YtExzx6xplEKhuHjJMaRM7S4zdIDwS4bj7ufPoXiVJ91WtLg5I4QY35EOpZTbzaz6GfAUWrAW4/MOC9D2pz8ysqU3WmCXk1LKDi11CyH8mm8JGFYHnjV8/Nbo0jbgDPAHIcRSo3PolwATgfdU3HqFQmEtstNS0NnZ4R8abmtTzEans2PwhCns/vJzSvJy8fRX/kOdTWveFlsB88LIaQhDfbOy3UspDwkh/g08KIRYh5ZbPRYtMM02mgaV+SdwJzDJYJc2oPbQ0fDg0RA150EhRJFhjOeN+vhJCJGFFhgmC82T/Ta0GfoKKWXj8TkpZa0Q4iG0h44dQojVaEfVHkELT9se5z+FQqFoFzlpKfiFhmPfzVIJD5o4jd3rPuPItk1cdsMttjbnoqM1Qb+7E8Z/GG0PeyFwFZqD3Qq0WO6thn01MJnzxXWJ0c/Ggv4/tEh2i9DCxJajBcp5Rkr5SfOOpZRfCCEq0WK5v8K5WO5/llKq/XOFQmEVpJRkp54gOu5SW5vSbryDehE2eCiH4zcx5vp5CDNyMygsR4uCLqV839qDG8LGvmp4tVbvLuAuE+XPYmYOdinli8CL7bTvO+C79rRRKBSKC6E0P4/K0pJutX9uzOBJ0/lhxSucPPI74UOG2dqciwr1+KRQKBRdiO4SIa4l+o6+DCc3Nw4r57hORwm6otPR6/UsXbqUAQMG4OzsTGhoKEuWLKG8vM2MudTW1nL//fczcuRI/P39cXJyIjIyknnz5nHgQGupBhSK7kF2WgpC6AgIi7S1KR3CwdGJ2CsmcnzPLqrKytpuoLAYStAVnc4jjzzCo48+ysCBA1mxYgVz585l+fLlzJ49G72+ddeJmpoa9u7dy+WXX85f//pX3njjDe644w5++eUXLr30UrZs2dJJd6FQWIectBP4hvTBwbm1/FFdm8GTplNfW0vSz/G2NuWiouvHFFT0KI4cOcKKFSuYM2cOa9eubSyPjIxk8eLFfPrpp8yfP7/F9m5ubpjKL3///fcTFhbGK6+8wuTJk61iu0LRGeSkpRA6+BJbm3FBBEVGExgRzaEtGxg+c7atzbloUDN0RafyySefIKXk4YcfblK+YMECXF1d+fDDVlPVt0hgYCDOzs4UFhZawEqFwjaUFxVSVljQbffPjYkZO47cjDQqSoptbcpFgxJ0RaeSkJCATqdj9OgmAQJxdnZm2LBhJCQktNCyKfX19eTl5XH27FkSEhKYP38+ZWVlzJo1q+3GCkUXpcEhrrt6uBsTFKWFrc1JT7WxJRcPHV5yF0I4oIVG/U1KqR7BFGaRlZXV6MzWnJCQEHbt2kVNTQ2ObQTUSEpKYsiQIY2fvby8ePLJJ3nyySctbrNC0VlkNwh6RJSNLblwGu4hNz2ViKHDbWzNxcGF7KH7AvHANEB5IlmBF/e8SHJBsq3NaMIA3wH8efSfO9y+oqLCpJiDNktvqNOWoEdGRrJx40Zqamo4ceIEH374IcXFxVRXV2PfDdJNKhSmyElLwad3ME6ubrY25YJx8fDEwy9AzdA7kQv95hMWsUJx0eDq6kpOTo7Ja1VVVY112sLNzY2pU6c2fr7nnnsYMWIEc+bMYf369ZYxVqHoZLLTUujdt7+tzbAYgZFRStA7ETWV6cJcyEy4qxIcHExiYiLV1dXnzdQzMzPx9/dvc3ZuCnd3d+bMmcOLL75ISkoK0dHdfw9ScXFRWVpCSW42l0y70tamWIzAiChS9yVQW12Fg1P3PYbXXVBOcYpOZdSoUej1evbs2dOkvKqqioMHDxIXF9dCy7aprKwEoKCg4IJsVChsQU6aNpPtTjnQ2yIgIgop9eRmpNvalIuCCxH0MuDvgFpPUZjNvHnzEEKwbNmyJuWrV6+moqKCW2+9tbHszJkzJCcnU1FxLmNubm6uyeAzZ8+e5YsvvsDd3Z1BgwZZzX6FwlpkN+ZA7/4OcQ0ERWgrZbkZSiY6gw4vuUspy9EEXaEwmyFDhvDAAw+wcuVK5syZw6xZs0hKSmL58uVMmDChSVCZJ598kvfff5/4+HgmTpwIwEcffcSyZcu4/vrriYyMxNHRkWPHjvH+++9TWFjI22+/bdYevELR1chJS8EzIBAXD09bm2IxPPwDcHZzb1x9UFgXtYeu6HSWLVtGREQEq1at4vvvv8ff359Fixbx3HPPoWsj3eK4ceNISEjg22+/5ezZs9TU1BAUFMTUqVN56KGHGDt2bCfdhUJhWXLSUwiM6Fm+H0IIAiKiyFEz9E5BCbqi07Gzs2PJkiUsWbKk1Xpr1qxhzZo1TcpGjhzJRx99ZEXrFIrOp7qigsIzWQwc1/PCFgdGRPLbhh/R19ejs7OztTk9GuUUp1AoFDYm13C0KzCqZ83QAQIjoqmrraHwTKatTenxKEFXKBQKG5PdmAO953i4N9AQMa4hrK3CeihBVygUChuTk3YCNx9f3Lx9bG2KxfEJ7oOdgwPZKsCM1VGCrlAoFDYmOy2lR2RYM4WdvT3+oRGN2woK62ExQRdCeAghwizVn0KhUFwM1FZXUZB5msAeuNzeQGBEJDnpqUgpbW1Kj8aSM/TFQJoF+1MoFIoeT25GGlLqe+wMHTTHuKqyUkrz82xtSo9GLbkrFAqFDcnuQTnQWyKgwTFOLbtblVbPoQshxrejr8gLtEWhUCguOnLSUgypRv1tbYrVCAiPACHITU+lb9yltjanx9JWYJmtgLmbHqIddbUGQuiAh4D7gAggF/gceNoQWrat9jcBVwIjgIFo9xMppUw3UXcCcBMw3jBWFXAMWAl8Kptt7gghtgITWhh6lJRyb1v2KRQKRVtkp6UQGBmNED03G7Wjsws+vUPISVdH16xJW4JeDSQCH5vR1xRgRjvHX4q29/4l8CoQa/g8XAgxVUp5fhaOpvwJuBT4DUgBYlqp+yLQxzDWIcANmId2b5OBBSba5AGPmChX60YKheKCqautJf9UBpFXX29rU6xOYHgkZ04ctbUZPZq2BP0QoJNSvtpWR0IIZ9oh6EKIQcAiYJ2U8gaj8jRgOXAzbT9I3AFkSSnrhBAraV3Q/wz8LKWsNxrrdSAe+IMQ4nUp5eFmbcqllB+ae08KhULRHvJPZaCvr+/RHu4NBEZGc/SXHVSVleHs7m5rc3okbTnF7QcGCyEcrDD2LWjL9Muala8GKoDb2upASnlSSllnzmBSym3GYm4o0wP/M3wcbKqdEEInhPAUPXk9TKFQ2ISGlKk92cO9gcBwzc1KOcZZj7YE/X/AJ4A53hrfAPe0Y+xRgB7YY1wopawCDhqudwZ9DO/ZJq6FoOV9LwbKhBDrhBADOskuhULRw8lJS8HJ1Q2voF62NsXqNHi6q9zo1qNVQZdSbpJS3i2lPNNWR1LKQ1LK99sxdjCQJ6WsNnEtE/AXQji2o792I4QIRnPISwV+bnY5DXgJuBuYC7yB5oD3qxBiiDXt6uno9XqWLl3KgAEDcHZ2JjQ0lCVLllBe3qYfJAATJ05ECGHytXev8lVUdB8uBoe4Bty8fXDz8VUx3a2ILdOnuqI53ZmiyqhOjTUGF0K4ojnIuQGzpZS1xtellHc3a/I/IcQ3aJ7/rwHTWul7IbAQICxMBc9rziOPPMLy5cu5/vrrWbJkCUlJSSxfvpwDBw6wadOmNnOiA/j7+7N06dLzyqOioqxhskJhcerr6sjNSGPYjKttbUqnERgRRU6Gij9mLWwp6BVAYAvXnI3qWByDA99XQBxwp5RyhzntpJQ7hBDbgUlCCBcpZWUL9VYBqwDi4uJUrEMjjhw5wooVK5gzZw5r165tLI+MjGTx4sV8+umnzJ8/v81+3NzcuO22Nt0sFIouS0HWaepray+K/fMGAiOiSP9tP3U1Ndg7WnUB9qLElpHistCW1Z1MXAtBW463+OzcSMynAgs64MWeDtgBPS8tUifwySefIKXk4YcfblK+YMECXF1d+fBD8/859Ho9JSUlKj60oluSnao5xPXkCHHNCYyIQur15J3KsLUpPRJbCnqCYfzRxoUGwR0GWHwz1PDw8CUwHVgopXy3A930A+qAAkvadrGQkJCATqdj9Ogm/+w4OzszbNgwEhISzOonMzMTd3d3vLy8cHd3Z86cOSQnJ1vDZIXCKuSkpeDg5IxP72Bbm9JpBEZoDy/K09062HLJ/TPgKeBhwHjJewHa3vlHDQVCiN6AF3BSStmhZXiDmH+Fdlb+finl263U9QLKmh9zE0JcBVwO/Gjwxle0k6ysLPz9/XFyOn9hJiQkhF27dlFTU4NjK8txkZGRXH755QwdOhQ7Ozt+/fVXVq5cyebNm/n5558ZMkT5LCq6PtlpKQRERKHT2dnalE7DKzAIRxcXJehWwmaCLqU8JIT4N/CgEGId8APnIsVto2lQmX8CdwKT0JzSgMZY8w3x5uMM7w8KIYoMYzxv1MdHwExgE1AhhGi+Afu7lPJ3w8+TgNeEEN+iecDXoa0k3IYWPe7hDt10Ozn7wgtUJ3WtWadT7AB6PfVUh9tXVFSYFHPQZukNdVoT9Pfee6/J5xtvvJFrrrmGiRMn8uijj7Jx48YO26dQdAZ6fT256akMntSib22PROh0BIRHqdzoVsKWM3TQhDEdzSP8KjSxXIEWy72tsK+ghWx9plnZEqOfjQW9QfCnGl7N+TvQIOhHgX3A1UAQ4ACcBt4EXpBSZpphm8IErq6u5OTkmLxWVVXVWKe9jBs3jvHjxxMfH09lZSUuLi4XZKdCYU0Kz2RRW111Ue2fNxAYEcXh+I3o9fUX1epEZ2BTQTcsab9qeLVW7y7gLhPlzwLPmjlWRDvsSkI7e25TLmQm3FUJDg4mMTGR6urq82bqmZmZ+Pv7tzo7b42IiAi2bt1KYWGhEnRFl6bhLPbF5OHeQGBEFLXVVRSdPYtvcIitzelRtMspzhACdYsQYrjhs4/xZ4WiLUaNGoVer2fPniYBAqmqquLgwYPExcW10LJtjh8/jr29Pb6+vhdqpkJhVbLTUrBzcMA3JNTWpnQ653KjXzwBZupqatDX17dd8QJpr5e7AzCRc0e2HJt9VihaZd68eQghWLZsWZPy1atXU1FRwa233tpYdubMGZKTk6moOOcHWVxcTL2J/xjff/89O3fuZNq0aY178QpFVyUnLYWAsAjs7G2969n5+IeGobOzv6j20ZN+3srKu+dRmp9n1XEuvr8mhU0ZMmQIDzzwACtXrmTOnDnMmjWrMVLchAkTmgSVefLJJ3n//feJj49n4sSJAMTHx/Poo48ye/ZsoqKisLe3Z8+ePXz44Yf4+/uf96CgUHQ1pJTkpKUw4PLxbVfugdjZO+AXGnZRebpnJh/B3skJd18/q46jBF3R6SxbtoyIiAhWrVrF999/j7+/P4sWLeK5555rM+xrTEwMI0eO5LvvviM7O5va2lr69OnD/fffz1NPPUVIiNqTU3RtinOyqa4ovygd4hoIDI8i7eBepJQXRRz7zOREQmIGWv1elaArOh07OzuWLFnCkiVLWq23Zs0a1qxZ06QsNjaWL774worWKRTWJacxZWrPz4HeEoGRURzZtonyokLcfXq2z0tZYQFF2We4ZPosq49ly0hxCoVCcdGRnXoCnZ0dfqHhtjbFZgSGXzyOcZnJiQD0GTDI6mMpQVcoFIpOJDstBb/QcOwdHGxtis0IiIgEIDe952deyzyq7Z83ePdbEyXoCoVC0Uk0OMRdjOfPjXFydcMrqNdFkRs9MymR4H4xnXKiQQm6QqFQdBKl+XlUlpZc1A5xDWi50Xu2p3t1RQW5GWmEdMJyOyhBVygUik7jYo4Q15zAiGiKzp6huqJD+ba6BWeOJyOlnpAYJegKhULRo8hOS0EIHQFhkbY2xeYEGvaUc3vwLD0z+QhCp6N3/5hOGa+9gl6BlsSk4V+grNlnhUKhULRATtoJfEP64KCiGTYKek4PdozLTE4kMCIaR+fOyS3RLkGXUlZKKf8upUw3fC43/qxQKBSKllEOcedw8/HFxdOrxx5dq6+r5czxo4QMGNhpY6old4VCoegEyosKKSssIPAiDihjjBCCwIioHnt0LTs1hbramk45f96AEnSFQqHoBJRD3PkERkSRdyqD+rpaW5ticTKPagFlgmNiO21MJegKhULRCWQbBL0zAox0FwIjotDX15F/+pStTbE4mclH8Okdgpt35yUjVYKuUCgUnUB26gl8egfj5Opqa1O6DA3n8Xta5jWp15N5NKlT989BCbpCoVB0CjnpKQRGqOV2Y7x79cbeyanHOcYVZJ2mqrSEkBgl6Ioejl6vZ+nSpQwYMABnZ2dCQ0NZsmQJ5eXlbbbdunUrQohWXzt37uyEu1AozKeytISS3BwVIa4ZOp0dAeGRPc4xriEhS0hs5znEgUqfqrABjzzyCMuXL+f6669nyZIlJCUlsXz5cg4cOMCmTZtazYkeGxvLf//73/PKq6urWbhwIf7+/owePdqa5isU7SYnTVtSvphTprZEYHgUST9vRer1iFb+73cnMpOP4OrljXdQ704dt1VBF0IkAo9LKb83fLYHJgMJUsrCTrBP0cM4cuQIK1asYM6cOaxdu7axPDIyksWLF/Ppp58yf/78FtsHBQVx2223nVf+ySefoNfrueOOO3C4iLNYKbom2YYc6IGRyiGuOYGRUfy28QeKc3PwDupla3MswunkRPoMGIQQolPHbetxaADgZfTZC/gRGG41ixQ9mk8++QQpJQ8//HCT8gULFuDq6sqHH37YoX7ffvttAP7whz9cqIkKhcXJSUvBMyAQFw9PW5vS5ehpudFL8/Moyc3udIc46Ngeeuc+cih6FAkJCeh0uvOWxZ2dnRk2bBgJCQnt7jMtLY34+HiuuOIKYmI6J2ayQtEelENcy/iFhSN0OnJ7iKd7ZvIRgE7LsGZMz9iwUHQbsrKy8Pf3x8nJ6bxrISEh5OXlUVNT064+3333XaSUanau6JJUV1RQeCaLoCi1f24KB0cnfIP79Jija5lHE3FwdiEgvPMT8NjUKU4IoQMeAu4DIoBc4HPgaSllmy7PQoibgCuBEcBAtPuJbCm2vBDCC3gemAP4ASnASuBNKaU0UX8W8FfgEqAa2Aw8IaXsFJfMHZ8fI+9UWWcMZTb+oe6Mu6l/h9tXVFSYFHPQZukNdRwdHc3qr76+njVr1uDp6cncuXM7bJdCYS0aZp4qQlzLBEZGc+rwb7Y2wyJkJicS3H8AOju7Th/bnBm6mxDCVwjhC/gayjwaypq/2jn+UuA1IBFYBHwBLAa+NYh9W/wJuBmoRBPnFhFCOAIbgfuBzwzjHQXeAJ4xUX8O8B3gAjwOvAyMB3YKIYLNsE1hAldXV6qrq01eq6qqaqxjLuvXr+f06dPccsst7WqnUHQWDRHi1JG1lgmMiKKssICK4iJbm3JBVJWXkXsy3Sb752DeDP1Nw8uYdS3UlWb2iRBiEJqorpNS3mBUngYsRxPqj9vo5g4gS0pZJ4RYCbS2gfoHYBSwWEq5wlC2WgixFnhKCPGelDLDYIMDsAI4BYyTUpYZyn8E9gHPAgvNuc8L4UJmwl2V4OBgEhMTqa6uPm+mnpmZib+/v9mzc4B33nkHUM5wiq5LTtoJ3H18OzUEaHfjXCrVVCIuGWFjazrOmWPJICUhMZ2/fw5ti+/7Vhz7FjQHu2XNylcD/wJuow1Bl1KebMd489Hyua9uVr4MbQl+HvCSoWwCEIy29N+45i2lPCiE2ArME0I8IKXseRkFrMyoUaPYsGEDe/bsYdy4cY3lVVVVHDx4kPHjx5vdV05ODt9++y1Dhw4lLi7OGuYqFBdMdlqKmp23QUAPEfTTyUfQ2dnRu59tJmOtCrqU8m4rjj0K0AN7mo1ZJYQ4aLhuEQzL9yOA/VLKqmaX9xjsMB6v4edfTHS3G+0sfn/giKVsvFiYN28eL7zwAsuWLWsi6KtXr6aiooJbb721sezMmTMUFxcTFhZmcjn9gw8+oLa2Vs3OFV2W2qoqCjJP0+/Sy21tSpfGxd0DD/+Abu8Yl5mcSFBkXxycnG0yvi293IOBPCmlqQ3VTMDfsO9tCXzQ9sIzm18wjJ8PhDSzDVP1jcpCTFxTtMGQIUN44IEHWLduHXPmzOHtt99myZIlPProo0yYMKFJUJknn3yS2NhY9uzZY7Kvd999F2dnZ5OBZhSKrkDuyTSk1CuHODMIjIju1kfX6mprOZtyjGAb7Z+Dbb3cXdE8x01RZVSnfWeYWh6LNsYzngK2Vr+qWZ3zEEIsxLDHHhYWZr6VFwnLli0jIiKCVatW8f333+Pv78+iRYt47rnnWg37asyuXbtISkpi/vz5+PiovUlF10Q5xJlPYEQkKft+pbaqCgdn28xwL4TslOPU19bSxwbnzxuwpaBXAIEtXHM2qmOpsQBMn5fSxjMeq7X6bdompVwFrAKIi4s77zjcxY6dnR1LlixhyZIlrdZbs2YNa9asMXlt7NixmDhpqFB0KXLSUnDx8MTDz9/WpnR5AiOiQUpyT6YT3H+Arc1pN5lHtYQswTGxNrPBlkvuWWjL6qZEMwRtOd4Ss3OAQrSjbectkxvG96Pp8nqWkR2mbAPTy/EKhULRSINDXGfH9O6ONMS576776JnJR/AN7oOrp1fbla2ELQU9wTB+kxigQghnYBiw11IDSSn1wH5guIkHiNEGO4zHa4g/epmJ7sYAJcAxS9mnUCh6HnW1teSfylAR4szEwy8AZzf3bhnTXer1ZB5N7PR0qc2xpaB/hnZu/eFm5QvQ9qc/aigQQvQWQgwQQlxI5JBPDP02Pz/+MFCHFqGugW3AGeAPQgh3IzsuASYCX6gjawqFojXyT2Wgr69XDnFmIoQgMDKqWzrG5Z0+SXV5OSExtnOIAxvuoUspDwkh/g08KIRYB/wAxKJFittG0zPo/wTuBCYBWxsKhRDj0aK3ATQcRH5QCFFkGON5oz5WA3cDrwkhIoAkYBZwPfC8cThXKWWtEOIhtIeOHUKI1YAn8AhaeNrzIsspFAqFMedSpqoZurkEhEfx24Yf0NfX2yR0akfJTNb2z/vYeIbebkEXQvQH+qLtO5+3MSSl/KAd3T0MpKPNmq8C8tAitD1tWCZvi8mcL67GnlaNgi6lrBFCTDWU3cK5WO6LgH8371hK+YUQohItlvsrnIvl/mcppdo/VygUrZKTloKTqxtegUG2NqXbEBgZTV1tDQVZp/EPDbe1OWaTmXwEdx9fPANs+29ttqALIYLQIsdNaygyUU0CZgu6lLIeeNXwaq3eXcBdJsqfRQvDau54RcCDhpc59b9Di+euUCgU7UI5xLWfQEOGspz01G4m6IkEDxhk83/r9szQV6KJ+X+ALWjBWBQKhULRjPq6OnIz0hg242pbm9Kt8A0Jxd7BkZz0VAaOm2Rrc8yiJC+H0vxcRg2YY2tT2iXo09DSjJo1u1UoFIqLlYLMU9TX1iqHuHais7PDPyyc3G7k6Z6ZpEUAD7FhQJkG2uPlrgN6RsJahUKhsCIqQlzHCYiIIicttdsEjso8moijiyv+YbbfImiPoO8ALrGWIQqFQtFTyElLwcHJGZ/ewW1XVjQhMCKaqvIySvNzbW2KWWQmJxIcE4tOZ3uv/PYI+qPA9UKIG9qsqVAoFBcx2WkpBEREdYkv+e5GYITBMS6t659HrywrJe9Uhs3PnzfQ4h66EGKLieIy4HMhRBaQCtQ3uy6llFMsaJ9CoVB0K/T6enLTUxk8aVrblRXnERAWCUKQk55K31FjbG1Oq2QdTQKwaUIWY1pziotCO4bWnJOGd5VGTKFQKJpReCaL2uoqFfK1gzg4O+PTO6RbxHTPTD6Czs6eoL79bG0K0MqSu5QyQkoZ2d5XZxqv6J7o9XqWLl3KgAEDcHZ2JjQ0lCVLllBeXm5W+9raWl544QViY2NxcnLCz8+PG264geTkZCtbrlC0TY5yiLtgAiOiyM3oDoKeSK/ofjg4tpTIs3Mxew9dCBEmhHBp5bqLEELN2hVt8sgjj/Doo48ycOBAVqxYwdy5c1m+fDmzZ89Gr289QKCUkmuvvZa//OUvxMTEsHTpUhYvXszPP//MmDFjSExM7KS7UChMk52Wgr2DI34hobY2pdsSGBFFSW4OlWWltjalRWprqjmbcpyQAV1j/xzadw49DbidpjHWjbnGcE15gSha5MiRI6xYsYI5c+awdu3axvLIyEgWL17Mp59+yvz581ts//XXX/Pjjz+ycOFC3nrrrcby22+/ncGDB7N48WI2bdpk1XtQKFojJy0F//CIbhWLvKsRGKGlUs1NTyVscNc8XJV94jj6+roucf68gfZ4ubcV006H6T13haKRTz75BCklDz/8cJPyBQsW4Orqyocffthq+/j4eADuvvvuJuVRUVGMGzeOzZs3c/LkSVNNFQqrI6UkJy1FBZS5QBoEvSvvo2ce1VYDg2NibWzJOdqbPrU1wY4FijpuiuJiICEhAZ1Ox+jRo5uUOzs7M2zYMBISElpoqVFdXQ2Aq+v5mXQbyn799VcLWatQtI/i7LNUV5Sr/fMLxNXLG3cf3y4t6KeTj+DXJwwXd49W61XX1fPT4bM8ue6Q1YPltLrkLoS4Ey1taQN/FUIsMFHVFxgMfGlB2xQ9kKysLPz9/XFyOt+JJCQkhF27dlFTU4Ojo6PJ9oMGactbW7ZsYejQoY3lFRUVjUJ+6tQpK1iuULRNQ4S4IJUy9YIJjIzusrnR9fp6so4mEXvFhBauS/ZmFPLlgUy+/z2Lkqo6/N2deGBSNH18zp+MWIq29tC9gQbPdQkEAM2tkWjn098F/mJJ4y524tesIqeLeXoGhkcx6a6FHW5fUVFhUsxBm6U31GlJ0G+77Taef/55nn76adzc3Jg6dSp5eXk888wz5OXlNbZXKGxBdupxdHZ2+HWjTGFdlYDwKNIO7qO2prrLeJE3kHcyg5rKivMCypzIKeOrA5l8dTCT04WVuDjYMXNwL64bHsLl0X7Y27V3Ubx9tCroUsrXgdcBhBB64GEpZUtOcQpFm7i6upKTk2PyWlVVVWOdlvDx8WHTpk3ccccdLFx47sFi/Pjx/PnPf+b555/H09PTskYrFGYgpeTYrzvpEzsIewcHW5vT7QmMjELq9eSfOkmv6K5xzruBzGRDQpbYQeSUVvHtb2f46kAmhzKL0QkY1y+Ax6bHMG1gEG5O7fE9vzDMHklKad1HC8V5XMhMuKsSHBxMYmIi1dXV583UMzMz8ff3b3F23sCQIUM4cOAAJ06cICsri+DgYPr27csTTzwBwIABA6xmv0LREpnJRyjOPstlN9xia1N6BIHhDY5xKV1O0E8mHsHe04dF36Sz43gueglDQrz429UDmX1JbwI9nG1iV+c9OigUwKhRo9iwYQN79uxh3LhxjeVVVVUcPHiQ8ePHm91X37596dv33F7ljz/+iKenJ5dffrlFbVYozOHIti04ODnT79KxtjalR+AVGISji2uXieleV69nZ0o+X+0/jc++A5x26s2JnDL+NLEv1w0Ppm9g685xnUFbsdwlMENKWddCbPfmqFjuilaZN28eL7zwAsuWLWsi6KtXr6aiooJbb721sezMmTMUFxcTFhbW6jI8wIoVKzh8+DDPPPMMbm5uVrNfoTBFbXUVx3bvoP+Yy3F0bjH+lqIdCJ2OwIgom/oRSSk5klXClwcy+ea3LHJLqwnWlXNDXTlXXX05b86bhE7X1oluA/p6sHKynrZiues5d/68pdjuCoXZDBkyhAceeICVK1cyZ84cZs2aRVJSEsuXL2fChAlNgso8+eSTvP/++8THxzNx4sTG8lmzZhEVFcXAgQMRQrBhwwa++uorrrrqKv7yF+WXqeh8TiTspqaykoHj1XzGkgRERHJoywb0+vpOzVx3qqCCb37L4ssDmZzIKcPRTsfkAYFcNzyE3rmH2ZQCYy8f1baY19dB6lY49IX2vvgAONrAy11KGdHaZ4WioyxbtoyIiAhWrVrF999/j7+/P4sWLeK5555Dp2vbVeOyyy7js88+Y82aNQDExsby73//m/vuuw87FZ1LYQOObNuMZ0AgoQMH29qUHkVgRDR11dUUnT2Db3Afq45VXFHLD4fP8OX+TPakFwAwOsKXf84ZwqzBvfFy1RwdN6z6Aic3N/z7tBDpXEo4naCJ+OF1UJEHzl4w8FqoKbeNoCsU1sLOzo4lS5awZMmSVuutWbOmUbSN+dvf/sbf/vY3K1mnULSP0oI8Th76jUuvn4sw44FUYT6NEePSUqwi6NV19cQn5/LVgUy2JOdQU68nOsCNx2fEcM0lwYT6ni++mcmJhMQMPP/fOidJE/FDX0DRSbB3hpgrYchc6DsV7K1/9M5sQRdCPAZskVLut6I9CkW3YHdqPidyyvB0ccDT2R4PZwe8XOzxdHbAw9kBZwcdQpi5t6bo1iTt2IqUegaOn2xrU3ocfn1C0dnZk5ORxoDLTQdxaS96vWTfyULW7W8a9OW2MeHMGRHCoGDPFv/vVpQUU5B56ty/ddEpOLwWDv0Psg+B0EHUJJj4FAy4Cpw79whte2boLwFSCFEEbAO2oAm8Sm+luGjYf7KQV9YfZVdKfqv1HOyEQdztDaJv+NnZAc9G4W92zcUBTxftZ3dHe/OdbRQ2Q0rJkW2bCe4fi0/vEFub0+Ows3fALzSsMSXthWCJoC9ZR5MA6EM6vHslnNylXegzCq58CQZdD+6BF2xrR2mPoA8EpgCTgfHAdWgCnwPEc07gu8YZA4XCghw9W8orG46yMTEbPzdHnpk9kCsH96asuo6SqlpKKmspqaqjtKqWkkqtrOnPdWSXVBnq1lFZW9/qeEKAh5M28zdeBWh4GPA0PAB4uzoyIsybSH83tSJgA7JTjlOQeYppCx60tSk9lsCIKFL3JyClbPff+Mn8CjYknuXrg1mNQV+u6EjQl5pyOPojmV99hJ3QE7T/HxDYHyb/FQbfCL6RbffRCbQnsEwykAz8G0AIMQyYZHjNAuahecG3ZxlfBzwE3AdEALnA58DTUspyM/uYBfwVuASoBjYDT0gp05rV2wq0tmazSUo5zcz6o6SUe82xT9G9OZlfwdJNx/jqYCbujvY8Nr0/d18eecHRn2rr9ZRW1VFSqYl9w0OB8c8ljT9r75lFlSSdqaWkqpay6jqM8zz08XFhXL8AxvfzZ2y0f6MDj8K6HNm+GTsHB/pfdoWtTemxBEZEc2TrJsoLC3D39Wu1rl4v+T2zmI2JZ9mUmMPRbC2f+uAQz/YHfamvhZR4bU88+XuoLSfzzCh6Bfph/8ft0GuI9uTdhbiQb6VsNAEuAEoBT6CunX0sBRajJXV5FS1j22JguBBiqpRS31pjIcQc4H/Ab8DjgBfwMLBTCBEnpcwyqv4P4G0T3cwDrga+NXEtD3jERLlahejhZJdUsWLLcT7dcwp7O8F946O5f0IU3q6OUJ4H25dDfgq4B2kvD8O7eyC499Le7VoWVQc7Hb5ujvi6tR4VryX0eklZTR05JdX8kprPjmO5fPtbFp/sOYlOwLBQb03g+/tzSR9vq8eQvhipr6sleed2ouPG4OzmbmtzeiyBEdrsNyc91aSgV9XW80tKPhsSs9mclE1OaTV2OsGoCB/+dvVApsUGEeZnpme5Xg+n92gifuRLqMgHZ28YOpfamOvJfnYpcdNmQe+hbXZlC9ozm/ZGm41PMbz6o83IDwAfoy2572hHf4OARcA6KeUNRuVpwHLgZkO/LbV3AFYAp4BxUsoyQ/mPwD7gWaAxdqqUcmML/fwVbWZvKhF3uZSy9QTdih5FUUUN/9mWwvu70qmrl9w8OpRFk/sR5OkMVcWw5WXY/QbUVoBfX8jYBZUFpjtz9Ttf5D16nV/m7NXuJ32dThiW3h3oG+jO7WPCqa3Xc/BUETuO5bL9eB7Ltxzn9c3H8XC25/Jof8b192d8vwCTnruK9pO6P4GqslIGTVDOcNYkIPxcbvSoEaMAKCivYUtyDpsSs9l+PJeKmnrcHO2YGBPI1IGBTIoJ1B6+zSU7EQ59DofWQvFJsHeBAbM0D/XoKWDvyJnDv6OvrydkwMC2+7MR7Zmh56LlT08CNgJPAlullEUdHPsWtKA1y5qVrwb+BdxGK4KOthwejLY8X9ZQKKU8aFgunyeEeEBKWdtSB0KIcUAM8KmU0uS3smFbwB0olVZMZtuR/SFFx2n+T1leXce7P6exansqZTV1XDcshEem9tee7Gsq4Odl8PNSqCqCgdfBpL9AQH+tcV01lOdCaTaUNXs1lOXvgrKzUF9zvjH2zgaBD2r68mj22YxZ/6gIX0ZF+PLo9BiKKmrYeSKfHcdz2X4sl5+OnAUg0t+Ncf38GdcvgMui/XDvxOQRPYkj27bg5u1DxNARtjalR+Pk6op3UG/Sjh7j0PZUNiZmszejAL2EXp7OzBkRwtTYIC6L9sPJvh1xKIpOat7ph/4HOUdA2EH0ZG1ffMAscGoayjXz6BEQguD+sRa+Q8vRnv/JdmiR4yqBCsOr+gLGHmXob49xoZSySghx0HC9rfYAv5i4thvNea8/cKSVPu41vJtaigcIQUsN6wJUCCHWA08Z/Akshp2dHbW1tW0mJVFYjtraWuzs7Kiuq+ej3Sf5d/wJ8strmDYwiMemxxDTywPqamDPatj+sibKfadp/9mDhzXtzN4JvPpor9aQUnsgaBT+HE3kG34uPast42fshMpC0300zvoNL8/eEDkewq8A+6Z/P96ujlw1tDdXDe2NlJKU3HJ2HM9lx/E8vth7mg9+ycBeJxgR7sN4g8APDvHCTnnXt0lFSTFpBxIYfuU16FQwI6ug10sOnCpiY2I2ebUeuBxO4r/FSQzo5cGDk/oybWAvBoe0fMTMJOX5kPilJuInDdIReinMekV7UHcPaLFpZnIiAaHhXXp7pT2CHsw5L/ebgCeAGiHErxg83IFfpJTm7qMHA3lSSlMPBZnAWCGEo5TSxJSmsX1DXVPtQRNkk4IuhPAE5gJpBtubkwbsBH4H6oFLgQeBKUKIK6SUh1qwq914eHhQUlKCv7+/pbpUtEFxcTGnSyV3v7KNzKJKxkb78fiMGIaH+Wgxl3/7FOJfgKIMCLsM5q6B8AtMuiEEuPhor8A2MsKdN+s/a3gAMJ71n9AeAn5eCo4e0G8qxMzSgli4+jYbWtA30J2+ge7cfXkk1XX17MsoZMfxPHYcz+WVDcd4ZcMxfFwduLyvtjQ/rr8/vb1UXHJTJO/chr6+nkETVKhXS1JVW8/Px/PYmJjN5uRs8spqsNcJrvUJxrvgGJsXXUp0SDu/J6vL4OiP2pJ6yhbQ10HAAJj8NxhyI/hEtNmFvr6erGPJXX57pT1e7meBjwwvhBCRaOI+Bc1L/Wm0Wbu5KWdcaXmGX2VUpyVBb9gINNVHVbM6prjFcP1dU0vpUsq7mxX9TwjxDbAVeA2Y1rxNA0KIhRj278PCWggPaISvry8nT54EwNPTEwcHB7X8bgWklNTU1JCdX8jh1Cye2ZJDsJ8HL904lMv7+msz6KRvYcvzkJsMvYbCrf/TBLKz/z3MnfXXVkLqNjj6Axz7SXPkEXbaw0fMldrLN+q8Zk72doyN1jzi/zxzAHll1ew8kcf2Y5rAf/f7GQD6BbozziDuYyL9cHFUs1HQQr0GRkQTEBZha1O6PXll1WxJzmFjYjY7judSVavHw8meCTEBTBsYxMT+geQfDeDLf23FqeQsmCPoJVna/4ejP0HaNqirAs8+cNmD2r540KB2/Z/OzUijtqqSkJiuu38OF+bl7tjsJWhdQJtTAbR0At/ZqE5r7QFMxdMzp/29aDPv91qp0wQp5Q4hxHZgkhDCRUpZ2UK9VcAqgLi4uDb33Z2cnAgLC6OgoID09HTq61s/o6zoGFW19eSU1bIjvYxjhZLnbxjG9IFBWvahlC2w+TnIOgB+/bQZeey10NVDeTq4QMxM7aXXa/Yf/UGbkax/SnsFDDCI+ywIGWky45O/uxPXDgvh2mEhSCk5ml3KjmN5bD+ey0e/ZvDuzjQc7XSMivQxHI8LILa3x0X54Jl3Mp2ctBQm3bnA1qZ0W1Jyy9iYmM2mxGz2nSxESgj2cuamuFCmDQzi0kg/HO3P/d+zi4gGNMe4PrEm4uVLCWd/1/7uj/4IZw5q5d7hMPIuLY566JgO/3/OTNYWekMGDOpQ+86iPV7u4Wgz8slo3u690US8GNiOtmy9uR1jZwEDhRBOJpbdQ9CW41uanTe0b6ibZKI9mF6ORwgxBG0P/nsppck6rZAOTAR80PwJLIKTkxO9e/emd+/elupSYWBfRgEv/nSUPWkF9PFx4dFp/fn7sBBtr/jkr7Dl/yB9B3iFwrX/hqE3g103dBTT6aDPSO015W9QmK7NUI7+ALtWaEvzbgHQf4Ym7lGTTCaKEEIwoJcnA3p5smB8FFW19exJK2jcf//Xj8n868dk/N2dDM51/lzRz9/8873dnCPbt6Czs2PAFRNtbUq3oV4v2X+ykE2J2WxMzCY1TwszMijYk4em9GNqbFCrIVfdvH1w9fJumhu9tkr7f3v0Bzi2HkoyAaFFbZvyjPYQGzDAIqtrmcmJeAYE4eHX/m1RKSVH8o+w+8xu7h18r1UfgtvzrZWGdkytEm1veQWaiO9r67x4CyQA04HRGB13E0I4A8PQHhLaag9wGbCp2bUxQAlwrIW2fzC8t+QM1xr90M7bt3BWSdFVSMwq4ZUNR9mSnEOAhxP/d+0g5o0K0578zx7SltaP/aSJ3JUvaU/yZiZQ+D33d86Wn6Wvd1/CPMOw13XBBwCfCBhzv/aqLIQTm7Uvv8Rv4MCHmnd91CTti6//TM2r3gTODnaM7x/A+P6aw1B2SVXj3vu2Y7l8eUB7Ju4X6M7YaD8ui/ZnTJRv+44NdRP09fUk7Ygncngcrp5etjanyyKlJLesmgMnNae2Lck5FJTX4GAnGBPlx12XRzAlNogQb/N8NIQQWm701GPa3+7RH7WgL7Xl4OAG0ZO0kyf9prfq2NbRezmdfITwocPb1SapIIn16etZn76ezLJM7HX2XBl5JSHu1gsR3J5vob+jCfju1o6CtYPPgKfQAsEYn19fgLZ0/1FDgRCiN1rQmJNSyoZl9G3AGeAPQoilRufQL0GbQb9nyk4hhBNwK1pgnO9MGSaE8ALKpJT1zcqvAi4HfpRSVplqq7A9aXnlLN14jG9+y8LT2Z4nZsZw19gIXB3tIe8EbH1BS6jg7AVTnoZL7wdHN7P6TspPYvmB5fyc+XNjmYPOgSivKPr69KWvd1/6efejn08/erv17jpL0i4+mgPQkBs17/2TuwzLkz/AsR+1OiFx55bmA2NbnNkEeTpz48g+3DiyD3q95EhWCbtS8tiVks/ne0/z/i8ZCKHNvrR9ej9GRfhecHS9rkDG7wcoLypkkMp7DmjbWGl55aTmlpOaW0ZqnuE9t5zSas0/2sPZnkkxgUwbGMSEmAA8ndsRxVBKLYvZ0R8IKN7DyVM66r/6GDuvYLjkZu1vNeIKcLDe6lBR9hkqiovo08Zyu5SSY4XHGkX8ZOlJ7IU9lwZfyn1D72Ny2GS8nKz7ECiseLS67cGFWIHmOf4l8APnIsXtBCY3zPyFEGuAO4FJUsqtRu3noj0Y/IZ2ft0TLbKbBEaaWk4XQswDPgVeklL+uQW7rkNzfPsWLSpcHdpKwm1oM/PLpZQtzf6bEBcXJ/fuVVFiO4MzxZUs33yCz/eewtFOxz1XRLBwfDReLg5QfBq2vQgHPtJm4WP+CGMXaUJnBunF6aw8uJL16evxdPTk3iH3cmnvS0ktSuV40XFOFJ7geNFxzpafbWzj5uBGtHc0/bz70de7b6Pg+7t0odMMUkJO4rl998x9Wrl3uPZlGXOl5mDXyvl3Y2rq9Px2uohdJ/LZlZLHgZNF1NTrsdcJhoV6N87gh4d54+zQ/Rzsvlv2IhmHDnLfmx9g73BxhNeVUnKmuEoT7TxNrFMMop1VXNkkBHGwlzNRAe5EBbgR5e9GTC9P4iJ8cGhPpMK6Gu3o5tEftYfNIs1hONluFN8fdub2xx4kMG5GpzmqHt66ifX/WcZdr76Bn4kc6CcKT/BT+k+sT19Pekk6OqFjdK/RzIyYyZSwKXg7e1vcJiHEPillXPNyWz8yP4y2J70QuAot1OoKtGAxbS7jSym/EEJUosVyf4Vzsdz/3MreeMPZ83da6fooWrS5q4EgwAE4DbwJvNCBfXeFFSkor+E/W0/w/i8ZSCm5fUw4D0zqS4CHE5Tlwk+vQYJhd2X0Ahi3xOyMSGfKzvDm72/y9YmvcbRzZOHQhdw56E48HbW0iIP8mj61l9aUklKU0kTkN5/czNrjaxvr+Dr7agJvEPl+3v2I9o7Gw9HcAyIWRAjN4zdoEIx/XDsGd+wn7ct033vw63/AyQv6TdPEve9UcPFusTtH+3PBbR6a2o/KGu14XMMMfmX8CZZvOYGTvY64CB/GRvtzWbQfQ0O8unx42qryMk7s3c2QydN7pJiXVdeRZhDtlNxzM+20vPImyYTcHO2ICnAnLsKHKP9QTbwD3Ij0d9NWwTpCRQEc32BYSt8C1SWGLaGJcMWj0H8mgWX18Mj95JTZEdiJK1+ZyUdwdvdoko89tThVm4mnrSelOAWd0BEXFMftA29navhUfJ19W+nReth0hn4xoGbo1qOsuo63d6Ty9o40KmrqmDOiDw9N6aeFNq0qhl0rz4VpHTYfJvwZvNs+RgiQX5nP24fe5rOjnwEwL2YefxjyB/xcWk8OYQopJflV+ZwoOsGJwhOcKDrB8cLjnCg6QUXduYMYvdx6abN5g8j39e5LpFckzvY2cjarKYfUrYbZ+09QkQc6ewi//Nzs3Se8XV2WVNWSkFbATsMMPvmsljzD3cme0ZG+jI32Y2y0PwN6eXS59LG/b/qJjatXcus/XqNX3/62NqdD1OslmYWVpBhm2g2inZpXRnbJOd9knYA+Pq6GmbZ7o2hHB7gT6OFkma2kvOPn/rZO7Qap14IlNThtRk5o4rQp9XpW3HUTgydPY/Jd9134+Gby7sP34RvSh+H33dG4nH6s8BgCwYigEcyImMG08GmduvLW0gxdCbqVUYJueapq6/lwdwZvbE2hoLyGKwf3Ysn0/vQN9NDCtO5Z1XKY1jYorSnl/SPv89/E/1JVX8W10dfyx0v+SG93y58+0Es9Z8rPNM7kG0Q+tTiVOr22/6gTOsI8wujn06/JrD7Mo5Md8fT12nJ8w9J8riFYYuCgc051wcPbfTogv6ya3akF7ErJ45eU/EbvZx9XBy4zLM+PjfYjqgukh/3kb49TVV7GXa++YXNbWkOvlxRX1pKeX95kpp2aV0Z6fgU1decWP71cHJqIdnSAG1EB7oT5ulp+S6S+ThPuhqNlBYYc50FDDEcvr4Tew1s9WvbJ3x5H6HTc/PcXLWtbCxw/fYRvlvyZk8Md2NL7BADDAoYxM3ImU8OmEuRm2pHU2ihBtxFK0C1LRn45t6zaTVZxFeP6+fP4jBiG9vHW9t32v992mNYWqKyr5NPkT3nn8DsUVxczPXw6Dw5/kEivzs9zXKuv5VTJqSYif6LoBCdLTiLR/r82OOL19+nPlPApjA8Zj4OZ+9wWIT/l3BfzyV3a7MrZSwtDGzVJi4ndgRzRZ4or+SUln10p+ew6kUdWseZ7GuTp1Lg8Pzbajz4+nZtgpvBsFu8+tJBx8+9i9LU3durYoD3E5pfXkF9WTV5ZNXllNeSXaZ/zy2uMyqopKK+hTn/ue91eJwjzcyXK390g2JpoR/m74evmaN2Hk6piOLFJ+zs5vlF7yLZzhIhx5x4EvUPN7m7TO/8haccWHnz3M4SVYkRklWU1zsRLj6QyeX8gyVe6ccWoWcyImEEvt15WGbc9KEG3EUrQLcuDH+8nPjmHt+8cxWXRftrM8ffPNc/1opNamNYpT5sdprW2vpZ1x9fx1u9vkVuZyxUhV7Bo+CIG+nW9iFCVdZWkFac1LtkfLzpOYl4ihdWF+Dj5MCtqFtdEX0Osb2znziArCiA1XjtGlBIPJae1cp+Ic+IeOb7VvXdTSCk5WVDRuDz/S0o++eVaaIowX1eDg522RB/gYd5xw46y8/MP2b3uMxa+8R4evhe+tKrXS4oqa8kvqya3rLqZOJ8Tbk3EayirNh1R29XRDj93R/zcnPB3d8Tf3anxc5ivtmQe6uvaPqe0jiCl5niak6QlOslJ0pwtc5K0UKuuftBvhjYTj558XuITc/l983o2rlrBva+vxruX5VbNzpafZUP6Btanr+f3vN8BzT/mimO9qNufwaI1n2Nn33X8JrqqU5xCYTZJZ0r47vczLJrcl8uifLXz1Fueh7yjhjCtS6HvFLO8X+v19fyQ9gNvHHyD02WnGR44nJcnvMzIoJGdcCcdw8XehYF+A5s8bNTp69iVtYuvT3zN50c/56Okj+jr3Zfr+l7HVVFXdc6+nqsvDL5Be0mpxZhPiddE/tAXmnOd0EHwCO3LPHqSFvyjjRUFIQThfm6E+7kx/9Iw7VhQdlmjg933h87wacIpAPoHuXNppB8+rg7odAKdENjpBEKAndA+63QCO0Hjda2ONo6dEOh0GJU31AEdkqTNG/GMGsjBfIldQZ7WRme4rhNGY2ie/vllNeSXG82kyw0CXaYJdkF5NXoTcymdAF+DOPu5OzLM1xs/N02k/Q1C7Wck3B12QrsQyvPPF+2cJM2RrQHPEAgcqJ0L7zcD+sSZjFDYXgIjGlKpplywoOdU5LAxYyPr09dzIOcAAAN8B/DQiIeYET6DUM9QPnzyERz6xXQpMW+Nds3QhRCuaOlGA9GOhuUCR43OhiuaoWbolmPBB3vZnZrP7pt0uO14Xgvv6N9f2yOPvcassI5SSuJPxbPiwApOFJ1ggO8AFg1fxLiQcV16X9QciquLWZ++nq9Tvub33N+xE3aMDR7LtX2vZWLoRJzsrDuLNUl9LZzea5jBb9H24aUeHN21ZdfoSdos3r9fu48h1eslR7KKteX5lHz2phdQUWP5sMkhlZnMOfsN6wOmcMy9/c5w7k72hllzgxAbBNvNET+DMAcYyr1dHLqOM2B1meYr0SDa2QYRL885V8fFR/OjCIzVXkGDtOhs7VyNMZe6mhqW33kjo6+dyxU3397u9nmVeY0ivj97PxJJP59+zIyYyfTw6UR4RTTWramqZOXd87j0urlcPq/9Y1mTDs/QhRA+wF1omclGmmhTJ4TYB3wOvC+lbCHvo0LRcX4/rUWcemP4adw+fwK8wuDaN2DoPLMdsX498yvL9y/n97zfCfcM5+XxLzM9Yjo60bWPS5mLl5MXN8XcxE0xN5FWnMY3Kd/wbcq3PLbtMTwcPbgy4kqu6XsNQ/2Hdt7Di50DhF+mvSY9BZVFWrjOlC3aLL4hqI1nH4ieqIl71CRwa/s0gZ1OMLSPN0P7eHP/hOjGcr1eopeSeimRUhN+vZTo9TSWN/msN9Rr/NlQx3D90Cdvkl3ozPMP3YJwcESvN9G3lNQb6jvYiUbh9nNz7Prn7etqIP/4uRl3dqL2XpRxro6DqybU/aYbhHugNgN3D+rUxEX2jo74hYSSk55idpuCqgI2ZWxiffp69mbvRS/1RHlF8cdL/siMiBlEeZ+fvAjgzLGjSL2+yydkMabFb0JDtLS/AX9CS3ZyFC16WwqQjxbH3RfoixZq9TXgBSHEv4HnpZTF1jVdcTHx6oZjBLgIZp59CwJi4b5tZodpPZR7iNcPvM6vZ34lyDWIv4/9O9dEX9NhL/HKQ4fJW7mSurw8XONG4jpqFC4jR2LvY16Qms4g0iuSh0Y8xIPDHuTXs7/yTco3fJPyDZ8f+5wIzwiu7XstV0dd3fkOPi7eEDtbewEUpJ3bf0/6VgvriYDeQw3775O0pBrtiASm0wl0CIvsJ9ZWVbHl0F5ix45jdD/bO0NdEHo9FKU3E+4kTcwNpyrQ2WvJiUJGwvDbDcIdC94RXSZRUWBEFCcP/9ZqnfzKfDaf3MyGjA3sPbuXellPhGcEC4YsYEbEDPr59GtznMyjRxBCR+/+sZYy3eq09jefgpaG9J/Ah1LKtNY6EkJEAbejBYm5G+hC4bAU3ZmE9AK2Hcvlg0uOoDuaAjd/YpaYHy88zsoDK9lyags+Tj48MeoJboq5qcNLz9WpqeQue53SDRuw8/HBqW9fCj/9jIL3PwDAqV8/XEeNwnX0KFzj4rDvAvnt7XTasvvY4LGUXVrGhowNfH3ia17f/zrL9y9nTO8xXNP3GqaETcHF3ga5z30jtVfcPZqDY9aBc/vvv6yEncvA3kVzcow2ONgFDuy0WeHxPbuorarsXqFea6ugPPfcrLthxp2brMVkaMA7XPtdxlypLZUHxmpibt+1Y/AHRESRuCOeiuIiXL28G8vzKvPYlLGJjRkbG2fi4Z7h3DP4HqZHTCfGJ6ZdK1OZyYkEhEfi5Nq5JyouhNYE/f+AN01kQjOJlDIV+LsQ4l/A/ZYwTqEAeHXDUfq4w7jMdyD0Uu0LqBVOlZ7iPwf/w3ep3+Hm4MYDwx7g9oG34+ZgXrz25tRmZZH7739T/OVX6Jyd8X/wQXzvuhM7d3f0NTVUHTpERUICFXsSKPrqKwo//hgAx6goXOPiGkXeIcg2Z1YbcHd0Z06/OczpN4dTJaf4JlVbkn9yx5O4ObgxI2IG10Rfw4jAEbbxJ9DZac5TfeJgwuNQXQrpO8/tv2/4q+FGgrQIYtGTtXcP682cj2zbjFdgECEDbLDsKqUmwBX52kmCinwtyU7D58oC09dqm7k0uQVqYj3iznNL5QExHfY0tzWBDalU01Jw6x/GxoyNbMzYyL7sfUgkkV6RLBiygGnh0+jv079Df8v1dXVkHU9myKTpljbfqqhja1ZGOcVdGLtO5DH/7V9ZO3g3I08sh7t/bPFIWm5FLm/9/hZrj6/FTtgxf8B87hl8T4djKdcVFJD/1lsUfvwJAD7z5+N330LsfVsO6yhra6lKTKQiIYHyhAQq9+1HX1YGgENoqCbuhpdDSLDNHfH0Us++7H18feJrNmRsoLKukj7ufbim7zVcE32NVTNDtZvi01rkupQt2ntFvlYeONBwNG4CuPlr+/Y6B8O7/bn3xp8brrW+t12Sl8vqB+/hshtuZuzcWy/Mdim1B5SKfIMQFxgJcUEzkTa6Vt/KfMrZWzth4OoHLoZ3V1/t5eILftHa78bN9itFluRkTipfLFrMmZGubAhKRiKJ9opmesR0poVPo6933wv+f3X2xDE++sujXP3w/yPmsissZLnlUOfQbYQS9I4jpeSG/+yivCiPn3SLEKFj4NbPz6tXXF3Mu4ff5eOkj6nT1zGn3xzuu+Q+Al3Ni9fenPqyMgreW0PBe++hr6rC6/rrCHjgARyCg9t/D/X1VCUnazP4hL1U7t1LfbHmXmLfuzeuo7QZvNuoUTiEh9tU4CtqK9h8cjNfn/iaPWf3IJHEBcVxbd9rmR4+HVeHLrT0qNdD9qFzznUnd7cufiYRRgJvbyT02udfT3vxc4Y7915WhrebXbMHhOYPDEZ96OtMi7be9FlyhE7zFjclyo2fG0Tb8LOzd7uj8nVnzpafZWPGRjakb+Bg7kFujA+hMsCB8FtnMT1iOtHe0W130g72fvcl2/77Dve9+QHuPraJy94aVhd0IYQH4COlPGmRDnsIStA7TnxyDnevSeCHgRsZmLoG/rhT2+szUFFbwYdJH7Lm8BrKasuYFTWLBy55gFBP8yNPGaOvrqbwk0/If/Mt6ouK8Jgxg4CHFuMUZdoLtiNIvZ7q4ycMAp9Axd691OdrM037gIBGgXeNi8Ox74XPNDrKmbIzfJv6LV+f+JqTpSdxsXdhathUru17LaN6jep6JwNqKiBrv3bUSl+rHZfT1xneTX2ua7WerK/lvR9zcXUS3Hy5U/v6EHZGIuxzTpRbEmhn7y7jcNaVOFN2hg0ZG9iQsYHfc7VgL/19+jMtfBqeP5ykKqeAe5a+aZWxv37lH+SdTOfe5aut0v+F0hmBZRYDzwFd/IyGojsgpeSVDUcZ6V1B7MlPtONpBjGvrq/mi6NfsPrQagqqCpgUOokHhz9If5+OJcyQdXUUf/UVuf9+g7ozZ3AbO5aARx7BZchgS94SAEKnwzmmP84x/fG97VaklNSkpVGxJ6FR5Et+0I5y2fn4nNuDHxWHU0yM1cJdNqe3e28WDl3IgiEL+C33N75O+Zr1aev5NvVberv15uqoq7m277WEe7YvOYvVcHTV8mJbiDPHkin84jFG3boYJnevfdTuTGZZJhvTN7IhYwOH8g4BWrCXxcMXMy18WuM58V3HPuaX3z6hpqoSR2fLOnNKKck8mkjU8PP0sstz8azZKLoV64+c5UhWCfH9f0ScrodJTwJwsuQkCzYsIKs8i9G9RrN4xGIuCbikQ2NIKSldv4Hc11+nJi0N50uGEvzPf+I25lJL3kqrCCFwiorCKSoKn5vnIaWk9tSpRie7ioQESjduBEDn6YnryJGNAu8cG4uwt+5/YSEEwwKHMSxwGH8e9WfiT8XzdcrXvHP4HVYfWs2wgGFc0/caZkTMaEwp2xNI3L4Ze0cn+o/pevunPY1Tpacal9OP5B8BINY3lodGPMT08OmEeZ6fITEwMhqkJO9kOsEWPlZWeCaTypJigi18/lxfWYnOxbonSVr9NhBCjG9HX52fxULRI6nXS17beIyJvoVEnPoSRi8EnwiklLzw6wuU1JTw1rS3uKz3ZR1akpZSUr5zF7lLl1J15AiOfaPps3IF7lOm2NxJTQiBY1gYjmFheN9wAwC1mZlU7N1LuWEGXxYfD4DOzQ2XkSPwuflm3CdNsrrtzvbOXBl5JVdGXklORQ7fpX7HNye+4blfnuOF3S8wstdIJvaZyITQCYR6dGzboytQV1ND8q7t9B01plsdWepOnCo5xfqM9WxI30BSQRKgxU5/ZOQjTAub1ua2WWCEJjc5aakWF/TM5EQA+sQOaqNm29QXFVG6eTMlP/5E5YED9N22DTv3jp22MYe2Hu+3AuZusot21FUoWuS737M4ll3G+1FfI+pcYdxjAGw7vY2dWTt5YtQTjA02L/lKcyoPHiRn6TIqfv0Vh+Bgev/rn3jNno2w67o7RQ4hIXiFhOB17bUA1GbnULHXIO7bt3P6Tw/gFBOD//334TF9eqfcS6BrIPcMvoe7B91NYn4iGzI2sO3UNl5MeJEXE14k2iuaCaETmBg6kaH+Q7GzQBzvziJl3x6qy8sZNKEbnT3vBmSUZLAhXdsTTy7Q0u8O8R/CkpFLmBo+lT4efczuy8MvAGd3D3IyUi1uZ2byEVw8vfDp3bETHvXFxZRu3kLJTz9SvusXqKvDoU8ffObfgqytAWwn6NVAIvCxGX1NAWZcsEWKi5q6ej3LNh3nGv8z9M7aABOfBPcAquureXHPi0R5RXHzgJvb3W/18ePkLHudss2bsfPzI+gvf8F73k3oHLt2EA1TOAQF4nXVVXhddRWytpbi778n/61VZD7yKI6RkfjdtxCvq65COFg/oYQQgkH+gxjkr82uTpWcYtvpbWw9vZUPjnzAu4ffxcfJh3F9xjExdCJjg8d2OB5AZ5G4fTPuvn6EDenYVo7iHGnFaY0ifqzwGABDA4byWNxjTAufRrB7+0+OgPZ3FxgRRU6aNQQ9kZCYge1a8aovLaV082ZKf/yJsl27oLYWh+BgfO+8A8+ZV+I8eFCnrP61JeiHAJ2U8tW2OhJCOKMEXXGBrDuQSVpeGWtDPwe9P1z2AAD/Tfwvp8tO89a0t3DQmS9UNaczyVuxguJvvkHn5kbAQ4vxveMOdG5dW1TMRTg44H3ddXjNnk3pxo3k/edNzvy/J8lbsRK/BQvwmnN9pz60hHqGctvA27ht4G2U1pSyM3MnW09vZeuprXyT8g0OOgdG9RrFhD7a7L2jX+jWoryokLSD+4ibPQddN1pVsDV1+jrSi9M5WniUo4VHOVZwjOSCZPKrtBMcwwKG8cSoJ5gWPs1i4YYDIqI4uP476uvqsLOQL0lZYQFF2We4ZPqsNuvWl5VRtmULJT/+RPnPPyNra7Hv3Rvf227D88qZOA8Z0ulbeG39FvYDdwkhHKSUtZ1hkOLipaZOz/LNx7kzMAXf3F9h5ovg5MHZ8rOs+n0VU8KmmL3UXpeXR95/3qTw888ROh2+99yN3x/+0KXirVsSYWeH58yZeMyYQdnWreS9+SZnn32WvDfewO/ee/C+6SarO+Q0x8PRg5mRM5kZOZM6fR0Hcw5qs/dTW/nnnn/yzz3/pJ9Pv8Z99yH+Q2x+HC555zakXt+9Qr12MiU1JRwtOMqxwmMcLdAE/EThCWr0Wq56e5090V7RXB5yOYP9BzM5dDJBbpaPkhgUEUV9bS2FWafxD4uwSJ8N++ctRQasLyunLD6ekp9+onzHDmRNDfa9euEzf74m4kOHdtpJFFO0Jej/A5zQ4rKfaaPuN8BpSxiluDj5fO8pMgvLeaz3p+AdBnF3A7B031Lq9fU8FvdYm33Ul5aS/847FHzwX2R1Nd433ID/A3+yedjVzkIIgcekSbhPnEjFL7+Q9583yf7nv8h7axW+d92Fz/xbsHN373S77HX2xPWKI65XHEvilpBRksHWU1vZdnob7x5+l9WHVuPr7Mv4PuOZGDqRy3pfZpNANke2baZXdD/8+nRfpz5LoZd6Tpee1mbdBedm3lnlWY11fJx86O/bn1sG3EKMbwz9ffoT5RWFQxu57i1BQGNu9FTLCfrRI9g7OTWGlwXQl5dTunUrpT/9RNn2HcjqauwDA/G+eR6eM6/EZdglNhVxY1oVdCnlJmCTOR1JKQ+hLdErFO2mqraeFVuOszjoEB6FiXD9KrB3Yn/2fn5I+4H7ht7XqtOMvrKSwo8+Im/12+iLi/GcNYuAxYtwjIiwir3lRdXUVtfjHdQ1vaCFELiNHYvb2LFU7NtH3ptvkfvaa+S//Ta+t92G7x23Y+ftbTP7wj3DuXPQndw56E6Kq4v5OfNntp3axuaMzXx14iscdY6M7j26cfbeGVnhctJTyc1IY/Ld91l9rK5GRW0Fx4uON5l5Hys8RkWdFhdeJ3SEe4YzNGAoc2PmEuMTQ4xvDAEuATY7GeIb3Ad7B0dy0lMZOH6yRfrMTEokuF8MoqaGkk2bKPnhR8q2b0dWVWEX4I/33Ll4XjkTl+HDu4yIG6POoSu6BB/9epKCknL+6PQpBA2GIXOp19fzzz3/pJdbL+4dcq/JdrK2lqK168h74w3qcnJwGz+OwIcfxnmgdZJpVFfUsvfHDH6PP4W+TuIX4kbfkYFEjwjEp1fX3Jd3HTmSsNWrtLSvb71J3htvULBmDT7zb8H3rrtsnhXOy8mLq6Ku4qqoq6jV13Ig+0Djvvvzvz7P878+zwDfAY377gP9BlplaT5x+2Z0dvYMuHyCxfvuKkgpya7IbpxxNwh3RkkG0nBIyd3Bnf4+/bkm+hoG+A4gxjeGaO9o22TjawWdnR3+YeHkpFvGMa6yIJ/cjFQGuvlw7PIrkJWV2Pn74z1njibiI0Z06dMwoARd0QWoqKnjP1tP8FSvPTgXZcDsz0GnY+3Rz0kuSOblCS+f92Ui9XpKfviR3BXLqc04icvw4YS8+gquo0ZZxcb6ej1HtmeR8F0aVRW1DBjTC/8+HqTsz+HXb9L49Zs0/ELc6TsykL4jA7vkzN1lyGBCV66k6tgx8t9aRf6771Hw3w/xnjsXv3vvwaF3b1ubiIPOgdG9RzO692gej3uctOI0tp7eyrZT21h9aDVv/f4WAS4BjUvzl/a+1CJCU19XR9LP24gaMQoXj54RIKemvobU4lSSC5LPzbwLj1JcXdxYJ8Q9hBifGK6MvJIY3xhifGIIcQ+xeTwGcwmMiObY7p+RUnbIZn1VFWU7dlD640+k7tmFDPHDIzUDr+uuxXPmlbjGjezyIm5Mi4IuhPgv8IwhLarZCCH6GdrddqHGKS4O3t+VQXlZCbc5fAphY6HfdIqri1lxYAVxQXHMCG96eKJs+3ZyXltKdXIyTv370+c/b+A+caJVvoSklGQcymfn2hMUZVcQEuPN5Tf0IyBMSz15yZRQygqrSNmfy4l9Ofz6TSq/fpOKf6h748zdO7Bribtz//6EvPoKAYseJG/1ago//ZTCzz7D+7rr8FvwBxzDzo/MZQuEEER5RxHlHcU9g++hsKqQnzN/ZuuprfyU/hNrj6/Fyc6JMb3HMCF0AuNDxhPoGtihv4P03/ZTUVzULc6eV9ZVkl+ZT0FVAQVVBY0/51flU1CpvedV5nGy5CR1UksI42TnRD/vfkwNm0p/n/4M8B1AP59+eDh2zxSqDQRGRvH75p8ozcvFM8C8ZEz66mrKd+yg5MefKIuPR19RgZ2PD+XDByMKzhL37Xc4uXfP30trM/S+QLIQ4hvgA2CjlLLSVEUhhDswE7gduBJIMGdwIYQOeAi4D4gAcoHPgaellOVm9jEL+CtwCdq5+c3AE1LKtGb1JgLxLXTzvZTy6o72reg4JVW1vLkthX/02oFDUR5M+wSE4N8H/01JTQn/b/T/a/IFXbTuS8489RQOoaEEv/wSnlddZbW9rNxTpez83wkyjxbiHeTKrD8OIWKo/3mC4e7jzCVTQrlkSiilBVWk7M/hxL4cdn+Vyu6vUgkI82gUd6+ArrNs6RgRQfA//kHAn/5E/jvvUPS/tRStXYvn1Vfhv3AhTn372trEJvg4+zA7ejazo2dTW1/L3uy9jV7z205vA7QZvqejJx6OHue9G788nTzxdDhXfjD+R5w9PIkcPrLT70sv9ZRUlzSKcn5V/jmRNiHWlXUmv4Zxd3DH19kXPxc/Ir0imRQ6SZt1+8YQ7hHerYL7mEtAuOYYl52e0qqg62tqKP/5Z03Et2xBX16Onbc3nlddheeVM3EdPZqD//gbgV7u3VbMoY1sa0KI+cDfgBigDjgCpAAFaJHhfIF+QCxaUpZE4P+klJ+ZNbgQr6MldfkS+NHQzyJgBzBVSqlvo/0cNE/834DVgBfwMFAPxEkps4zqTkQT9FWG/o05LaXc2tG+W0NlW2udZZuOsWbTfvZ5PIZd1Hi45WOOFR5j7rdzuan/TfxlzF8a69aeOUPq7Gtwjo0l7J23EVY6X11eVM3ub1JJ/uUMTq72jL46kkHjQ7Cza9+DQ0l+ZePMPSe9BKBR3PuODMTTv+uIO0BtTg4F762h8NNPkVVVeEyfjv/99+Eca9nQmpZGSsmJohP8kvUL+VX5lNaUNr5Kakoa30tqSqgzkcLUsUbHvC19OBpWyqGhVXg4aILf5CHAUGb8cND8Z3cH90bRrK2vPSfExsJsLNCGz4VVhY0zaWN0Qoe3kzd+Ln6aUDv7NQq2n7Nfk3IfZx+c7Z2t/rvuatRWV7HizpsYc8O883LWy/p6ynfvpuSbbyndvBl9WRk6Ly88pk3Fc+aVuF06ujH4Un1dLSvvmsfQaVcy6c4FtriVdnFB6VOFEFOAucB4oD/Q8M2mB5LQQsR+IaXc3g6DBqF5xX8ppbzBqHwRsBy4VUrZYoQ6IYQDkI72oDFISllmKB8G7APekVIuNKo/EU3Q75ZSrmnDtnb13RpK0FumqKKGcS/G85r3F0wrWQt/3IUMGMC9G+7leOFxvrv+O7ycvADtS/vUvX+g4uBBor7+CsdQyx8rqq2u5+Cmk+xfn4G+XjJ0Uh9GXhmBs9uFH8EpyWsQ92xyMkoBCAz3oO/IIKJHBuDp13XEva6wkIL336fww4/Ql5XhPmECfvffh+vw4bY27YKQUlJVX3We4Gds/4Wcr3fges94yn11lNaeu1ZSrT0QNJTpW59j4O7gjhCC0ppSk9ed7JyairEJsfZ19sXX2RdvJ+8eOau2NO89cj8+wSFc9/jfAKg6eozib76m5NvvqMvJQefhgcfUqXjOuhK3MWNMRlDMOpbMJ397jGsefYp+l3YsrHRnckHpU6WUm9GWmxuWyf3Q4rbny44nVL8FbZa/rFn5auBfwG20HnJ2AhCMtjxfZmTrQSHEVmCeEOIBUwFxhBBuQL2UssrSfSvMZ9X2VDxrzjKl7Bu45BYIjGVD+noSzibwtzF/axRzgKLPPqd81y56PfO0xcVc6iVHfz3L7q9SKC+uIXpEAJddH41XgOX2vj39XRg+PYzh08MoyavkxD5tWX7XuhPsWneCwAjPxpm7h69tZ1r2Pj4EPvwwfvfcQ+HHH1Ow5n0ybpmP65gx+N9/P66Xju42TlPGCCFwsXfBxd6FQNdzy7MfH/ka/9Bw7pj+eKv3JaWkvLb8vJl/8weEelnfKMqNs2lnP3xdfHG1d+2Wv7uuTGBkNJmJh8l/9z2Kv/mG6uRksLfH/Yor8HrqSdwnTULn5NRqH5nJWpa34JiuvRrVFu32cjcsg+daYOxRaDP8Pc36rxJCHDRcb6s9wC8mru0GJqOtJhxpdu114D0AIcRx4N/A8mYPJh3tW2EmeWXVvLcznfcCf0RXBkx8koraCl7Z+woDfAdwQ7/GRRtqTp8m+6WXcBt7Gd43tz+Oe2ucPlrIzv8dJ+9UGYERnkxfMJjgvt4WHaM5nv4ujJgRzogZ4RTnVjbuue9ae4Jda08QFOnZuOduS3G38/TE//778b39dgo/+5z8997l5F134TJ8OP5/vB+3ceO6vTgVZJ3mzImjjL/tnjbvRQiBu6M77o7u9Mb2JwIudvQVFZRu3oxDwn5Ka0o5/eoreA4cRNBf/oLnVbOw9/U1u6/Mo4n49A7Gzbt7R5K05bG1YCBPSllt4lomMFYI4SilrGmlfUNdU+0BQjgnurVo0ex+ALIM7e9FWyEYBtx9AX0r2sl/tqYQVn+SS0vWw5g/gXco7x5Yydnys7w47sXGpUap13Pmqb8ghKD3889bTEAKz5aza10K6b/n4e7rxLR7B9JvZBBC17kC5RVwTtyLcioaxX3n/06w838n6BXl1Sju7j6tzzKshc7NDb977sbn1vkUrV1L/ttvc2rhfTgPHIjf/ffhMXVqlwyyYQ5Htm1GCB2xV0y0tSkKM5D19VTs2UPxV19TunEj+ooK3MJDwNsZ92WvEjltZvv71OvJPJpE37hLrWBx52IRQRdCeALXAUgpPzCzmSua57gpqozqtCToDeuhpvqoalYHKeVO4FrjSkKI1WgCf5cQ4h0p5c8d6bs5QoiFwEKAsC5yBKgrcba4iv/uzmCd39eIGne44lFOl57mvcPvMStyFiOCRjTWLfz4Eyr27KH38/+HQ/CFJ/KoKqsl4fs0Dm/LxM5Rx5jrorhkcij2jrbfq/QOdGXkzAhGzoygKLtCW5bfn8PPXxzn5y+O07uvF9EjAuk7IhA3784Xd52TE77z5+Nz440Uf/sdeaveInPxQzj2jcbv7nvwmDHdJmFlO4rU60ncEU/EJcNx9zF/NqfofKqOHaPkm28o/vY76rKz0bm74zHrSryuuYaw/v3Yfd/tFFZVdKjvgqzTVJWWEBJjnWBUnYmlZui9gTVo++rmCnoF0NI5A2ejOq21By3WfEfaI6XUCyH+iZYlbhbQIOgX1LeUchWaNz1xcXEqR3wzVsYfZxhHGVz6M0z6K7j58Ur8w9jp7Hh05KON9WoyMsh59VXcxo/D64YbWumxbepr9fy+9TT7fkynprKOgVcEM3p2FK6eXTN9qneQK3GzIoibFUHh2fLGmfvPnxvEPdpLc6gbEYCbV+eKu3B0xPuGOXhddy0lP/5E/ltvceYvf+Hsc8/hPmkSXldfhdv48V0+Ne3JI79Tlp/HhNvusbUpChPU5eZS/P33FH/9DdVJSWBnp+2L//kJ3CdPRud8bjvK3devwxHjGhOyxA6yiN22xFKCngc8B7RHvLKAgUL8//bOO7yqYuvD75xz0jvpIZAChAQIvUtX6YiIiorYrhf9rtj1qlxF8Hrtig291itWbChNBETpvacQAqRBAiG913Pm+2OfQAhJSCDJOQnzPg/PTvaemb2ySc5vz5o1awm7Wtzu7dHc8XXNzqv6V7U9XEt/qN1lXpMk87F6/sumGltRgxPZxXy/O4V17ksBHxjyD7albWN9ynoe7vvw2apM0mgk7Zm5CIMB/3//+5Jd7VJKEvZnsG3pMfIzS+nYvR1Db+iMZ/vWM5P08HOi/8QQ+k8MIfvUOXHf/H08W36Ip/c1HRl4XQgGm5b1Mgi9HrfJk3CdNJHSgwfJW7GS/NWrKfj9d3SurriMvRa3yVNwHNDfKrNtxW5cj52jE537D7a0KQozppISCv5YT97y5RRt3QomE/Y9euA7d662Lu7pWWs/n+DQSxb0k3ExOLq54+7b+uMimkTQpZRZwPxGdtsNjAUGUm1fuLmuem/gYlvgqpLXDOHCAjKDgXwgvgF2dDEf05thbEUN3vvzKKN0BwkuOggT36DCYMuru16lg0sHZnWbdbZd9pdfUbJvH/6vvHzJldLSE/PZ+vNRTh3Lo12AE1Me7EXH7rV/ILQW2vk70W5SCAMmhZCdVsTB9SnsX5dCckwW19zV7WwGu5ZECIFD79449O6N7zNPU7R9B/krV1Lw22ryfvoZg48PrhMn4jp5Mvbdu1lFIF15STHxu7bRbdhoDFbuSWjrSJNJWxdftpyCNWswFRdj8PfH8957cZt6HXadOl10DJ/gUBIP7KWivAwb28Z5rFLjYmkfbh2/l5eLJYPivgfmoiVrqZ7o5e9o69PfVJ0QQvijJXZJkVJWubo3opV0vVcIsbDaXvFewCjgf9W3lQkhPM0vHlQ7Z8e5F5EV1S41amxFw0jIKGTpvhNscfsZ7IOh750siVtCQl4C7415Dzu99odYlpBAxttva+7bqVPrH7QWCrJL2f7LcY7uTsfBxYZRM7sSMdQfXSMTw1g77QKcGD0rgpDe3vz1dRw/vbKHAZOD6TsuyGI/qzAYcB4+DOfhwzDNf57CDRvIW7mK7G++IfuLL7ANCcF18iTcJk1qtkp4DSF+5zYqy8ro1gpSvbZVyo4eJa9qXfz0aXROTrhMGI/bdVM1r04jAi19gjshTSayUpLx6xzW4H4FWZnkZ6TTb+J1l/IjWB0WE3QpZZQQYhEwRwixFC04LQItc9xGzt+D/jJwJzAaLYkNUsoKIcTDaC8Gm80Bbq7Ao2jb6p6vccvfhRBpaIlhqqLcb0ebob8npTy7fe4SxlY0gHfWH+UGw3b8So7BxM/IqijggwMfcFX7qxgZqFW40lztz6Czt8f/hQWNemsuL6lk75pkDq4/AUC/8UH0HR+ErX3brkEUHOnFrfMGsem7I+xcnkhSVBZX3xlh8epvOgcHXCdMwHXCBIx5eeSvXUv+ylVkvr+IzPfexz4yErfJk3CZMAEbn4bl4W4qYjeux93Pn4Cw8Ba975VOZWYm+eZ18dLYWNDrcRp2FT5PPoHLmDHoHC4twVL12uiNEfSq/eftw1v/+jk0QtCFECYat0YOIKWU9d3jEbQ17NnAJLS1+PfQErrUn5JJG/xHIUQJWr71NziXb/0pKWXNNe6f0CLxHwTcgSJgP1ohme8uc2zFRYhPL2D1wRR2uf4MHj2h+w28u2MBpZWlPDXgqbPCnfX555QePETAG29g8PZu0Ngmo4nD206xc3kCJQUVhA30ZfD1nSyeoKUlsXeyYey9PQjpnc7G747ww392M3haJ3qOCmzxrXi1oXdzw+Omm/C46SYqTp8m/7fV5K9cSfrLr5D+6ms4DhqI2+QpuIy9Fr1L8y4b5J1J50RsFENvntkm3KzWjqm0lIL168lbtoyirdvAaMS+Wzd85z6D68SJTVK+183HF1sHx0avo6ceicXG3gHvoJDLtsEaaMzU5UugL9ADOIIWLCaAcLRc71HAvsbcXEppBN40/6uv3V3AXXVcWwmsbMC9XgVebaR9DRpbcXEWrovnbtu/cC87Bde8T3R2LL8c/YU7u99JiJv2x1R29CiZ776Hy9ixuE6a2KBxU2K0SmjZaUX4d3Zj0gNd8A1uG+UvL4Uu/X0J6OLOX1/FseWHoyQezOTqOyOs6uXGxs8Pz3vuxvOeuylLSCB/5UryVq7SIuUXLMB55EhcJ0/GedTIi2b4uhRiN/8JQLfhY5p8bIUWiFqRmkZp1CEKN2/R1sWLijD4+eF5zz3aungTF/4RQpgD4443ql/q4RgCwsLRWWHQ5qXQGEH/BpgOXC+lXF79ghDieuAr4Akp5bqmM0/RFohOzWNTdCK7XX6F9sMxhY7m5d/voJ19O+7reR8AsqKCtKefQefsjN/z8y46c8pKLWTbz8dIic3G1duB8ff1ILS3t5pxAU5udkx6oCexW9LY+tMxlrywk+Ezwug62M/qno9daCjeDz2E14MPUhoVRd7KleT/tpqCdeu0vcZjx+I2eRKOgwY1SaS8lJLYTX/SoVskbj6XFmypOJ/K7GxKo6IoiYqmJOoQpYeiMObkAKBzdMRl3Djcpk7FceCAZk1A5BMcyqE/12AyGdE1IAd+aVEhGSeSGTroqmazqaVpjKD/G/ioppgDSCl/FUJ8DLwIKEFXnMdb6+J5wH4NjhU5cM18Viau4lDGIV686kWcbbXtY1mffkppTAzt33mnzq0poBVQ2frTUWK3pGHrYOCqGzsTOTIQvU3bCni7XIQQdB/ensDwdqxfHMv6xYdJOJDBqJnhVrn3XgiBQ8+eOPTsie8//0nRzp3kr1xFwZo15C1dit7bC9cJE3CbPBn7yMhLfjFJO3KY3NOnGDRtRhP/BFcGpqIiSmNjzxPvilTzCqQQ2HXuhPOoUTj0jMS+RyT2XcOarSpiTXxCOlFZVkbOqTQ821+83sOp+DiQss2sn0PjBL0nsLie68eA+y/PHEVbY19KDgfijvFfp5UQNoVCn3AW/vokPb16MqXTFABK4+LI+OBDbWvTuLF1jmU0mvj942hOxGYROTqQARNDsHe+/EpobRk3bweuf6wvB9efYOeyBL57YSejZnalU5+WDUJrDMJgwPmqq3C+6ipMz8+jcMNG8letJPe7JeR8+RU2QR1xmzQZ18mTsQtt3NpnzKb1GOzsCGsFFbUsjayooOzoUUoORWniHRVN2bFjYNLCm2wCArCPjMTjtls18e7eHb2z5QIxq9bBzyQlNEjQT8bFoNPr8e/S8CA6a6cxgp6Dtm/8wzqujwfyLtsiRZvirbXxPOGwAhtTKYyZx8eHPiazJJP3xryHTuiQ5eWkPf0Mejc3fJ97ts5xpJRs/OYIKTFZjJrZle7D29fZVnE+Op2gz7Ud6di9Heu/OMzvH0XTdZAfw2d0wc7Rul+IdPb2uI4fh+v4cRjz8ylYt468lSvJ/PBDMj/4APtu3XCdPBnXSRMvmq+goryMI9s2EzZwKLYOTVdJry0gpaQiOZmSqChKDkVRGhVF6eHDyDIt55fe3R37yEhcrrkG+56ROERG1utJswSegR3QGwxkJCUQcdXIi7ZPjYvFN6QzNnbWE19yuTRG0L8FHhdCfIYW9V2VWCUMeBKYDLzVtOYpWjPbj2eRdPwwM+zXInrPJNHWhq8Of8W0ztPo4dUDgMz//peyuDgCP1iEwaPuSke7VyZyeNsp+k8KVmJ+iXgGODP9qX7s+S2JvauTSY3PYcysCDp0ax15zPWurrhPn4779OlUpJ8hf/Vv5K9cxZnXXuPM66/jOGAA9pE9sA0KwrZjELbBQRh8fM6u2x7fvYPykmK19xyoOHNGW/c2i3dJdDSm/HwAhIMD9t264XHrrZrrPDISm8BAq4u/qIneYINnYFCDIt0rKyo4fTye3uMmt4BlLUdjBP1ZoDNaVbK70EqfAujQot1XmNsoFEgpeWvdEeY6LEWn0yNHPs2ru1/EXm/PQ30fAqAkOobMjz7GbepUXMbUHXEcszmV3auSiBjqz8DJbWN7iaXQ63UMmhJKcKQX67+IZfm7B4gc2Z4hN3TGxq71RPra+PrgedddeN51F2WJieSv+o2CtWvJ+fIrZMW5nE/C3h7bDh2wCerI/rI8nBwc8SwspeLUKQy+vq22SlxjMBYUUBodrYl3tCbilenmxJh6PXZhYbiOH39WvO06dUIYWmfuBp+QUI7v3YWUst4XkPTjRzFWVNA+vPUXZKlOg//XzPnWpwkhxqJVLQtFE/LjwDIp5drmMVHRGtl0NJP85INMsNuEGPwgGwuOszV1K0/2fxIvBy9M5eWceuZpDJ6e+M59ps5xkqIy2fhdPB27t2PkzK5WP0toLfgGu3Lz3AHs+DWBg3+eICU2m2vu7oZfqJulTWs0diEheM95AO85DyCNRipOnaYiJZny5GTKk1MoT04mPymJNEdJpzO5nLhbq5Qs7Oyw7dgBm45B5ll9R2yDtaPBz69ViL2UElNREcbcXIw5OWePlZlZlB2Jo+RQFOWJiWfb2wYF4ThgwLmgtYjwS07mYo14B4US/dc6CnOycGlX9/721CPmgixtoMJadRr9GmYWbiXeijqRUvLW2iM85/AT2LhQPuQBXl13D6FuodwacSsAme+9T9nRY3T4+CP0brWLSHpiPms+icYr0Jlxf++Bvo2lbrU0Bls9w27uQnAvL9YvjmXp63vpMy6IgZND0Bta57MWej22ge2xDWyP09BzgW+7VyyFrz9n6MJ3cSopozwl5azYlycnUbR5M7L8XC0oYWuLTccO2AYFa0IfFIRtkHZsLrE/K845OeeL89mvc88Jt/lcZW4uVNSehVrv7YVDZE/cpl6HfY9IHHp0R+/u3uR2WxM+IVrGuIykxPoFPS6GdgGBOLq2vhfY+mgyv4oQwhHwk1JeWskbRZvhj8NnsEndyTC7PTBsHl8mreREwQk+uvYjbHQ2lBw4QNZnn+F243ScR4yodYzcM8WsXHQQR1dbJs/p1ebTt1qSwK4e3PrcILb8eJR9vyeTHK0VevEKbD0V6epDSknsxvX4d+mKT59+AOeJPWgphyvT08+b1WuiX4fYd+hwwaz+rNjr9Zo4FxbWLczVzmvCnIMxN69OcUanQ+/ujt7DA727OzZBHXHo3Us75+5x9rzewx2D+Wudm9sV59HyqYp0TzxOaN8BtbaRJhOpR2IJGzysJU1rEer9lBRClAN3SCmXmL93QUsw8y8pZVSN5tPQssm1noU4RZNjMkneXBPHGw4/IB39OBM5nY9X3czVHa9maMBQTKWlpD0zF4OvL75PP13rGMX55ax47yBImPJgb6vcN93WsHUwMOaOc4Vefnx5NwOnhNBnbBA6K0gdezmcSTxO5olkrrn3H3W2EXo9NgEB2AQE4DRkyHnXpMlE5enTmsAnVQl9MhUpyRRt3Xo2EhxA2Nigc3XFmJcHlZW130yvNwuxJsC2wUE4uPeqU5j1Hh7oXFxaxRKApbF1cMTdz7/ewLjMkymUFRW1OXc7XHyGbkALeqvCFi2a/e3mMkjRuvkt+hSBGRvpYRsHoxayMOq/GE1Gnuj/BAAZb79DeWIiHT//DL3zhTPAijIjqxYdpDi3jKmP9sHdV20vaklCenrhN28gG785wo5fE0g6lMXVd0Xg7tN6/x9iNq1Hb2ND1yG1e4MuhtDpzon94PNrp0uTyTyzr5rVJ2PKLzg3m/bwQO/upolz1cxZiXOz4hPcifTEY3VeT40zr5+3UEKZorwyYrekkXgwk+lP9mvWJFjKj6loMowmyTtrD/OJ/Y9I907sb9+DVWsXcl/P+wh0CaR4716yFy/G/dZbLnB5glZkZc0n0WSkFDDh/3q2ygCttoCDsy3jZvcgflc6m7+P5/sXdzH0hs70GNm+1blwjZUVxG3ZSKd+g7Cv5QXychE6HTb+/tj4++M0eFCTj69oPD7BocTv2EJZcRF2jhcmukmNi8HZo12zpv6VUnLqWC5RG1JJ2J+BySTp2L0dJYUVOHs0fX2CKpSgK5qMZQdS6Zm9lmDbFIxjPuflPa/j5+TH3yL/hqm4mLS5c7Fp3x7fJ564oK+Uko3fHiE5OouRt3UlpOflV2BSXDpCCLoO8qN9mDt/fhXHpiXxJB7KZMyscJw9Wk8ijsT9eykpyKe72nt+xeATfC4wLrBbjwuup8bFEhDevVleTstLK4nfeZqojalkpxVh52ig55hAuo9o3yJeLiXoiiahwmjig3UxfGv/M9K3Nz8bKonLjuP1ka/jYHDg9Cv/oSI5hY5fLkbndOFb8+5VScRuPUX/icH0GGHdiWOklMTv2EpleRkRw0a1mUpNteHsYc+UB3sRsymVrT8f47sXdjHiljDCBvq2itl6zMb1OLq5E9yrr6VNUbQQ52qjH79A0PMzz1CQlcGA8Bua9J7Zp4qI3phK3I5TVJQa8e7owuhZ4XQZ4IuNbct9PihBVzQJP+09ycj85fjYZJA38m3eO/Aq/X37My5oHEU7d5Hz9dd4zJqF08CBF/SN3ZrG7pWJhA/xY+AU604cU1JYwB+fLCJ+xxYAdi//meG33Ulo34GtQuAuBSEEPUYGEhihpY7943+xJB7IYORtXXFwsd6AxZKCfBL27abP+Elt+qVLcT7OHu1wdHPnTFLiBddSD8cATbN+bjSaSDqYSdTGk6QeyUVnEHTp50uPUe3xDXa1yOdBQwR9ohDCz/y1IyCBm4QQvWu069eUhilaD2WVRj774yBLbZcjQ0axKO8Q+eX5PD3waUxFxZyaOxeboI74PPrIBX2TojLZ8M0ROnZrx6jbw61aFJMO7WfNBwspzs9j2C130C4gkM3fLebX1/5NYEQPRtx+N/6du1razGbD3ceRaU/05cC6FHauSCDthVxG3x5OSC9vS5tWK3FbN2IyVtJthHK3X2n4hHSqtTZ66pFYbB0c8eoYdMljVwW5xWxKpSivHJd29gy+PpRuVwVY/AW3IYJ+m/lfde6ro628PHMUrZElu04wpfhnXA35xA+6h+93zuPmsJvp2q4rp+bPpyItjaBvvkbneP4aUnpStcQxs603cUxFeRlbvl3MvtXLade+A9f/cx6+oZ0BCO03kKg/17L9p2/59l+PEzZkOMNvuQN3P38LW9086HSCvuOCCOrhybr/xfLbh1GED/Vn+E1dsHWwLodfzMY/8Q4KObumqrhy8AkKYU/UASorKjDYnCtAlBoXS0DXiAbVS6/O2SC3jakk7DMHuXVrx8iZgQT18LSarZ0X+wsc3SJWKFotJeVGvv1zD8tsVmMKn8orSctwsXVhTp85FG7dSu6S72l399049j1/DTMvo5hViw7i4GLLpAd6Wm3imDNJCfz23htknUyhz/gpDJ95Fza256JU9QYDvcdOpNvwUexe8Qt7Vi7l2K7t9Bo7gcE33NLmMlFV4dnemZue7s/ulYnsW5NMSnQW/SYE0X1Ye6uoTZ91MoX0hKOMuuNeS5uisAA+IZ0wGY1knUzBN6QToC2XZZ5IpuvQhm9fLC+tJH5XOtEbT5KVqgW5RY4JpEcLBbk1lno/RaWUG1vKEEXr5KsdSdxWugQ7mwrWdrua3fve4LnBz+FcriPh2eewDQ3F++GHzutTUlDOincPIk0w5cFeOLk13zaOS8VkMrJnxS9s/f5rHFxdmf7MAoJ7172qZOvgyFU3z6TXtRPY/tO3HFizipgN6xk49Ub6TryuTZVorEJv0DH4+k4E9/Ji28/H2Pz9UfavTaH/xGDCh/pb1OMSs3E9QqcjvAFlNBVtD++gc4FxVYKeduQwAIENWD+3liC3xmKd0yJFq6CwrJLlf23jV8OflPaZyRtHvqarR1emd5lO+nPzqExPJ/i7b9HZnxOzijIjKxcdojC3jOsf7YOH34UR75YmP+MMqz94i5Ox0XQZOJRrZ8/BwcW1QX2dPdpx7d/n0HfCVDZ/t5gtS77kwNpVDL15Jt1HXt1oV19rwC/EjWmP9+Xk4Rx2rkhgwzdH2LcmmQGTQggb6IuuhYXdZDJyePNfhPTuh5N73SV5FW0XDz9/bOzsyagWGJcaF4NOb8C3c5da+5iMJhJrC3Ib2R7fEMsEuTUWJeiKS+aLrYncW/ktOlsbPvcN5HTcBl4Z/golm7eQ9/NSPGfPxqFXr7PtTUYTaz+NJiM5n/H3RVpd4hgpJYe3bGD9Zx8CknH/9wjdR159SX/InoEduP7JZzl5OJpNX/+Ptf99l32rljF85l2E9O7fKj4cGoMQgg7d2hEY4UFydBY7lyewfvFh9v6ezIDJwXTp54tooXXGlEMHKMzJZvRds1vkfgrrQ+h0eAeFnBcYlxoXi1+nLuctmUG1ILfNaRTllllVkFtjUYKuuCTyiivYsOlPftJv4+SA2Xwe/wMTQibQ274zCc9dh12XLnjNeeBseyklG7+LJylKSxwT2tu6IqNLCwv549NFHNm+mYCu3Zg45zHcfPwu3vEiBEb04NYX3+Dozq1s/m4xv7yygA7dezJi5t34dap9ptCaEUIQHOlFUA9PEg9ksnNFAus+i2Xv6mQGTgkhtLd3s7/MxGz6E3snZ0L7qcxtVzI+IaHEbvpTS89bWcHp40fpN2kqUBXklkfUxpPnB7nd1tWqgtwaixJ0xSXx6ZYE5hi/wejoxpuGEvQ6PY/1e4z0F16iMiuLwA8/QGd77u12z29JxG5Jo9/4IKtLHJMcdYDfP1hIcV4uw265gwFTpzepa1wIQdjgYXTqP5hD639n+0/f8c3cR+k6dATDbrkDd9/Lf3GwNoQQhPbxJqSXF8f2nmHXykR+/ygarw7ODJoSSlCkZ7MIe1lxMcd276D7yKvPi25WXHn4BHfiwJpV5J45TVF2NiZjJb6hXYnelHp+kNtoc5BbG6gboQRd0WiyCsuI2rKSx/UH2d7/Pv5IXc1DfR7CaUcMJ5ctx+sf/8Ch+7nAk9itaexakUjXwX4Mmmo9W4gqy8vZsmQxe1cto11AINc/+dzZ7WjNgd5goM+4yXQbPoY9K35mz8pfObpzG73HTWLwDTMavE7fmhA6QZcBvnTq6038rnR2r0pk1QeH8A1xZdCUUAIjPJpU2ON3bKGyvEylelWc3a54JjGBtKNJAGz4Lp/K8iN4dXBuFUFujcWigi6E0AEPo+1rDwYygB+AeVLKogaOMRF4FugFlAHrgX9KKRNrtBsJ3AyMMN+rFIgH3geWSClljfYbgLpCZAdIKfc0xL62yEcbj/Mw31Li5MerRXEEOgcyM2AKJ//vRuwiIvC6/1yaguToLDZ8c4QO3doxepb1JI45k5TA6vffJPNEMr3HTWLEzLtbLBLdztGRq2bMote1E9n24zfsX72CmA1/MPD6m+gzYcoFa3xtAZ1eR/gQf7oM9CVu2yn2/JbE8ncP4N/ZjcFTQwno0jTBazEb1+MREIhf57AmGU/RenH1aY/Q6dnywzbyz6Qg9J6E9ulA5MjAVhPk1lgsPUNfCDwE/AK8CUSYv+8jhLhGSmmqr7MQ4gbgJ+Ag8CTgBjwCbBVC9JdSplVr/ioQaL5XFOAEzAC+BcYAf6/lFpnAo7Wcr7vYbhvnTH4paTt+pI/+GF/3vJPjp//i3dHvkvPSaxjz8+n4+WcIs6v9THI+v38SjWd7J8ZbSeIYaTKxZ9WvbF3yJfbOLtzwzAJC6tmO1pw4t/Nk7H0P0XfiVDZ/+wWbv/2C/WtWMmzGLCKGj2qTEfF6vY7uw9sTPtifmC1p7F2dxC9v7icw3INB14VeVqBkbvppUuNiGHbLHW3yw1pxcaSUnD6eR9z2UxzdewaEB8W5JxHiNOFXjeTau1umZKqlEDUmpi13YyG6ownrL1LK6dXOPwi8C8yUUn5bT38bIAmoBLpLKQvN53sDe4HPpJSzq7UfCWyRUhqrndMBf6HN2iOllNHVrm0AgqWUwZfzc/bv31/u2dN2JvMvLDvIbftuwcXTgWledvT07sWrlVNJe/QxvB95GK/77wcgL6OEn1/bg8FGz/Sn+lnFXvP8zDP8vmghJ2Kj6DxgCNfOnmNViV9OxEax6evPOX38KN4dgxk+826Ce/Vt0+JUUW4kemMq+9YkU1pYQVCkJ4OmhOLd0aXRY2378Ru2/7yE2Yv+h4unqtZ3JVGYU8qRnaeJ236a3PRiDHZ6Ovf1JjdtOSlR2zEZjUyc8zgRw9tGrjQhxF4pZf+a5y05Q78VEMDbNc5/ArwC3I42e66LkUAAmnu+sOqklPKAWYxnCCEekFJWmM9fkCRHSmkSQvyEJug9gOiabcyi7wwU1HTLX2mk5pZQuvtrOhvSmN/pBkqyDvBk59mk3zYH+x498LxXy8pVUlDOivcOYDJJpjxkHYljqrajmUwmxt3/MN1HXWN1QtmhWyS3/ect4ndsYfN3i1n68vN07NGLETPvbta1fUtiY6unz7Ud6T48gKgNJ9m/NoUfXtpNaG9vBk4JwbN9w2qYS5OJ2E1/0rFHLyXmVwiVFUYSD2YSt+0UJw5nIyUEdHGn77ggOvX1xtbewN5V8SQd0AopNUVBFmvHkoI+ADABu6qflFKWCiEOmK9frD/A9lqu7UBzo4cBMRcZJ9B8TK/lWnugEHAAioUQa4C5Usq4i4zZ5jCZJAt/O8jj+p844B/J0sy93BExC7u3vqCwsJCAV15GGAxUlBtZ9cEhCnPKmPqI5RPHlBYW8sdnH3Bk2yYCwiKYMOdxq44qF0LQdchwOg8YzMF1q9n+8xK+fuYRIoaN4qoZs3Dz8bW0ic2Crb2BfuOD6TEykIN/pHBg/QkSDmbQpZ8PAyaH1Pt7JKXkj88+IO9MOsNvu6vljFa0OFJKziQXELftFEf3pFNWXIlzOzv6TQgmfIgfbt7nR6pXBca5eHrj6u1jCZNbFEsKegCQKaUsq+VaKjBUCGErpSyvp39V29r6gybIdQq6ECIALSAvAdhS43IisBU4BBiBQcAc4GohxDApZVRd47Y1isoqefT7AwQf+QJfm2ye9ImkXbmBWWmhZK/7HJ8nHseuc2dz4pgYziRpiWP8O1nWnZ0SfZDVHyykODeHq2bMYuDUG1tNGU29wYa+E66j+8ir2bXsJ/atWkb8ji30Hj+FQdNuxsG58S7p1oCdg4GBU0LpOboD+9elcOivExzbe4aug/zoPykEN2+H89pLKdmw+BMO/fE7A6feSNjgYRayXNGcFOWVEb8znbgdp8hOK0Jvo6NTH2/Ch/oTGOZRZ9KiqhSw7cO7taS5FsOSa+jHARspZcdarn0JzAI8pJS5dfT/DLgH6CSlTKhx7R7gM2CalPLXOvo7oq2f9wXGSCk3N8Dm4cAG4E8p5bX1tJsNzAbo2LFjv+Tk5IsNbbWczCnm3i92MzLrO54yfM/KTgP4l+kUL0f8ky4PLsIuOJigb78BnY4N3x4hdnMaI24JI3JU4MUHbyYqKyrYsuRL9q78BY+AQCbOebzVJ3EpyMpk6w9fE7NxPXaOjgyaNoM+4yZjsG1dmawaS3F+OfvWJhO9MRVplIQP9af/xGBc2tkjpWTzd4vZvewn+k6cyqg77rW6ZRTFpWOsNJEUpbnUk2OykSaJX6gr4UP86dzfF7sGVvfbs2IpHbr3bFPLVnWtoVtS0KMAHynlBT5EIcQPwE2AXV0zdCHEe2gz5m5SysM1rv0DWASMk1KuraWvPbAcuBq4U0r5dSPs/gsYDrhIKUsu1r41B8XtTsrmsS+38KxpEePYQVHEZCaTSoBTAC+vcqN423ZCfvkFu9AQ9vyWyM7lifQdF8SQaZ0sZnNGShK/vfcGmSlJ9Bo7iZG3t9x2tJYgIyWJzd9+QeL+Pbh4eZsj4ke3eSEryi1j7+okYrakgYDuw9ojK3eyZ8X39Lp2Ilf/7f/a/DO4Usg4obnU43elU1pUgZObLV0H+xM+xM/iS3jWgjUGxaUB3YQQdrW43dujuePrcrdX9a9qe7jGtapUZBe4481i/itwDXBvY8TcTBIwCvAALirorZUfdp/gk1/X8pXdQoJEKqarF7DQUEjmkUO8X34jRX8twveZp7ELDeHwtlPsXJ5I10F+DL7eMoljpMnE3t+WseW7xdg5OTPt6ecJ7XOxMIzWh3fHYG54ej4p0QfZ+PXnrF70FinRB7l29oPoDZbehdp8OLnbMeLWrvQZF8Se35LYv2YplcVb8A4eyNCb7lFi3sopKSw/61LPPFGIziAI7eVN+BB/OkR4tHiBn9aKJT8BdgNjgYHAWXe3WXB7A5sa0B9gCPBHjWuDgXy0xDFnEULYoe1DHwvMllJ+fgl2d0HbKpd9CX2tnkqjiZdXx5Gy7UeW2f0XezsHMq77gmdPrGL7qe3c7XMdhnlfYte/Hx6zZpEck8VfX8cRGO5hscQx+ZkZrPlwISnRh+g8YDDXzn7QqrajNQcde/Ti9pcWsmPp92z78RtKCvKZ/MhTbcobURsu7exx9ThCZfEW3P17U5A3lK/m7aTn6ED6XNsReyeV7rW1YDKaSI7JJm77KZIOZWIySnyCXBhxSxhdBviq/8tLwJIu90i0hDB17UOfVTV7FkL4oyWNSZFSFpvP2QDJQAXn70PvBewD/ielvLfauHZoM/NxwP1Syo/rsc0NKKy+Z918fhKwElgtpZzYkJ+zNbnc80oqeOjbPfRL/C8PGX5F+vdh/fD7mX/ofcoqy3iy/xMMfuMPivfuJXTZr+RKd355az/uPg5Me6wvtg1c02pK4rZu5I/PPsBUaWT0XbPpMfraK262duiP3/nj0w/w6xLGtKeeb7MBcwAH1/3GH59+QJdBQ5n88FPkZZSya2Uix/acwdZeT2gfb4J7etEhoh229m3XY9GayUorJG77aY7sPE1JfjkOLjaEDfIjYoh/g7cpXulY3Ro6nLcO/gvwG+cyxW1FC1Qzmdt9AdwJjJZSbqjW/ybge7QXg08AV7TMbhLoJ6VMrdb2J2A62mx+cS3mHJJSHjK3vR54C1iBFgFfieZJuB1tZn6VlDK+ljEuoLUIemJmEY988SeP5b/OSN1BinrfwqueXvySsJzunt15efjLuP+2g9MLXsD3uWfRj73hXOKYf/bDyb1l95qXFhWy/rMPidu6Ef+wcCY+8Djufv4taoM1cXTnNla99zpuPn5Mn/sCrl7WVc2uKYj+ax1r/vsOoX0HcN3jc9Ebzs3gslIL2bc2meSoLMqKK9EZBIFhHgT39CK4pxcu7dq258LaKS2q4NiedA5vO8WZ5AJ0OkFQpCcRQ/3p2MPTKrJItiasVdD1aKlaZ6PlV89EE+jzksXUJejma5PRcrn35Fwu96eklMdrtEsCguoxZ4GUcr65bQTwAloEvC9gA5wEfgdeqv6icDFag6BvOZrJO98sZSGvE6DLIWrUozyTuZXUwlT+1uNv/L39jWS/vpD8lStxHDIY73c+ZOkb+yktrOCGJ/vRzr9lA1VOxBxi9aKFFOZkMeTGWxl0/c2tZjtac3IiNopfX/s3to6O3Dj333gGdrC0SU3G4S0b+O39NwmK7M31Tz5XZ3S/0Wji9LE8Eg9lknQok7wMLczFM9CZkJ5eBEd64RPk0mK12a9kTEYTJ+NyOLz9FIkHMjFWmvBs70zEUH/CBvq2ulrj1oRVCvqVgDULupSSL7cnc/C3j3jJ8Ck4efL5wOl8nLwKX0dfXhr6IiHrj5DxzjvIsjI8Z8/G9c67WfHhYTJPFDL1kd74d3ZvVhvLS4pJTzjG6eNHz/7Lz0jHw7+9th1NFeE4jzNJCSx9+XmMlZVMe2oeAWERljbpsonfuZWVb79KYHh3pj39fIPjBKSU5KYXnxX308fzkBIcXW0JivQkOFJzzdvYqZfBpkCaJJmphaQeyeHkkRzSjuZSUWrEzslA2EDNpe7VwfmKWxJrDpSgWwhrFfQKo4kFyw7Sad/L3G1YQ2KHgTzr48Gh7MNMCZ3CYw5TyH/pdcpiD+N01VX4Pfcshg4dWf1RNElRmYyf3YNOfZo281JleTkZyYmcPh5/Vryz006C+XfUzccX39AuBISF0/Pq8djYKzdqbeSdOc1P/3mOwuxspjz6NKF9W2+0//G9O1n+5kv4dQpj+r9ewNbe4eKd6qC0sILkmCySDmWSHJNFRakRvY2OwHAPgiO12buzh+XTFLcWql6YTsblaCIen0NZUSUA7r6OtO/qQceIdgT18ERvo1zqTYkSdAthjYKeXVTO04vX8bfTLzBQF8fSnpN5teQoBp2B+d0fJ/LnKHJ/+AGDtze+c5/BZdw4inLL2PrzMY7tOcPwGWH0HH15iWNMRiNZJ1PMwq0JeGZKEiajFofo6OaOX6cu+HUKw69zGL6hndt85HpTUpyXy9JX5nMmKUHLXd8K64MnHdzHr6+9gFfHEG567kXsHJtuacdYaSLtaC5JhzJJisokP7MUAO+OLgRHehLc0wvvji5qNlmD/MwSTh7JOTsLL87TdhY7e9gRGO5BYFcP2nf1wNlDvWw3J0rQLYS1CXp8egELP/+K+aWvobct5T89RvBH7mEG+g5gXs4Iyt79GGN+Pu1mzcJrzhxKKvTs+z2ZmK1pYIIBk4PpPzGkUfeUUpJ7Ou08t/mZxONUlmvpB+wcnfAN7XxWwH07dcHF00t9mF4m5SXFLHvzJVKiDjBi5t0MuG76xTtZCSdiDrH0lQV4+Adw07yXmjVyX0pJ9qkiTdwPZXE6MQ8kOLnZEtTTi5CeXgR29cBge+W55ovyys6Kd+qRnLMvPg4uNmfFOzDcA1cvB/X32oIoQbcQ1iTo62NPs23Jqzyt+5Jt7QJY4ONOTkUhT3vexqBvDlCydx8Offrg9/w8Kn2DzxPy8Kv86TcuCFev+l2eUkoKs7POc5unJxylrKgIAIOtHT7BoWbx7oJvpzA8/PwROuWSaw6MlRWsXrSQI9s20W/yNEbOvNvqn3XqkcP8/J/ncPX24ebnX25xz0xJQTnJ0VkkHsrkRGw2FWVGDDY6AiPaEdLTi6BIT6uoINgclBZWkHo0h9Q4TcRzThcDYOdoIKCLO4Hhmoi383dSAm5BlKBbCGsQdCkln/4Vi8dfTzPFsIk3gnuyhFwi7ENYcKQbfL8SvYsLPk8+gX7UBPavPdFgIS8pyD/PbZ5+/ChFuTkA6PR6vDoEm4VbE3CvDkEqIr2FkSYTfy3+hP2/ryBi+GjG3f+w1WaVO30snh9ffBYnd3dmzH8VJ3cPi9pjrDCRGp9D0qFMEqMyKczWvEo+QS5nt8R5BbbeQK/y0krSjuaenYVnniwECQY7PQGd3bQZeFcPvDq4oFM7A6wGJegWwtKCXlph5PUla5l29Gls7FJ5Kjic4xW5PFE4jCE/xmFMT8f9phtx+NscDm3PPSfkQ/3pN/58Ia8oLeV0wjm3efrxePLOmKvOCkE7//ZnZ91+nbrgExza5ouHtBaklOz69Ue2LPmS4N79uO7RZ6wuqPBMUgI/vjAXOycnZsx/1erqmkspyUrVXPOJhzI5k5QPaOvHVeIeGOZh1QFgleVGTifknXWhpycVIE0SnUHgH3pOwH2CXdEbrPfnuNJRgm4hLCnoZwpKWfTpJzyU+wq/etizqJ0LnYpdeHabH7a7orELD8fliWc5fNKFmC2ptQq5yWgkJeoAsZv/4uju7VSWaTMUV28f/EKrZt5a0Jqdo2N95iisgKg/17Lu4/fx7dSZaU89bzWBhpknkvlhwTMYbO2YMf+VVlH3vSivjORoLWr+xOFsKstNGOz0+Aa5YGNvwGCrw2Cjw2CrP3e01WGwMR9tzx1tbHXobc6/bmOrR2+ru6ykK0ajiTNJBaQeyebkkRxOH8/HWGlC6AQ+QS7aOni4B/6hbldkjEBrRQm6hbCUoEefzGXT//7F9XIJcwPac0iYePhwEAPXnkRnMOB0/6MkOPcnZtupC4RcSklGciKxm/4kbutGinJzsHNyouvg4XTqPwi/Tl1wdHNv8Z9J0TQc27OTVW+/iou3DzfOfQFX76bdfthYstNS+WHB0yAEM55/GQ//9hfvZGVUlhs5eSSHpKgssk4WUFlhorLcRGW5UTtWaMdLQacTGGx16KsJv41tbS8K577W6XWcSS4g7VgulWXazhGvDs5nZ+ABnd0tkqpZ0TQoQbcQlhD0NXuPIpb/A+kUxQJfP8KTBA9tdMIuLQub8dM42fNmDu/LuUDIC7IyObxlA4c3/0XmiWR0egMhffrTbcRoQvsOxGCjiiW0FU4ejubX1/+NjZ09059ZgFfHYIvYkZt+mu/nP4WxspIZz7/SprLb1URKibHCZBb784W+6vuKcqPWptxIRbkJY4X5WG6iosJIZblR+7qqT0WNo3lMU6XEw8/xrIC3D/PA3ln9/bYVlKBbiJYUdJNJ8uWKdfTd9zDfeZexFUce2uxC94O5mEK7c/raOcQfl5qQD/Gj34Rg7J0kR3dtJ3bTn6TEHAIp8e/SlW7Dx9B16HAcXFxbxHZFy5ORksTSl+ZRUV7G9f+cR2B49xa9f37mGb6f/wzlJcXcPO8lvIMatx1SUTfSJFV62zaMEnQL0VKCXlxeyZefv09k9hv829uVPgcEt23VY7Tx4My4h0jIbYc0C3mfsR3IOXWE2E1/cmz3DirLy3Dz9SNi2Gi6DR/VKl2eiksjP+MMP700j4KMM0x+9Ck69RvUIvctzM7i+wVPU5yXx83zXsI3tHOL3FehaAsoQbcQLSHoadmFbPj4IbLs/2BToSv3rdPhleNI2pC7SDF0RUroOtiX4EhIidpK3NZNFOXmYO/kTNiQYXQbPoaArhGtduuN4vIozs/jl1cXkJ5wjGtnzyFy9NjmvV9eLt/Pf5qC7Cxu/NcLbSLfvELRkihBtxDNLegHjiSQ9NMsljtn0HebgWGHXUkJn0qq10BAR2hvexyck0jYu5mskyno9AZC+/an2/AxhPQdoNbFFQCUl5aw4q2XSTq4j2G33MHA629qlhe8koJ8fnhhLrmnTzH9mQUEduvR5PdQKNo6StAtRHMK+ro/1pC4/0HiUw1M2+ZKhu9YTgWOQGLEu0M6lSWxpB2N0dbFw8K1dfEhw9S6uKJWjJUVrPnwHQ5v2UDfCdcx6o57mzSrXGlRIT+9+CyZJ5KZ9s/nCerZu8nGViiuJOoSdLVvoRViNEl+/Oo/xCYtptdWT4bbjuVg76EYjak42W8gPyOWlIPluPn6MWT6LUQMH42HX4ClzVZYOXqDDRMeeAxHNzf2rlpGcX4e4//xCHrD5XtxykuKWfry82QkJzH1yX8pMVcomgEl6K2MgqIivvpwBqYDmfTJnUFqh65UVsQjSr+gsqwQnXSmx6iriRg+hoCwcLUurmgUQqdj5Kx7cXTzYPO3X1BSkM91jz2DrcOlJw2qKC1l6SsLOH38qFbOtU/rLeeqUFgzStBbEceOx7DmnftwP3EVma5uJLrEIQsPoNPrCek7kG4jRhPSR62LKy4PIQQDp96Io5s7az96lx9e+Bc3PDP/krLKVZaX8+sbL5J25DATH3qCLgOHNoPFCoUC1Bp6s9NUa+jLPn2D038kUKwzYTKeBMAntCs9x1xN2JDhzVpeUnHlcnzvLla+/Sounp5Mn/vvRqVkNVZWsOyN/5B4YC/j/++RVlmTXaGwRlRQnIVoCkH/9IE55GWeBCrR653oOXYCfcePw93Pv2mMVCjqIfXIYX59dQF6W1umP7OgQQlgjJWVrHz7VY7t3s61f59Dz2vGt4ClCsWVQV2CrsrptAI6Dx+Erd6LwTPu5uFvljDmrruUmCtajPZdI7jlhdcQOh3fz3+ak7HR9bY3mYysfv9Nju3ezui77lNirlC0EGqG3sxYunyqQtFU5Gdm8PNL88g7c5pJD/+TLgOGXNBGmkz8/uHbxG76kxEz72bAddMtYKlC0bZRM3SFQnFZuHp5c8uCV/EJDmXFmy9zaP3v512XUvLHpx8Qu+lPht48U4m5QtHCKEFXKBQNxsHFlZue/Q/Bvfuy7uP32fHzEqSUSCn5a/HHHFr/O4Om3czgG26xtKkKxRWH2ramUCgahY29PVOfeJa1H73L1h++pigvB4OtHftXr6DfpOu5asYslf9AobAAFp2hCyF0QohHhRBxQohSIcQJIcSbQginRowxUQixTQhRJITIFkL8KISoNQxXCOEmhHhPCJFqvl+MEOL/RB2fPo0ZW6G4ktAbDIz/x6P0n3IDB9asYs+KpfQaO4mRs/6mxFyhsBCWnqEvBB4CfgHeBCLM3/cRQlwjpTTV11kIcQPwE3AQeBJwAx4Btgoh+ksp06q1tQXWAX2A94DDwATgA8AXmH+pYysUVyJCCEbefg/uvv4U5WYzZPqtSswVCgtisSh3IUR3IAr4RUo5vdr5B4F3gZlSym/r6W8DJAGVQHcpZaH5fG9gL/CZlHJ2tfb/ABYBD0kp36t2/mdgCtBFSpl8KWPXh4pyVygUCkVTYo1R7rcCAni7xvlPgGLg9ov0HwkEAJ9WCS6AlPIAsAGYYRbmKm4zj/tJjXHeBmyAGZcxtkKhUCgUFsWSgj4AMAG7qp+UUpYCB8zXL9YfYHst13YArkAYaGv1QF9gv3n86uwy21H9fg0eW6FQKBQKa8CSgh4AZEopy2q5lgp4mde96+tf1ba2/gDtzUcPwKG2tub7Z1Vr29ixL0AIMVsIsUcIsScjI6OuZgqFQqFQNBmWFHRHoDYxByit1qa+/tQxRs3+9bWtal/9Xo0Z+wKklB9LKftLKft7e3vX1UyhUCgUiibDkoJeDNjVcc2+Wpv6+lPHGDX719e2qn31ezVmbIVCoVAoLI4lBT0Nza1em2i2R3PHl1+kf1Xb2vrDOfd4DlBSW1vz/T05373emLEVCoVCobA4lhT03eb7D6x+UghhD/QGLrbXa7f5eGGFCBgM5APxAOb97PvQ9rfXfIEYaLaj+v0aPLZCoVAoFNaAJQX9e0CiJWupzt/R1qe/qTohhPAXQoQLIaqvW28ETgH3CiGcq7XtBYwCfpRSVlRr/5153Jr7xx9B22/+w2WMrVAoFAqFRbFYpjgpZZQQYhEwRwixFPiNc5niNgLVk8q8DNwJjEbbB46UskII8TDai8FmIcQnaNvJHgUygOdr3PIT4G7gLSFEMFqmuInANOBFKWViNdsaO7ZCoVAoFBbF0qlfH0HLyDYbmARkoqVlnXextK8AUsofhRAlwLPAG2hR6euBp6SUqTXalgshrgFeREtq4wkcBx5EyyB3yWMrFAqFQmFpLJb69UpBpX5VKBQKRVNijalfFQqFQqFQNBFK0BUKhUKhaAMol3szI4TIAJItbUcT4oUW66BQz6I66lmcQz2Lc6hncY6mfBZBUsoL0pAqQVc0CiHEntrWbq5E1LM4h3oW51DP4hzqWZyjJZ6FcrkrFAqFQtEGUIKuUCgUCkUbQAm6orF8bGkDrAj1LM6hnsU51LM4h3oW52j2Z6HW0BUKhUKhaAOoGbpCoVAoFG0AJegKhUKhULQBlKAr6kUIESaEeEEIsUMIkSGEKBBCHBBC/EsI4WRp+yyJEMJRCJEohJBCiPctbY8lEEK0E0K8IYQ4JoQoNf+O/CWEGG5p21oSIYSzEGKuECLK/DeSKYTYJoS4SwghLG1fcyCEeEYI8aMQIsH8N5B0kfZdhRC/CiFyhBBFQojNQogxLWRus9LQZyE0bhdCLDH/zRQLIVKEEMuFEIMu1w5LF2dRWD/3AA8Ay9FK2lagVb17EbhZCDFYSlliQfssyQtoySKuSIQQQWjVD52Bz4B4wA3oCbS3nGUtixBCB6wGhgKL0QpMOaIVgfofWhXJpyxmYPPxEpAN7APc62sohOgEbEMrVf0akIdWKnuNEGKClPKP5jW12Wnos7ADvgIOAEuARMAfuB/YLoS4Q0r59aUaoYLiFPUihOgPHJVS5tU4/yLwL+BBKeUVNzsVQvQFdgH/BN4EFkkp51jWqpZFCLEZCAYGSilPWdgciyGEGIImVm9LKR+tdt4WiAPaSSndLWResyGECJVSJpi/jgacpZTBdbT9AZgO9JNSHjCfcwZigFIgXLZiMWrosxBCGICrpJQba5z3RXsWRsC/IdVGa0O53BX1IqXcU1PMzXxvPvZoSXusASGEHvgE+B1YamFzLIIQYgQwDHhNSnlKCGEjhHC0tF0WwtV8TKt+UkpZjpbqs6jFLWoBqgTsYpiX5q4DNlSJubl/IfApEAYMaA4bW4qGPgspZWVNMTefTwc2Aj7mf5eEEnTFpRJoPqZb1ArL8CgQDlxRM/IaTDQfU4QQK4ASoEgIES+EuN2CdlmCXUAu8E8hxE1CiI7m9eKXgX7AfEsaZwX0RHM1b6/l2g7zsVULehMRCJSj/S5dEmoNXdFozDPUeWjrYd9a2JwWRQgRAiwAXpBSJgkhgi1skqXoaj5+AhwF7kT70H4M+EoIYSOl/J+ljGtJpJQ5Qojr0GabP1S7VABMl1L+ahHDrIcA8zG1lmtV566YmIvaEEJMBAYCX0kpSy91HCXoikvhbWAwMFdKecTCtrQ0H6IFsrxlaUMsjIv5WACMNruXEUL8AiQALwkhFl/qWmArpBCIRgse3Qa0Qwsm/VYIMVVKuc6SxlmYqqWYslquldZoc8UhhOiCFiiXCjx+OWMpl7uiUQgh/o3mav5YSvmype1pScyu5LHA/VLKCkvbY2GqdjZ8VyXmoM1W0UTNj3Oz+DaNECISTcTXSSmflFL+IqX8DC3G4DTwidmrdaVSbD7a1XLNvkabKwqzx289IIEJUsqMyxlPCbqiwQgh5gPPom3Fud+y1rQsQgg7tFn5b8BpIURnIURnIMjcxM18zt1SNrYwJ83H07Vcq4p492ghWyzNo2jC9GP1k1LKYmAV2u9IcMubZTVUBQvW5lavOlebO75NY16u+wtt2+e1Usqoyx1TCbqiQQghngeeB74E7m3NW0wuEQfAG5iEtmZc9W+D+frt5u/vtYRxFmCX+RhYy7Wqc2dayBZLUyVKtc3CDTWOVyJRaO72IbVcG2w+7mk5cyyPOYfDX2h5G66VUu5vknGvvM9lRWMRQsxDCwT7CrjrCloXPYsQwgaYWsslb+ADtC1snwGHpJTxLWmbJRBCeADJQD7aHuJC83l/tBebNCllmAVNbDGEEAuBR4CnpJSvVTvvDsSizd59pJSVFjGwBWjAPvQfgRuAvlLKg+ZzVfvQy4CubWWS0IBnUZWQyQNNzHc32b3byDNUNBNCiAeA94EU4DmgppinX8kBP2a3WSJXZmKZ2cBHaB/KnwO2wP+hZb6aLKVca0HzWgzzB/Q+tA/ob4CtaEFxf0dztT8gpfzAYgY2E0KIWZxbcnoQ7f//TfP3yVLKr6q17Yzm1akAFqK9CP4diAQmSSnXtJTdzUFDn4UQwgU4CISgZRTcxYWsM+9Lb7wdStAV9SGE+AJtS1JdbJRSjmoZa6yPK1nQAYQQN6Bly4tEe9nbDiyQUm61qGEtjDm16TzgasAXLWjwAFr2uDaZfEgIsQEYWcflCz4XhBARwCvmPrZoL0Hz20Da1wY/i2qfF/UxWkq54ZLsUIKuUCgUCkXrRwXFKRQKhULRBlCCrlAoFApFG0AJukKhUCgUbQAl6AqFQqFQtAGUoCsUCoVC0QZQgq5QKBQKRRtACbpCoVAoFG0AJegKhaLNIIRIMif5UCiuOJSgKxQKhULRBlCCrlAoFApFG0AJukKhUCgUbQAl6AqFol6EEHZCiLlCiBghRKkQIlcIsUII0adGu1FCCCmEuEsI8aAQIt7cPl4I8WAdY48QQqwTQuQJIUqEEPuEEH+ro21nIcT/hBAnhRDlQog0IcQyIUS/WtqGCyFWCSEKzGP/JITwa5onolBYJwZLG6BQKKwXcx3434GhwFdopXTd0EpfbhVCjJBS7qnR7UHAD620agFwK/CuEKKdlHJBtbGnAL8Ap9FKTRYAtwCfCiFCpZT/qta2P7AesEGrOx+NVqJ0pNm2vdXu3x6t3vQvwJNAL+A+wBUYe3lPRKGwXlS1NYVCUSdCiEeBt4Dx1WtWCyFc0UQ1oVppyFHAX0AhECGlPGk+bwtsAfoAIVLKk0IIPZCA9nLQTUqZVq3tX8BgIFxKeVQIIYAooDMwUEp5qIaNOimlyfx1Elpd6hlSyh+qtVkE/MNsV1yTPSCFwopQLneFQlEftwNxwF4hhFfVP7R61uuAYUIIhxp9vqkScwApZTmwEM0jOMV8uh/QEfi8SsyrtX0d7bNpqvl0b6A78L+aYm7uY6pxKq26mJv503zsfPEfWaFonSiXu0KhqI8IwAHIqKeNF3Ci2veHa2kTaz6Gmo8h5mNMLW2ja7TtYj7ur9fScyTUci7LfPRs4BgKRatDCbpCoaiPKnf3Y/W0qSn2ta3jiYt8fzEb6hq3NowNGEuhaHMoQVcoFPVxFPAG/qzFtV0X3Wo5F2E+Vs2ej5uP3evpX9X2iPnYp5a2CoXCjFpDVygU9fElWsR6rTN0IYRvLadnCiECq7WxBR5FmzmvNJ/eB6QAd1ffTmaOqn8SbTa+zHz6IJpr/h4hxAUvAOagOYXiikfN0BUKRX28A1wLvC6EGIMWXJaPFtB2NVAKjK7RJx7YKYT4L9pWtNuAAcC/pZQnAKSURiHEHLStZbuFEB+b285Ai3B/SUp51NxWCiHuRtu2tksIUbVtzR1t29rvwHvN8+MrFK0HJegKhaJOpJQVQohJaFu+ZgFV+8jTgF3A4lq6vYe25/tBNOFPAR6RUr5TY+wVQoirgWfRZuW2aAF1f5dSflqj7W4hxADgOeBm4H4g02zD1ib4URWKVo/ah65QKJqEavvQ75ZSfmFRYxSKKxC1hq5QKBQKRRtACbpCoVAoFG0AJegKhUKhULQB1Bq6QqFQKBRtADVDVygUCoWiDaAEXaFQKBSKNoASdIVCoVAo2gBK0BUKhUKhaAMoQVcoFAqFog2gBF2hUCgUijbA/wN6H2h88tq0TQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdMAAAGDCAYAAABwcPpaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAACj6klEQVR4nOydd3yb1fX/31db8rZlO3Z24iRkQYAkpEAgjAKlUEoYYbSFb1vooFBGW770y6/l270oFGi/LbSMFsoqowVKIQHChgwSRnbibO94yZa17++PR48i27Is21qW7/v10kvxfe7zPFeKraNz7jmfI6SUKBQKhUKhGD6GTC9AoVAoFIrRjjKmCoVCoVCMEGVMFQqFQqEYIcqYKhQKhUIxQpQxVSgUCoVihChjqlAoFArFCFHGVDEqEULsEULI8ON7g8z9OGrubWlaYvT9rwzf+8F03ztqDU4hRLsQ4p+ZWkM8hBCrw+/RsiRcSwoh0lLzJ4R4RwhxQAjhSMf9FNmLMqaKXOCKgQ4IIY4F5qVxLdnK/wKFwA/SfWMhxLKwgVud7nv3WUcqjOz/A8YDcb/QKXIfZUwVo531wBwhxMIBjuuGdl2a1hOLZ4DZwC2ZuLkQYjpwNfCclPLDTKwhAb6E9h6tScK1ZocfKUdK+QrwLvBdIUR5Ou6pyE6UMVWMdh4KP/fzToUQZuBSYA/wRhrX1AspZYeUcquUsj5DS/gGYAIezND9B0VKuS/8HrmTcK2tUsqtyVhXgjwIOIAvp/GeiixDGVPFaGc1sA+4NGw8o/ks4AT+BgwY3hNCnC+EWCWEaBNCeIUQu4QQdwshqvvMOzccKhzQMAshTgjP+SRqLO6eqRBivhDiISHEvvD9DwkhXhho/1AIMVMIcZ8QYpsQoju8F7pdCPF3IcSpfeZagf8C2oAXYlyrQAjxNSHEv8Kvu0cI0SmEWCOE+LYQwhTntVYKIX4hhPgkvA6XEGKzEOIuIcSM8JwHgdfCp5wctXfdK+zbd89UCGESQjSEx6bHWcP28JyFUWO9wrn6+9/3ePS88PsphRDfjnOv34fn3Nzn0BOAF/iaEEIMdL4it1HGVDHakWjGsgzNeEaje6t/HehkIcRvgKeBk4EPwv8WwLeADUKI+VHTXwSagBOFEFMHuOSXws8PDXC87/2vCN/3S8Ah4F/AVuBM4FUhxNf7zF8AbAC+CviBfwOvAO3AhcDFfW6xFCgF3pRS+mIs4Sjgj8CxwF7gWbSQ+HzgTuCZWAZCCLEY+Bi4Ge29fwl4Gc2ofIvD/xdvhY8BNKK9L/rjPwO9L1LKAPD38I9fjDVHCPEpYAawWUoZL4y/k97/Hw/1eQDcE37u9X5H3SsP+ALgA+7vs9Z2tP/DqcCRcdahyGWklOqhHqPugRa6lWjJRTPC/34m6rgT7YPvrfDPvwnPuS1qzjnhsTbgmKhxE/B/4WObAEPUsTvD4z+IsSZr+FoBoDpq/MrwOQ/2mX9MeI1twLI+xz6FZiB9wKyo8QfC1/pOjPuXRr+O8NhPwvNvGeB9nID2RUL0Ga9CM9oSuKTPsUKgPnzsl4Clz/FpwJFRPy8Lz10d5/9zdXjOsqixo8JjuwY4R/8/+l6fcal9tPWbH3M86vhb4TmnxDh2VfjYIwOc+9vw8W9n+m9DPTLzUJ6pYtQjpdyBlgTyWSGEMzx8GWAmvod4Y/j5l1LKD6KuFwgfawTmoHmJOvr1YnlL5wLFwCopZV0CS/+f8Bq/LaVcHX1ASvku8OPw8a9FHaoIP6/qezEpZWv06whzdPh5S6wFSCkPSClfl1LKPuP1HM5QvaDPaVcB44BXpJQ3yz4er5SyVkr5Uaz7DQWpJUt9BEwTQpwQfUwIYUHzwkPAIyO9V5h43qn+f/B/A5yrv79HD3BckeMoY6rIFR5CMzyXhn++AvCg7Wf1I7wXeHz4x4f7HpdS9kSde3LU+Aa08GZNOMwYTcIhXiGEAfg0EEQLrcbi9fDzkqgxPZz5JyHEmUII2yC30o3voThrEUKIk4UQtwoh/iCEeCC816kblZl9Tjkj/Hw/qUd/L7/UZ/wcNE98lZTyYJLu9RTQAJwvhKjUB4UQi9DC4JuklG8NcK7+/lYMcFyR4yhjqsgVHkfbr/uSEGIeWgj1n1LKjgHml6GFZX3AQB/GteHn8X3G9T3YyAd82CM+C+hkYOPY9/4FgBHo6JsUE06MWRueG11y8Su0vcbF4ecOIcTbQogf60k/fSgKP7tiLUIIMQ7Nq1+N5gl/Ay0sfQWwPDytsM9pk8LP2xN4nSPlEbQvHBeHk6l0hrQ3nQhSSj9wL9qXsq9GHdK/VAzklYL2/w5aZEIxBlHGVJETSC0J5F/AQrR9PIj/QTuUrMu+mcAPc/gD3hIeuxTtQ/jJsFc7GPrfno/+CTF9HxHVIillt5TyM8Ai4Da0fb6jgVuBLUKIq/rcpz383Ncg6vwZOA54EzgVzXCbpZQCmBWeM9B7lXKVISllI1oCUzFaGB0hRBlwNtoXhGeSfMs/oe15XyWEMAghioBLgG60RLeB0L+0tCV5PYpRwoBp7wrFKOQh4CK0D9oGtOzSgWhB82StaJ7ngRhz9IzdXvufUsoGIcTLwGfQwo1PM3RP6RDQA1iAr0kpvQmep69hHeGQbzjUezVactTdQognojzypvBzad9rhDNUP4P2xeDcGF58zQC33wscgWZs1w9l3cPkIbT/0y8B/0Azbmbgbwl+cUkYKWWdEOIZDv8eTUOrIb1XStkZ51T9/W2KM0eRwyjPVJFLvIQWejwE/EVKGRxoYjjJ6J3wj1/oezxsoPQyk9f7Hicq1CuEOALNI65F8xQHJXz/VWhh3s8nck6ca3mklHehlYBY6b3HuSH8PCfGqUVonwGuAcLhl8YYg8NfUq5McIl6gtJwv7z/E83DPktoKkPDDfH6IbJfHo/fh5+/zuHEoz8Oco7+/m6IO0uRsyhjqsgZpJQBKeUsKaVTSnlrAqfcEX7+nhDiGH1QCGEEbkfLWN3C4TrJaJ4FOtC8lxvCY3/rmxU7CD9GCyn+QQjx+b4HhRBmoQlFfCpq7Jux9kbD9bCT0bJbo73sWElMOo1oRqpYCHFZn+t9Abh8gHX/Ga005tNCiJ+JPmIZQoipQojoekt9T7omAUPWj7DX/gSaN/oDtP3iPWih6aGgryOu1KCU8nXgE7Ra2TnA++HEs3jo72+sL16KMYAypooxi5TyOTSjWQK8L4RYKYT4O5p3+02gGVghpQzFOFfPFDajhVghjjjEAPdfi+bd5aGJI+wUQjwnhPiHEOK98P3/hVZvqXM1sF0IsUMI8YwQ4pGwktAHaCHj22Vv2cK30PbxToza39XvHwR+Fv7xkXAi09+FEBvQ9gd/SQzC4c7Po4XKbwH2CiGeCq97A7ALbf9Vn78XzWOrBD4SQvxNCPFnIcR3h/B26V7ot8LPfx3iFxc4vL/6ihDisfAa/jzA3N9H/Tte4hHhfdVj0MLfIy4JUoxSMl3oqh7qMZwHUaINCc7vJ9oQdWw5h1WEvGjh2nuA8YNc84TwNSWawtBA864khmhD1PEZaB/e2wA30AXsQDOkVwGlUXPPQUuS2YhmzDzh9+I54DMDXF8XFDh/gOMr0ATmXeH34DU0j3tK+Lw9A5w3Lvy+bkXb/+1A8+juBGr6zJ2ClnHdgOaN9xJxIIZoQ4z7bY96v6fHmTeQaIMd7ctTLVroeUARB7T9Yom2ZWAb5PfgauIIY6jH2HiI8C+DQqHIUYQQNWgG7wUp5XmZXs9oQAjxA7S2db+VUt40yNy30TKqp0gpVQLSGEWFeRWKHEdKuROtfvJcIcRRg80f64RLb76FluX8h0HmnoYm/vFrZUjHNsozVSjGAGFRiZ3AG1LKz2V6PdlIeA93PnAKmmbxH6WU3xjknHfQEr9mSim7U79KRbaijKlCoVCgtYFDk45sREsu+57UEs0UikFRxlShUCgUihGi9kwVCoVCoRghOSsn6HQ65ZQpUzK9DIVCoVDkCOvXr2+RUpbHOpazxnTKlCmsW7du8IkKhUKhUCSAEGLvQMdUmFehUCgUihGijKlCoVAoFCNEGVOFQqFQKEaIMqYKhUKhUIwQZUwVCoVCoRghypgqFAqFQjFClDFVKBQKhWKE5GydaaJ4PB6am5vxeDwEAoFMLydnMZlM2Gw2ysvLsdlsmV6OQqFQJJUxbUw7OjpobGykvLyccePGYTKZEEJkelk5h5SSQCBAV1cX+/bto7KykqKiokwvS6FQKJLGmDamLS0tTJgwAYfDkeml5DRCCMxmMyUlJVitVhoaGpQxVSgUOcWY3jP1+XzY7fZML2NMYbfb8Xq9mV6GQqFQJJUxbUwBFdZNM+r9zgwd3g46vB2ZXoZCkbOM6TCvQjFWuOXNW5BI/u/0/8v0UhSKnEQZU4ViDHCg6wA9gZ5ML0OhyFnGfJh3uKxevRohBA8++GDG1nDllVcmJWyarOsospc2TxtN7ib8QX+ml6JQ5CTKmCoUOU4wFKTD20FIhmjobsj0chSKnCQhYyqEMAghbhBCbBVCeIQQ+4UQtwsh8hK9kRDibCHEO0KIbiFEqxDiSSHE1Bjzlgkh5ACP54fy4hQKBXT4OpBIQAv3KhSK5JPonukdwHXAM8DtwOzwz0cLIU6XUobinSyEWA78A/gQ+C5QBFwPvC2EWCilrItx2r3Am33G1CeBQjFE2jxtkX/XdcX6U1MoFCNlUM9UCDEXuBZ4Wkq5XEp5n5TyRuBG4BTgkkHONwN3A/uBpVLKP0gpfw6cCVQCtw1w6rtSyof7PFYn+sLSTSgU4qc//SknnXQS48aNw2KxMGnSJL7xjW9w6NChXnP37NmDEILbbruNJ554ggULFmC326mpqeGBBx4AYN++fVx44YWUlpZSUFDAF77wBVwuV8x7Nzc386UvfYmysjLy8vI47bTT2LBhQ795Ho+H7373u1RXV2O321m8eDEvv/xyzGuuWbOGK6+8kpkzZ+JwOCgoKOCEE07gmWeeGeE7pUg30cb0YNfBDK5EochdEvFMLwUEcGef8fuAXwBfAP4e5/yTgWrgB1LKLn1QSrlRCLEaWCGEuEZK2S8zIhxGDkopPQmsM6P4fD5+/etfc8EFF3DeeeeRl5fH2rVr+ctf/sJbb73F+vXrsVgsvc55/vnn+eMf/8g3v/lNSktL+ctf/sKXv/xlLBYL3//+9zn11FP52c9+xtq1a7n//vux2Wz8+c9/7nfvs846i9LSUm677TYaGhq45557OOmkk3j33XeZN29eZN6ll17Ks88+y7nnnsuZZ57Jrl27WL58OVOn9ou288wzz7B161YuvvhiJk+ezKFDh3jooYdYvnw5jzzyCJdddlny30RFSmjzHjamKsyrUKQIKWXcB/ASEASsMY69DTQPcv4tgAROj3Hsp+Fjc6PGloXHOsLPEtgOfBsQg61Xfxx77LFyMDZv3jzonIF47bXXJCAfeOABKaWUoVBIut3ufvP+/Oc/S0A+/vjjkbHdu3dLQDocDrlnz57IeFNTk7RarVIIIW+//fZe1zn//POl2WyWLpcrMnbFFVdIQJ5//vkyFApFxtetWyeFEPLMM8+MjL300ksSkFdccUWv6z7zzDP6e9xrvKurq99r6e7uljNnzpSzZ8+O884Mzkjed8XQeXzr43Leg/Pkuc+cKy9/4fJML0ehGLUA6+QANieRBKRqoEVKGUsD7iDgFEJYYhyLPl+fG+t8gPFRY37gX8D3gM8BXwfa0Tzj+xNYb0YQQkSkCYPBIO3t7bS0tHDqqacC8P777/c75/Of/zyTJ0+O/FxeXs6sWbMwGAxcc801veYuXboUv9/Pnj17+l3ne9/7Xq/SlmOPPZZPf/rTrFq1iq4uLRjw7LPPAvDd73633xpmzZrV75p5eYdzy9xuN4cOHcLtdnPqqaeyZcsWOjs7470diixCD/POLZurwrwKRYpIxJg6gIHEVD1Rc+KdzwDX6He+lPJtKeV5Uso/SSmfk1L+CViC5iFfKYQ4caAbCSGuFkKsE0Ksa25ujrOk1PDEE09w3HHHYbfbKSkpoby8nGnTpgHQ1tbWb75+LJqSkhKqqqqwWq39xoF++68As2fP7jc2Z84cgsEge/fuBaC2thaDwcDMmTMTOr+pqYmrr76ayspK8vLycDqdlJeX88c//hGA9vb2fucospM2bxv55nwmF06mpacFTyDrd00UilFHInumbqBigGO2qDnxzgewxjiWyPlIKUNCCD1p6WzgrQHm3YuWBczChQtlvGsmm6effpoVK1awePFifve73zFx4kRsNhvBYJCzzjqLUKh/wrPRaIx5rYHGAT0UPih958U7L9bcM844gy1btnDdddexaNEiioqKMBqNPPDAA/z973+P+XoU2Umrp5USWwnj87UAUF13HdOK+n+RUygUwycRY1oHzBFCWGOEesejhYB9g5yvz90S43yIHQLuy57wszOBuWnnb3/7Gzabjddee61XS7etW7em/N5btmxhyZIl/caMRmMkjDx9+nRefvlltm/fzty5c3vN7bvGjz76iA8//JAf/OAH/O///m+vY7ESoBTZTbunnRJbCRMKJgBw0HVQGVOFIskkEuZdG563OHpQCGEDFgDrEjgf4FMxji0BOtESjAZjRvi5MYG5acdoNCKE6OWxSSn5yU9+kvJ7/+pXv+rlXX7wwQesWrWK0047jfz8fADOO+88AH7961/3OvfZZ59l27ZtvcZ0z7ivx/rJJ5+o0phRSJu3jRJrCdV5WvqCqjVVKJJPIp7p48D30UQWokUUrkLb63xEHxBCVKEJMuyTUuqh29eBeuCrQog7ZLg8RghxFFrm7gMyqixGCFEmpey1MSiEsHK4HvW5BF9bWrnwwgt56qmnOPXUU/nSl76E3+/n2Wefxe2OG8FOCnv37uXMM8/kc5/7HPX19dxzzz3Y7fZehvPMM8/k3HPP5aGHHqK1tZWzzjqLXbt28ac//Yl58+bxySefRObOnj2buXPn8qtf/Qq3282sWbPYvn17ZO4HH3yQ8tekSB6tnlaOKD2Cckc5FoNFJSEpFClgUGMqpfxYCPF74FtCiKeBf3NYAel1eteY/hy4Ak3MYXX4fL8Q4ttoRvlNIcR9QCFwA9AM/LDPLf8jhKgD1qOFiKvRallnAHdLKdcM76WmlksuuQSXy8Udd9zBd77zHUpKSjj33HP5xS9+QVlZWUrv/Z///Icbb7yRH/7wh/T09LBkyRJ+/etfc+SRR/aa9/jjj3PrrbfyyCOPsHLlSubNm8dTTz3Fo48+2suYGo1GXnjhBb7zne/w0EMP0d3dzbx583jooYf48MMPlTEdRUgpI2FegzBQnV+tak0VihQgEkloEUIY0TzTq4EpQAuacewlxCCEeJCwMZV91IqEEOcAtwJHomX2vgLcLKXc1WfezcDngRqgGOgGNgD3SikfTfSFLVy4UK5bFz8CvWXLlpiZrIrUot739NHt72bJ35dw47E38l/z/ouvrfwaHd4OHjvnsUwvLavp8HawrnEdp006LdNLUWQRQoj1UsqFsY4lpM0rpQyiafLePsi8K4ErBzj2PDCoUL2U8pfALxNZl0KhiE+rpxWAEptWWjU+fzybD23O5JJGBc/XPs8v1vyCfy//NxMLJmZ6OYpRgGrBplDkMLpgQ6mtFNCMabu3nW5/dyaXlfUc6tHSNjYd2pThlShGC8qYKhQ5TLu3HYBiazFApNZUJSHFR9czVl68IlGUMVUocphYYV7Qak0VA9Ph7QCUMVUkjjKmCkUO0y/MW6A800TQPfoth7YkrDqmGNsoY6pQ5DBt3jbMBjMOk6bKVWItwW6yK2M6CLox7fR1qlIiRUIoY6pQ5DBtnjZKbCWRrkJCCMbnj1fGdBA6PB3MKtG6KalQryIRlDFVKHKYNk9bJMSrU51frSQF4yClpM3bxqJxizAZTMqYKhJCGVOFIodp87ZFMnl1dM9U7QXGpifQgz/kp9xRzoziGcqYKhJCGVOFIofRw7zRjM8fT5e/i06favAei+hyojllc9h8aLP64qEYFGVMFYocJlaYV9Waxkc3pkXWIuaUzaHT16neK8WgKGOqUOQo/qCfLn9XzDAvKGM6EH09U1BJSIrBUcZUochRdBWffp5pgRJuiIcu2FBsLWZGyQxMQiUhKQZHGdMxRCgU4o477uCII47AZrMxceJEbrrpJrq7E9NpfeKJJ/iv//ovjjrqKMxmM0II9uzZk9pFK4aNLtjQd8+00FJIgblAeaYDoL9vxdZirEYrNSU1ypgqBkUZ0zHEDTfcwI033sicOXO4++67ueiii7jrrrs499xzCYVCg57/hz/8gcceewy73c706dPTsGLFSNA90xJrSb9j4wtUrelA6J5pkbUIQEtCalVJSIr4JNSCTTH62bRpE3fffTfLly/nqaeeioxPnTqV6667jscee4zLLrss7jX++te/Ul1djclk4lvf+hbbtm1L9bIVI2AgzxS0fdPdHbvTvaRRQbu3nQJzASaD9vE4p3QOT+94mrruush+s0LRF+WZjhEeffRRpJRcf/31vcavuuoqHA4HDz/88KDXmDRpEiaT+v41Wugrch+NLtygvK3+tHvbI14pwFznXEAlISnio4zpGGHt2rUYDAYWL17ca9xms7FgwQLWrl2boZUpUkW7tx2BoMhS1O/Y+PzxeIIeDnkOZWBl2U2Ht6NXBrRKQlIkgjKmY4S6ujqcTidWq7XfsfHjx9PS0oLP58vAyhSpos3TRpG1CKPB2O+YKo8ZmDZvG0W2w19AVBKSIhFUzG4A/ve5TWyuyy6FmDnVhfzw3LnDOtftdsc0pKB5p/oci8Uy7PUpsotWT2vMEC8cNqZ1XXUcVX5UOpeV9XR4O5hWNK3X2JyyOby671WklJGmAQpFNMozHSM4HA68Xm/MYx6PJzJHkTu0e9tjZvKC8kzj0e5t7yd0Mad0Du3eduq76zOzKEXWozzTARiuB5itVFdXs3nzZrxebz8P9eDBgzidTuWV5hhtnjYmF06OecxhdlBiLVHGtA/+oJ9uf3evBCSglxJSdX51JpamyHKUZzpGWLRoEaFQiDVr1vQa93g8bNy4kYULF2ZoZYpUES/MC+HuMUoFqRcdvsPqR9HMLJ2pkpAUcVHGdIywYsUKhBDceeedvcbvu+8+3G43l19+eWSsvr6erVu34na707xKRbIIyRAd3o4Bw7yghBti0e5pB/obU6vRyvTi6cqYKgZEhXnHCPPnz+eaa67hnnvuYfny5Zx99tls2bKFu+66i5NPPrmXYMMtt9zCQw89xGuvvcayZcsi42+88QZvvPEGAOvWrQPgnnvuobi4GIBbb701ba9HER+Xz0VQBuN6ptX51byy7xVCMoRBqO/VcFg1qthW3O/YnLI5rN6/WiUhKWKijOkY4s4772TKlCnce++9vPDCCzidTq699lp+9KMfYTAM/mH66quv8r//+7+9xm6//fbIv5UxzR7iCTboTMifQCAUoMndxLi8celaWlYTLXLflzllc3hm5zM0dDdQlV+V5pUpsh31dXQMYTQauemmm9i2bRter5eDBw/y29/+lvz8/F7zHnzwQaSUvbxSgNtuuw0p5YAPRfagSwmWWksHnKMyevsT3X6tL6odmyIeypgqFDlIvHCljp6VWtdVl44ljQqiG4P3ZWbJTIzCyKZDm9K8KsVoQBlThSIHiXimtoE9U92YHug6kJY1jQY6vB1YjVbsJnu/YzaTTUtCalWeqaI/ypgqFDlIdE/OgbAarVTYK1R5TBS6BONAzCmbw+YW1Y6tL/6Qn++9/j02Nm3M9FIyhjKmCkUO0uZtw26yYzPZ4s6rzq+mrluFeXUGKyeaUzaHNm8bDd0NaVxV9tPY3ciLe17k5jdupsvXlenlZARlTBWKHKTN0xY3xKszvkAJN0QTS0owGpWEFBuXzwVAXXcdv1n3mwyvJjMoY6pQ5CBtnra4HpZOdV41De4G/CF/GlaV/fTtZdqXWSWzVBJSDHRjenTF0Ty14yneOPBGhleUfpQxVShykDZvW9xMXp0JBRMIyRCN3Y2pX9QooG8v077YTDamFU9TSUh90I3pdxZ+h5riGm5757ZIze5YQRlThSIHSTjMq2pNI4RkiA5fR1zPFLQOMlsObVFJSFF0+rR2lU67k5+d+DPaPG387P2fZXhV6UUZU4UiB0k4zKtqTSO4fC5CMhRXNQq0fdNWTyuNbuXN6+jGtMBSwOyy2Vx91NX8e/e/eXnPyxleWfpQxlShyDF6Aj14gp6Ewrzj8sZhEAZVa0p89aNo9CQktW96GJfPhUCQZ84D4Kvzv8qcsjn85L2fcKjnUIZXlx6UMVUocoxEBBt0zAYz4xzjVJiX+OpH0cwqnYVBGFRGbxQun4t8S36kYYLZYOanJ/yUbn83P3r3R2MiJK6MqUKRY+jGNJEwL4RrTVWYN67IfTR2k51pRdOUMY3C5XNRaCnsNVZTUsO1R1/Lq/tf5fna5zO0svShjKlCkWPouryD7f3pqCbhGomGeSGshHRIKSHpuHwuCiwF/ca/OOeLHF1xND9//+c5L3ShjOkYIhQKcccdd3DEEUdgs9mYOHEiN910E93d3YOe6/f7+frXv86xxx6L0+nEarUydepUVqxYwYYNG9KwekWiRDzTRI1pwXiaeprwBr2pXFbWo79vg4V5QSUh9aXT1xnTmBoNRn5ywk8IyAC3vXNbTn/5UMZ0DHHDDTdw4403MmfOHO6++24uuugi7rrrLs4991xCoVDcc30+H+vWreOEE07g1ltv5Q9/+ANf+tKXePfddznuuON49dVX0/QqFIORSC/TaPTymPqu+pStaTTQ4e3AKIwxjUJf5pbNBZQSko7L76LAHPt9m1Q4iRuPvZG3697mHzv+keaVpQ/VHHyMsGnTJu6++26WL1/OU089FRmfOnUq1113HY899hiXXXbZgOfn5eWxbt26fuNf//rXmTRpEr/5zW849dRTU7J2xdBo97ZjEqYBP9z6El1rOqVoSgpXlt3o6kd6Ek08opOQTp2kfu8HCvPqXDzrYl7Z9wq/XvtrllQtYWLBxDSuLj0oz3SM8OijjyKl5Prrr+81ftVVV+FwOHj44YeHdd2KigpsNhttbW1JWKUiGbR5NPUjIURC85Vwg8ZgUoLRqCSk3rh8LgqthQMeNwgDPzr+RxiFkf/39v8jJONHwkYjypiOEdauXYvBYGDx4sW9xm02GwsWLGDt2rUJXScYDNLS0kJDQwNr167lsssuo6uri7PPPjsVy1YMg1ZPa8IhXoByezkmg2nMG9PBpAT7opKQNAKhAN3+7kHD41X5Vdy8+GbWN67nkS2PpGl16SMhYyqEMAghbhBCbBVCeIQQ+4UQtwsh8hK9kRDibCHEO0KIbiFEqxDiSSHE1ATOO1II4RdCSCHEhYneT9Gburq6SOJQX8aPH09LSws+n2/Q62zZsoXy8nKqqqpYvHgxL730Erfccgu33HJLKpatGAbt3vaEy2JASxKpzqse88Z0KJ4paMb0kOcQTe6mFK4q+9FbrvUtjYnFedPPY9mEZfzug99R21Gb6qWllUT3TO8ArgOeAW4HZod/PloIcbqU8X12IcRy4B/Ah8B3gSLgeuBtIcRCKWXMIjchhAG4D/AA+QmuNTm8+N/Q8HFabzko4+bDZ34xrFPdbndMQwqad6rPsVgsca8zdepUVq5cic/nY+fOnTz88MN0dHTg9XoxmdQWfDbQ5mljVumsIZ2jak2h3dMeUTdKhOh2bJV5lalaVtaji9wnkrglhOCHx/+Qz//z89z61q389TN/xWTIjc+NQT1TIcRc4FrgaSnlcinlfVLKG4EbgVOASwY53wzcDewHlkop/yCl/DlwJlAJ3Bbn9GuBucCvE3gtijg4HA683tilDx6PJzJnMPLy8jj99NM5++yzue6663j11VdZuXIly5cvT+p6FcOn1dM6JM8UwrWmY9gzlVIO2aOfVRJOQhrjHWQ6/WFd3gQT3px2J7cedysft3zMA588kMqlpZVEvhJcCgjgzj7j9wG/AL4A/D3O+ScD1cAPpJSRFuxSyo1CiNXACiHENVLKXg0VhRATgZ+gGduWBNaZXIbpAWYr1dXVbN68Ga/X289DPXjwIE6nc1CvNBb5+fksX76cX/7yl+zatYvp06cna8mKYRAIBej0dQ5pzxS0VmytnlbcfjcO8+BfqnKNnkAPvpBvSGFeh9nB1MKpYz4JaSieqc5ZU89i1b5V/OHDP3DBzAsSkr7MdhLZM10EhIA10YNSSg+wMXx8sPMB3o1x7D2gEJgZ49gfgFr6G3HFMFi0aBGhUIg1a3r9N+LxeNi4cSMLFy4c9rV7enoAaG1tHdEaFSNHV/EZqjGtzhvb3WMSlRLsi56ENJYZjjEF+HzN5wmEAuzt3JuKZaWdRIxpNdAipYwVIzwIOIUQ8Vya6qi5sc4HGB89KIRYAXwW+LqUMpDAGvXzrhZCrBNCrGtubk70tDHBihUrEEJw55139hq/7777cLvdXH755ZGx+vp6tm7ditvtjow1NzfHFHZoaGjgySefJD8/n7lz56Zs/YrEGKr6kc74grFdHjMUKcFo5pTNoaWnZUwnIenGNJEEpGiq8qqA3BELSSTM6wAG0hnzRM0ZKBVUjxnFuoanzxyEEMVo3uh9UspY3uyASCnvBe4FWLhw4djOV+/D/Pnzueaaa7jnnntYvnw5Z599Nlu2bOGuu+7i5JNP7iXYcMstt/DQQw/x2muvsWzZMgAeeeQR7rzzTs4//3ymTp2KxWJh+/btPPTQQ7S1tfHnP/85oT1XRWqJdIyxDi1spteajtVWbLqe8VDCvNA7CanCUZH0dY0GIsY0Tp1pLHRjWtedG9GQRIypGxjot8QWNSfe+QCxUkljnf8bNI/5vxNYm2II3HnnnUyZMoV7772XF154AafTybXXXsuPfvQjDIb4QYqlS5eydu1annvuORoaGvD5fFRWVnL66afz7W9/m+OPPz5Nr0IRD90oJNLLNJoyWxk2o23Mh3mH6tEfUXoEAsHmQ5tZNnFZClaW/XR4OzAIAw7T0L5MO8wOiqxFOSOAn4gxrQPmCCGsMUK949FCwPEKFOui5m6JcT6Ew71CiGOALwM/BMqEEGXh47oxHyeEqAH2DxB2VsTBaDRy0003cdNNN8Wd9+CDD/Lggw/2Gjv22GN55JHcK7TONYbSyzQaIQTV+WO31jTRXqZ9cZgdTC0a20lIupRgoopb0VTlVVHfnRth3kT2TNeG5/WSzhFC2IAFQH/B1v7nA3wqxrElQCewPfzzJLTM4R8BO6Ievwwfvzv88/wE1q1QjDmG0vmkL2O5PGa4xhRUElI8kfvBGJc3LmeiIYkY08cBiSayEM1VaHudEXdFCFElhDhCCBHt778O1ANfFULkR809ClgGPBlVFrMGuCjG4/fh47eHf96VwLoVijFHm7eNAksBZoN5yOeOZc+0w9tBvjl/WO/bnLI5NPc00+wem0mPg4ncx6M6r3rshHmllB8LIX4PfEsI8TTwbw4rIL1O7xrTnwNXoIk5rA6f7xdCfBvNKL8phLgPrRzmBqAZLaSr36sOTSmpF1FG+D0pZe728FEoRkibp23YNXsT8ifg8rno9HUOOTNztDNUKcFoopOQTnacnMxljQpcPtewf1+q8qro8neNyCBnC4kK3V8PfAdNjej3aKpHdwPnDCYlCCClfBL4HFpG72+Am4E3gROklGPzq7BCkQLaPG1DVj/Sqc7XqtgOusben2S7p33IZTE6s0tnR5KQxiIjMYTj8scBuVHfnJAxlVIGpZS3SylnSSmtUsrxUsoboxWNwvOulFIKKeXqGNd4Xkq5RErpkFKWSCkvlFImFK6VUj4Yvq7yShWKOLR524acyauj15rmwgfbUGn3tg/7fXOYHUwpmjJmjWmnr3NEYV4gJ0K9qgWbQpFDjDTMC2Oz1rTdO3zPFMZ2EtJIw7xATmT0KmOqUOQIUkravMMP8xZaCskz541Jz3SovUz7Mqd0Dk09TbT0pF9GPJP4Q356Aj3D9kzL7GWYDeacEG5QxlShyBG6/F0EQoEhCw/oCCHGZHmMP+Sny9817AQk6J2ENJYYri6vjkEYGJc3joYuFeZVKBRZwnB1eaMZi8Z0uCL30cwu05KQNh3alKRVjQ5Gakwhd4QblDFVKHKEVo/WtWe4YV44bEylHDvS1u2edmBk71ueOW9MJiENV+Q+mnF541SYV6FQZA/Dbb8Wzfj88fQEeiIav2OBkagfRTO9aHrOtBNLlE5fuDH4CDzT6vxqmt3N+EP+wSdnMcqYKhQ5QrLCvDC2ak2TEeYFcNqdHOo5lIQVjR6SFeaVyFHfxk4ZU4UiR0hGmDci3NA9dozpcHuZ9sVpd9Lp68QXjNf3I7dIhjEdl5cbwg3KmI4hQqEQd9xxB0cccQQ2m42JEydy00030d3dndD5y5YtQwgR87Fu3WD9DhSppt3bjtVoxW6yD/saEwq0WtOx5JkOt5dpX8rsWpOrseSdJmPPNFeEGxJpwabIEW644Qbuuusuzj//fG666aZIc/ANGzawatWqQXuaAjidTu64445+49OmTUvFkhVDoNXTSomtZFitsHTyzHkUW4vHVEZvh7cDi8Eyoi8hoHmmAIc8h6jKr0rG0rIel8+FSZhG9N7pnuloz+hVxnSMsGnTJu6++26WL1/OU089FRmfOnUq1113HY899hiXXXbZoNfJy8vjC1/4QiqXqhgmI9HljaY6v3rUh9yGgi4lOJIvIXDYmI4l4QZdSnAk753NZKPUVjrqf+dUmHeM8OijjyKl5Prrr+81ftVVV+FwOHj44YcTvlYoFKKzs3NMlU+MBtq97SNKPtIZa7WmI5US1CmzaWHesWhMR0pVXtWoD/MqYzpGWLt2LQaDgcWLe/V4x2azsWDBAtauXTvAmb05ePAg+fn5FBUVkZ+fz/Lly9m6dWsqlqwYInqYd6SMzx9PXVcdocEbQuUEI5US1Bmre6bJMqYqzKsYFdTV1eF0OrFarf2OjR8/nnfeeQefz4fFYhnwGlOnTuWEE07gyCOPxGg08v7773PPPffwyiuv8NZbbzF//vxUvgTFICQrzDs+fzy+kI+WnhYqHBVJWFl20+5tp6a4ZsTXsRgtFFoKx5RnmixjOi5vHG/XvY2UcsTh9kyhjOkA/HLNL9naml0e1xGlR3Dz4puHda7b7Y5pSEHzTvU58YzpAw880OvnCy+8kM997nMsW7aMG2+8kZUrVw5rbYqR4w16cQfcSfNMAQ52HRwbxnQEvUz7UmYv45BnbHmmyfgdqc6vpifQo0UJhtkKL9OoMO8YweFw4PV6Yx7zeDyROUNl6dKlnHTSSbz22mv09PSMaI2K4ZMMwQadaGOa64RkiA5fcsK8oCUhjTXPdCRlMTq50IpNeaYDMFwPMFuprq5m8+bNeL3efh7qwYMHcTqdcb3SeEyZMoXVq1fT1taG3T6y8gLF8NCNaal1eL1Mo4kIN4yBWlOXz0VIhpJnTG3OMSV2n8w9U4C67jpml80e8fUygfJMxwiLFi0iFAqxZs2aXuMej4eNGzeycOHCYV97x44dmEwmSktH/kGuGB66MU1GiMxmsuG0O8eEZxqREkxSaLHMXjZmPFNf0Icn6EmOZxquyx3NGb3KmI4RVqxYgRCCO++8s9f4fffdh9vt5vLLL4+M1dfXs3XrVtxud2Sso6ODYDDY77ovvPACb7/9Np/+9Kcje6+K9KOr+CQjzAtjp9Y0WVKCOmX2MtwBN26/e/DJo5xkiNzrlFhLsBlt1HepMK8iy5k/fz7XXHMN99xzD8uXL+fss8+OKCCdfPLJvQQbbrnlFh566CFee+01li1bBsBrr73GjTfeyLnnnsu0adMwmUysWbOGhx9+GKfT2c9IK9JLMsO8oO2bftT8UVKulc0kq2OMTrQKksM89ByE0UQydHl1hBCjvhWbMqZjiDvvvJMpU6Zw77338sILL+B0Orn22mv50Y9+NKiU4KxZszj22GN5/vnnaWxsxO/3M2HCBL7+9a/z/e9/n/Hjx6fpVShi0eppxSAMFFpHHnIDmJA/gZf3vEwgFMBkyN2PiWR7phFj2nOIiQUTk3LNbCWZxhRGv3BD7v6VKPphNBq56aabuOmmm+LOe/DBB3nwwQd7jc2ePZsnn3wyhatTjARdxccgkrNzU51fTVAGaXI3RRKSchG9MXjSwrxjSAUpGSL30VTlV/HGgTeScq1MoPZMFYocIFmCDTpjpTym3duOQRiS5l2NJX3eVHimLT0teIOxS/iyHWVMFYocoNXTmtRi9wn5Wiu2A64DSbtmNtLh7aDIUpQ0j77EVoJAjAnhhmQmIMHh8pjG7sakXC/dKGOqUOQA7d52Sm3JK03S22KN5j2sRGj3tict+QjAZDBRYitRnukwGO3CDcqYKhQ5QLLDvGajmWJrcc57WMnqGBPNWKk1dflcmA1mbMbklMTptaajtSRLGVOFYpQTDAUjPTmTyViQxkuFMXXanLT2tCb1mtmIrn6ULGH6SkclAjFqoyHKmCoUo5xOXycSmdQwL4wND0t9CRk+nb7OpGXygtZ1x2l3qjCvQqHIDBGR+ySGeUEr88j13pzJ6mUajf4lREqZ1OtmG8nS5Y2mKr9q1Ao3KGOqUIxyWj1aSDEVHtYhz6GcNQo9gR68QW9SE5BAe998IR9d/q6kXjfbSIkxHcXCDcqYKhSjHF3FJ9lhXqfdSU+gB3cgN3Vmky3YoFNmHxvCDZ2+zpQY0/qu+lH5BU4ZU4VilKN7pskO8+a6AEGypQR1cv1900mVZ+oL+UZlFrkypgrFKCeZjcGjyXUPK1XGVJcUzPX95lQZUxid9c3KmCoUo5x2bzt55jwsxuE1dx+IXPewIr1MU+SZjkbvKlG8QS++kC+p2bxwuNZ0NGb0KmOqUIxyWj2tSQ/xQu6Ltkc80yQnbhVZizAJU86+b5B8kXudiArSKOxrqozpGCIUCnHHHXdwxBFHYLPZmDhxIjfddBPd3d2Dnrt69WqEEHEfb7/9dhpehaIvbZ62pCcfgeaxGYUxZ8OVkV6mluRm8xqEgVJbaU4b005vcnV5dQothThMjlHpmaoWbGOIG264gbvuuovzzz+fm266KdIcfMOGDaxatSpuT9PZs2fzt7/9rd+41+vl6quvxul0snjx4lQuXzEA7d52yh3lSb+u0WCk1Faas+FKPTxuNpqTfu0ye27X6CZb5F5HCKFl9CpjqshWNm3axN13383y5ct56qmnIuNTp07luuuu47HHHuOyyy4b8PzKykq+8IUv9Bt/9NFHCYVCfOlLX8JsTv6HkmJwWj2tzCyZmZJr57KaTyqkBHVy+X2D5IvcR1OVPzqNqQrzjhEeffRRpJRcf/31vcavuuoqHA4HDz/88LCu++c//xmAr371qyNdomIYSClTFuaF3JYUTLUxzWXPNKXGNFxrOtpQxnSMsHbtWgwGQ79QrM1mY8GCBaxdu3bI19y9ezevvfYaJ554IrNmzUrWUhVDoCfQgy/kS3oSjU4ue1gdnuRLCeqU2cto9bQSkqGUXD/TpCoBCTRj2uZtoyfQk/RrpxJlTMcIdXV1OJ1OrFZrv2Pjx4+npaUFn883pGvef//9SCmVV5pBUiXYoOO0ax1QctEoJLuXaTROu5OADETKb3INlz+1YV4YfbWmas90ABp+9jO8W7Zmehm9sM4+gnHf//6wznW73TENKWjeqT7HYkmsVjEYDPLggw9SWFjIRRddNKw1KUaOLtiQsjCvrYyADNDp7UyZ95spUhnmjRa8SLaYRjbQ6evEYrBgNcb+TBkJ0eUxU4umJv36qUJ5pmMEh8OB1+uNeczj8UTmJMpLL73EgQMHuPTSS4d0niK5tHk1Y5rKMC/kXq2pP+Sny9+VOmOa4zW6Lp+LQmvyQ7wQZUxHWRKS8kwHYLgeYLZSXV3N5s2b8Xq9/TzUgwcP4nQ6E/ZKAf7yl78AKvEo00Q8U2vqEpAAWjwt1FCTkntkgoj6UYq/hORqWVGnN/ki9zoVjgoMwjDqjGlCnqkQwiCEuEEIsVUI4RFC7BdC3C6EyEv0RkKIs4UQ7wghuoUQrUKIJ4UQ/Xx4IcRnhRD/EkLsEUK4hRBtQogPhBDXCyFsQ3lxisMsWrSIUCjEmjVreo17PB42btzIwoULE75WU1MTzz33HEceeeSQzlMkn1Tp8urkqmeaKilBnYgxzdGM3lTo8uqYDCYqHBW5aUyBO4DfApuBa4EngeuA54QQg15DCLEceB6wA98Ffg2cBLwthKjuM30+EAT+Er7HD4Cd4TU8J4QQCa5ZEcWKFSsQQnDnnXf2Gr/vvvtwu91cfvnlkbH6+nq2bt2K2x279dZf//pX/H6/8kqzgFZvKyaDiTxzwt9rh0SuGoWI+lGKEpDyzflYDJac+xKik0pjCoxK4YZBw7xCiLloBvRpKeUFUeO7gbuAS4C/xznfDNwN7AeWSim7wuMvAuuB24Cr9flSyl/EuMzdQojfA98EFgFrYsxRxGH+/Plcc8013HPPPSxfvpyzzz47ooB08skn9xJsuOWWW3jooYd47bXXWLZsWb9r3X///dhstpgiDor00u5pp9RaSqq+Y+ab87EarTlnFFLVMUZHCJHTtaYuv4uJBRNTdv2qvCo+av4oZddPBYl4ppcCArizz/h9gBsY7BP1ZKAa+LNuSAGklBuB1cCKsMEdjL3h59xLjUsTd955J7/5zW/YtGkT11xzDY899hjXXnstzz//fFwpwWjeeecdtmzZwvLlyykpUf8VmabN05bSbFEhBGW23JPGS1Vj8GhyuUY3HZ5pg7thVJVkJZKAtAgI0ccblFJ6hBAbw8cHOx/g3RjH3gNOBWYCm6IPCCEKACtQCJwA3AwcAt5PYM2KGBiNRm666SZuuummuPMefPBBHnzwwZjHjj/+eKSUKVidYji0eltTXrKSi0Yh1Z4paMlbB7oOpOz6mUJKSacvdQlIoBnTQChAS08LFY6KlN0nmSTijlQDLVLKWHUVBwGnECJeGmh11NxY5wOMj3HsAaAZ2AX8FdgBnCmlbB/oRkKIq4UQ64QQ65qbm+MsSaHIDfQwbyops5fR4sktY9rh7cBisGA32VN2j1wVu/cEPQRCgdQa01HY1zQRY+oAYhcogidqTrzzGeAa8c7/X+DTwGVoIWWAsjj3QUp5r5RyoZRyYXl58rtoKBTZRqrDvJCbOrO6YEMq8xmddidtnjYCoUDK7pEJIlKCKaozhdHZ1zQRY+pGC7fGwhY1J975DHCNAc+XUn4spVwlpXxUSnk1mqf6ohDihATWrFDkPP6gH5fflZYwb5unDX/In9L7pJN2bztFttRk8uo4bU4kMlK+lCukUuReZzQKNyRiTOvQQrmxjOF4tBBwPFHXuqi5sc6H2CHgvujNNL+ewFyFIufR9/1SHeZ12nPPKKRSSlAnWlIwl9B7mRaaU+eZ5lvyKbAU5JwxXRue16vdSFhAYQGwLoHzAT4V49gSoBPYnsA6rOF1pPaTQ6EYJURE7lMc5s1Fabx0GNNcVUFKh2cKo68VWyLG9HFAAtf3Gb8Kba/zEX1ACFElhDhCCBG9B/o6UA98VQiRHzX3KGAZ8KSU0h81Pm6AdVwXfn4vgTUrFDmPrsubcmMa9rByad+0w9uRMsEGnVz3TNNiTEeRZzpoaYyU8uOwYMK3hBBPA/8GZqMZt9fpLdjwc+AK4BS0GlKklH4hxLfRjPKbQoj70MpdbkDL1v1hn1t+IoR4C/iAcLYwWiLSacDH9K93HRFSypQmISh6o8pqkodeK5mq9ms6uSYpKKWkw9uR8vctFz16SK9nuqFpQ0rvkUwSFbq/HtiDplT0WaAFTdXoB1IOXlUrpXxSCNED3Ar8Bi2z9xXgZill3/3Su4AzgGvQQro9wDbg+8BdUsruBNc8KEajEb/fPySBd8XI8Pv9GI3GTC8jJ0hbmFf3THMkXOnyuwjKYMo9U4fZgcPkyCmPHtJoTPOr6PR10u3vTplcZjJJyJhKKYPA7eFHvHlXAlcOcOx5NH3ewe71I+BHiaxrpBQUFNDZ2YnT6UzH7RRAZ2cnBQWp/SMcK+hh3lQbBbvJTr45P2c8rA5PakXuo8nFsiKXz4XNaMNiTK0TEl0eU1OS/R2LxnQ/09LSUtra2mhpacHn86kQZIqQUuLz+WhpaaGtrY3SUpVDlgzaPG0UWYswGVLfSTGXVJAiPWDTZExzTfDC5XNRaEldJq/OaCuPGdP9TK1WK5MmTaK1tZU9e/YQDAYzvaScxWg0UlBQwKRJk/r1U1UMjzZPW8r3/XTK7GU5Y0xT3TEmmjJ7GTvbd6b8Pukk1VKCOsqYjjKsVitVVVVUVVVleikKxZBo86Ze/UinzFbG9rZEKtiyH72XaTreuzJbGe/35JaceLqMqdPuxCRMo8aYjukwr0IxmkmnZ5pLe3/pELnXcdqddPo68QXj6dqMLlLdMUbHaDBSmVepjKlCoUgt6dDl1XHanbj8LjwBz+CTs5x2bzsGYUibdwW5VaObLmMKo0u4QRlThWIUEpIh2r3taTWmkBvlMe2edgothRhE6j/+cq2sCDJgTJVnqlAoUoXLp9VKpjMBCXJDgCAdUoI6uSh4ka5sXtBqTZvcTaOi844ypgrFKEQXnU+3Z5oLRiEdUoI6ufS+AfQEegjKYFo906AM0uzO/v7UypgqFKOQdOny6ujSeLmw99fubU+bR19q02qqc+F9g6iOMenyTEdReYwypooBkVLS9fbbSswiC0m3Z1pqzx2j0O5tT5tnajFaKLQU5oxnmi4pQZ2qfGVMFTmA+7332P+Vr+J+P7fq5HIB3ZimupepjtlgpsRakhNGocPbkbY9UwiXFeVIAlK6jek4h9ZETBlTxajGs20bAL59+zK8EkVfIpJ4tuK03TMXVJB6Aj14gh71vg2TdId5HWYHxdbiUVEeo4ypYkB8u3YB4K+ry/BKFH1p9bRiN9mxm+xpu2cu6Mzq6kfpCvMCOG25I3iRbs8URk95jDKmigHx7lTGNFtp96QviUYnF1SQdPWjdL53ueiZKmPaH2VMFTGRUuINe6aBuuz/RR5rtHpb05Z8pFNm04zCaE5IS6fIvY7T7sQdcOP2u9N2z1She6b5lvy03bMqv4q6rrqs/71TxlQRk0BzM6HOTjAYlGeahbR52tK67weaUfAGvXT7u9N632SSTl1enVxSQXL5XNhNdswGc9ruWZVXhTvgxuV3pe2ew0EZU0VM9P1S+/z5+BsbkYHsVyAZS7R72tOWyauTCypI7Z52IL3GNJf0edMpJagT3SQ8m1HGVBETfb8076SlEAwSaM5+BZKxRDrbr+nkgppPJjzTXHjfdNIpJagzWoQblDFVxMS7ayeGwkLsRx4JqCSkbKIn0ENPoCdzxnQUZ/R2eDtwmByYjekLU+aSelRGjOkoEW5QxlQRE9/OXVinT8dcXQ0oY5pN6KHKTGTzwug2CunstKNTYitBIEb1lxCddDUGj6bUVorFYFFhXsXoxFtbi7VmOuYq7VuhX2X0Zg2t3lYgfVKCOkXWIkzCNKrDlemUEtQxGUyU2HJDPSoTxtQgDFTlZ395jCnTC1BkH4HWVoKtrVimT8fgcGAsKVGeaRaRbl1eHYMwUGorHd2eqSc17deaOj089O4etjd2YTcbtYfFiC38bxEqZOPB/Ty5bj92izEyx2YxYjMZsZkN2MxGrCbt2WY2YjSIpK9zpMRLQOrxBen0+On2BnD7grh9Qbp9Adxe7bmnz89ub5CglEwqdTCtPI+pzjymOfOxW4z9rj0ub5wyporRh57Ja51eA4C5qgp/vTKm2ULEmKY5zAujX4Cg3dvOxMKJSbtebXMX971Zy1PrDxIIhaipyMcXCNHjD9LjC+Lxh/AFQ9gnmmky1vHddR8lfG2zUWANG9ro53yrianOPGaOK2BWZQEzx+VTnm9FiNQa35AM0eXvwm7M55ODHWxrcLG9ycX2BhfbG7s42N6T0HUMAvKsJhwWIwJBQ6en1/HqIhtTyzXDqhvZQlM5te1rUvGykoYypop+6GIN1prpAJjHV+PdvTuTS1JEkSnPFMKSgqPYmCZL5H7Dvjb+9HotL21uwGw0cNHCCVy1dBpTnHn95gaCIW556002NH3AAxefEjG0hw1uEG8ghMev/dsTCOH1h/AEwj/7Q3gDQW3MH8TlCbBySyOPr9sfuUeJw8zMygJmjSs4/FxRQJFj+IlWvkCI3S3dbGt0saPRxab6JkKE+L/XDvK7Q28BYDEamFaex7GTS7hk0URK8y3kWTRDqRvMPKsJu/nwz1aToZfh7/EF2XOom9rmbmqbu9jd0s2ulm6e3XgQl0crybM4PViczXz6jlc4aoKT31x01LBfV6pQxlTRD+/OXRgcDkzjtI4Npqoqut5+Byllyr/9KgbnYNdBHCZH2rMqQTOm21q3pf2+ySAQCuDyu4ZtTKWUrN7WzB9f38X7u1sptJm4ZlkNVxw/hfIC64DnmYwGqvIqeNVziAkl9qT9DbV0edne4GJbo4vtjS62Nbh4+oODdHkP14SPK7Qxc1wB44ttBIISf1DzlH0B7d/6wxcI4QvKXj83u7wEQprqkNEgmFjugVI4bcZkzj3rGGZW5jO5LA+zcWSpN3aLkdlVhcyu6v37LKXkULeP2uZuntnZwPN1qxhX6sPjD47ofqlCGVNFP7y7dmKpqYn80Zurq5FuN6GODozFxZldnIJdHbuYWjQ1I19s9HZiIRnCIEZX/qIucj9UY+oPhnjuwzr+9Hot2xpdVBXZuPWzs7lk8STyrYl9hJbZy/CFfHT5u5KWwOPMt+KssXJ8jTMyJqWkvsOjGdgoQ7u5rhOLUWA2GTAbDViMBswmgzZmNOCwmLRxk8BiNGAyGqgosEY83Wnleezp3MmFz8EFR8/k9MlVSXkN8RBCaK8x30rINpfn6+C6M50sGndMyu89HJQxVfTDt3MXeSeeGPk5ujxGGdPMs7t9N8dVHZeRe5fZywjKIO3edkpt6VVgGilDNabd3gCPrd3PX96spa7Dw8zKfG6/6CjOPaoai2loXySi1aNSmQ0rhKC62E51sZ1TZlUk9dqZ6BijU52nfQZlcxKSMqaKXgQ7Ogg0N2OdPi0yZq46bExtc+ZkamkKtA+0pp4mphVPG3xyCojozPYcGnXGNNIDNo4xDQRDvFfbyouf1PP8R/V09PhZPKWUn5w/j2UzKzAMM8M2WgVpatHUYV0j02SiY4xOZV4lkN2SgsqYKnrh3VULgGX69MiYebxuTLP3F3mssLtDSwTL1Aey03bYKMwomZGRNQyXSMcYW+86U28gyDs7D/HiJ/W8vLmRdrcfu9nIqbMr+PIJUzl28sgTvfT3bTSL3WfSM7UarZTZypRnqhg9eHftBMBaUxMZM5aUIGw2VWuaBdR2aF92phdNH2RmahjNOrPRYV6PP8jqbc3855N6XtnShMsboMBq4rTZFZw1r4qTZ5bHrHccLtEe/WhFN6aZSHwDqM6vVsZUMXrw7dyFsNki+6Sg7cOYq6qUMc0CajtqMRvMTCiYkJH7j2ZJwaZuTTnqx8/u5Y3tH+P2BSl2mPnM/HF8Zl4Vx9eUYTUlz4BGkwvqUboxzTP3L/9JB+PyxrGzfWdG7p0IypgqeuGtrcUybSrC2PtDxVxdjb8+e78VjhV2t+9mcuFkTIbM/OnmmfOwGW2jyihsquvg7ld28nrLhxiLjazd3835R4/nM/OqOG5a6YhLOxLBIAyU2ktH1fvWl05fJ3nmvIz97lXlVfHmgTeztkRPGVNFL7y7duI4dmG/cXN1NZ6tWzOwIkU0tR21zCqdlbH7CyE0FaRRINre0OHhNy9v46kPDlBkN1MzA9oo5vXvn54Rqb4yW9mo9Oh1MtHLNJrq/Go8QU9GmhUkwugqFFOklGBXN4G6eqzT++/HmaurCB46RMjjiXGmIh14g14OdB1gWlFmMnl1sl1SsNsb4Lcrt3PKb1bzr411XL10Gq9/9xSmVgrKHSUZ07wd7epRmWi/Fs24PE1EJlv3TZVnqojg260lt+gygtFEak3r67FOHZ2p/aOdvZ17CclQxo2p0+Zkn2tfRtcQi2BI8uS6/dy+cjvNLi/nHFnFzWcdwcRSB5A8KcHhMprVowBc/sx6ppEm4V31zCnLvhI9ZUwVEbw7NU1eSwzP1BRpxVanjGmG0DN5M1VjquO0O9nQtCGja+jL69ub+dkLW9jW6OLYySX86YvHcsyk3qHAdm97Rr+IOO1OWj2to1I9CjTPVPcOM0G2CzcoY6qI4Nu1E2E2Y5nYv6uGuXo8AAGVhJQxdrfvRiCYUjglo+tw2p20edvwh/yYDcMXUk8G2xpc/PTfW3hjezOTSh384fJj+My8cTETVNq97RTbitO/yDBl9jICMkCHtyMr9/wGo9PbycySmRm7f5G1CLvJroypIvvx7tyFZepUhKn/r4W5sgIMBlUek0FqO2qpzq/GZrJldB16zWRrT2tEmSbdNLk8/Pbl7Tyxbj/5VhO3fnY2X/zU5AFLW6SUGQ/zRksKjkZjmukEJCFEVvc1VcZUEcG7axe2eXNjHhNmM6aKCvwHs8OYbmzayOyy2ViNA3fryDVqO2ozvl8KUcINnpa0GtOGDg8b97ezdk8rj67Zhz8Y4srjp3LdaTUUOyxxz3X5XQRlMLN7pqNYPUrvZZpJYwpaqLeuKzs+g/qijKkCgFBPD/4DByg677wB52RLrWlLTwtfevFLXHXkVVx79LWZXk5aCIaC7OnYw6eqPpXppaRFzcfl8fPxwQ427m/nw/3tfLi/I9JE2mQQfHpOJTefdUTM/qGx6PBo6kdF1qJBZqaOyPs2CiUFu/xdSCQF5swa03F549jWlp1JXMqYKgDw7d4NUsbM5NUxV1fTs3Fj+hY1AAdcB5BInt3xLN846hsZKyJPJwe7DuIL+TKefATJV0HyB0Nsa3BFDOfG/e3sbO5Caq00mVLm4LhppSyYWMxRE4uZU1WIzTw0pSJdlzfT2byQfvWoTYc2sa5hHVfMvWLY18ikLm80lY5KDvUcyor9+r7k/qeQIiG8u7RM3lg1pjrmqio6//MfZDDYTyEpneh7Jk09Tbx18C2WTVw26Dmu1atp+vkvmPDH/xuV2ciRTN4sCPOW2Q7v/fWl2eWlze2js8dPp8dPZ08g/Oyn0xOIOV7f4cEbCGnXzrNw1MRizjmymgWTijlyfBElefFDuImQDcY035yP1WhNe63p41sf55mdz3DhzAuHLQWYaV1enQpHBRJJi7uFqvzU91QdCsqYKoBwWYzRiGXy5AHnmMdXQyBAoKUFc2VmEk+AyJ5JsbWYp3Y8lZAx9WzahG/fPswVye3xmC50Y5oN7btsJhsF5oJeRmFnk4tfvLiNVVsaBzzPbjZSYDNRaDdTaDNRmmdhSlken55j5cgJxSyYWMyEEntKpOKywZgKITKigqR3GtrVvosjy48c1jUixtSaWWOq79E3uhtHpzEVQhiAbwNfA6YAzcATwA+klN0JXuNs4FbgKMALvAJ8T0q5u8+8k4GLgZPC9/IA24F7gMek1IM/imTiq92FZfJkhGVgLyAi3HCwLqPGtL67niJrEctnLOehTQ/R5G6iwhHfSHo2b8EyZQqGvMyIdI+U2vZanHZnRvf8otFVkJpcHu5ctYPH1+7HbjZy3WkzmFVZQKHdRKHNHDGcBTbzkBtqJ5NsMKaQfhUkKWXki9iOth3DNqaZ7GUaTaVD+9xpcDdkdB2xSNQzvQO4DngGuB2YHf75aCHE6VLKULyThRDLgX8AHwLfBYqA64G3hRALpZTR6Vm/BCaE7/UxkAesAP4OnApcleCaFUPAu3NXr7ZrsTDrwg31dcDRaVhVbOq66qjOq2b5jOXc/8n9/HPnP7nqyPi/Fp4tm3EcfUyaVph8dnfszooQr06prYyP6g+w7Ner8QVCfHHJZK49tYay/OzMrm73tiMQGTcGZfYyDnQdSNv92rxtEUM4ko4rnd7sMKb6l+am7qaMriMWgxpTIcRc4FrgaSnlBVHju4G7gEvQDN1A55uBu4H9wFIpZVd4/EVgPXAbcHXUKTcDb0kpg1HX+B3wGvBVIcTvpJSfJPoCFYMT8vnw7dtHwVlnxp0X8UwzXGta313PpIJJTC6czKJxi3hqx1N8Zf5XBlSVCbS1Eairx3Z59kiQ1bX3sH5vGx/sa2NLfSdleVYmlNqZVOpgYomDSaUOqovtWEyGiHfx2WmfzfSyCQRDPLn+ABv3hAgYm1g2q5zvnnkEUxPMqs0UHd4OCq2FGA2Z2+sHzTP9sPnDtN1PD/EahIEd7TuGfZ1sSUAqtBRiN9lpdA+8nZApEvFMLwUEcGef8fuAXwBfII4xBU4GqtFCwl36oJRyoxBiNbBCCHGNlNIfHn+97wWklCEhxD/QQr/zAGVMk4hvzx4IBrFOj++ZGvLyMBYVZdSYSimp66pjSdUSAC6YcQH//eZ/s6ZhTWSsL57NmwGwzZmdtnVG4wuE2FzfqRnPsAGt79DKPGxmA0eMK2RLfScrNzfiCx4O8hgEVBXZqSzx0mXrYn9jAc9uOMjEUgeTyxyU5VnS1opKSsmrW5v4xYtb2dHUxcSaEry27fzh8mPTcv+R0u5tz3iIFzTPtM3TRiAUSEsWum5MF1YuZGfb8D1Tl9+FQJBvzk/W0oaFEIJKR+WoNaaLgBCwJnpQSukRQmwMHx/sfIB3Yxx7Dy10OxPYNMh19G7I2fcujnJ8eiZvnLIYHVN1NYG6zNWadvo6cQfcEdHr0yefTuH7hTy1/akBjal3yxYAbLPTY0ybXV4+2KcZzQ/2tvHRgY5Itur4YjuLppRyzKRijp1cyhFVBZF+mqGQpNHlYd8hN/ta3exv62F/q5ut7esBWPUhvPTuxsh9SvMszKjIZ2ZlATPHFTAz/O9kZL9G89GBdn727y28V9vKVGcef/zCsewP1XHXhlfpCfRgN9mTer9UkC3G1GlzIpG0edood5Sn/H67O3ZjNVpZOn4paxrW0OpppdRWOuTruHwu8s35WaEpXOGooMk9CsO8aF5li5TSG+PYQeB4IYRFSumLc74+N9b5AOOJY0yFENVoyU+1wFsJrFkxBLw7d4HBgGXKlEHnmqur8e/LXMcQPZO3Ol/7tbIarZwz7Rye3P4kbZ62mDJtns2bMVdXYywuTunaOj1+vvrgOtbsaQXAbBTMG1/EF5dM5tjJJRwzuYTKwoGlAA0GQVWRnaoiO8dNK4uM/33LZn6+BlZ/+2K83nz2t/ZQ29LNjkYX2xtdPLPhIF3eQGR+eYGVmZVhIxt+zKjMp9B2uC5PSkkwJAlKSSgEwfDPociYpL3Hzz2v7uRfH9ZRlmfhR+fN5dLFkzAbDTyz43DN5ISCCWQ7Hd6OSPJKJomoR/W0pMWY7uncw5TCKRFN3V3tuygdNzxjmukQr06lo5L1jeszvYx+JGJMHWjZt7HwRM0ZyJg6ws+xruHpM6cfQggHWjJSHnCuHg4eYO7VhPdfJ02aNNA0RR+8u3ZhnjABg21wzVdzVRXu997LWLf7um7NmEanxS+fsZy/b/07z9c+zxfnfLHfOZ7NW7DNTe1+qccf5KqH1rFhfxvfOWMmn5pextzqoiGLC8SitqOWfHM+Ewo1AfeaigJOiToupaS+w8P2sHHd3tjFjkYXj63ZT48/knqA1WQgpBvNBHPibWYD3zqlhq+dPI2CKGMcbRRGgzFt87RlVKRdJ90qSLs7djO3bC41JdoWzo62HSwaN1gwsT+dvs7sMaZ5lTS5m7Ku+04ixtQNDFR3YIuaE+98gFhpfnHPF0LYgGeBhcAVUso34y1USnkvcC/AwoULVQlNgvh27Ywr1hCNubqaUHc3IZcLY2H6a87qu7QQs96OCWBW6SzmO+fz1Pan+MLsL/Qy8sGuLnx79lD4uXNTtqZgSHLD4xt5f3crv7tkAectGJ/U6+uZvAN9eRFCUF1sp7rYzrJZh/9UQyHJwfYetje62NboosPtx2gQGA0CgxB9/k2/MbNRcPLMCsYV9f+SlSk1n+GSaZF7nWix+1TjDXo52HWQc6adQ7m9nEJL4bAzel0+V8ZrTHUqHBUEZIBWT2vk9zAbSMSY1gFzhBDWGKHe8Wgh4IG8Uv18fe6WGOdDjBBwlCE9HfiqlPLhBNaqGCLS78e7Zy/5y5YlND86ozcTxrSuuw67yd7vg/GCGRdw27u38WHzhyyoWBAZ927dCoBtTmo8UyklP/zXJ7z4SQP/75w5STekoHmmJ1SfMOTzDAbBxFIHE0sdnDY7uSHOaM802/EEPHiCnuwwpnHUo5LNvs59hGSIqUVTtYhGcc2IjOmE/OyIQOjh+kZ3Y1YZ00R85LXheYujB8PGbgGwLoHzAWIpdC8BOtFEGaKvbUUL7Z4BXC2lvD+BdSqGgW//fvD7YzYEj4W5+nCT8ExQ31VPVV5VPy/trKlnYTfZeWrHU73GPZvDyUcpMqZ3v7qTh9/bx9dOnsZXTky+OlGnr5OWnpas0OSNpsRWgkDQ4sl+Y6oLNmSD4IXD7CDPnJcWj17P5NX7384omcHOtp0MR/cm28K8AI3d2ZWLmogxfRyQaCIL0VyFttf5iD4ghKgSQhwR3ufUeR2oR6sRzY+aexSwDHgyeh80bEifBc4Evi6l/PMQXo9iiHh3at9UByuL0TnsmWYmo7euuy6mjFieOY+zp57NS3teossXqcDCs3kzRqczJTKCj67Zx29Xbmf5MeP577OOSPr1QVM+guzQ5I3GZDBRYisZFWHejc0bgex5D9MlKagb08mFmkRoTXENLr9rWGUl2ZaABGRdRu+gxlRK+THwe2C5EOJpIcRXhRC3A79FM5TRNaY/RwvlLo46348mRTgReFMI8U0hxH8DL6PJEv6wzy0fAc5Ckxt0CyG+0OcxPD0sRUx8tdqHtXVaYl6VsawMYbFk1DON3i+NZvmM5fQEenhxz4uRMc+WLSmpL315UwP/88zHLJtVzi8vODJlyVjZJHDfF11SMNtZtXcVpbZSjq7InGpXNE67My0e/e7O3VTlVeEwa75NTbH2hXmood5AKEC3vzvjIvc6pbZSTMKUdbWmiaZCXQ98B5iLZlgvQVM1OmcwKUEAKeWTwOfQMnp/g6Zy9CZwgpSy737pwvDz6cDfYjyWJ7hmRQJ4d+7CXF2dsGatEAJzVVVYUjC9uP1u2rxtkbKYvsx3zqemuIantmuh3pDXi3fnTmyzkxviXbunlWsf3cD8CcX84fJjInWiqaC2vRaLwcL4/OTvxY4Up82Z9Z6pJ+DhjQNvcNqk0zKufqRTZk+fZxrdGCFiTIco3tDt1+TXs8UzNQgDFY6KURnmRUoZlFLeLqWcJaW0SinHSylvjFY0Cs+7UkoppJSrY1zjeSnlEimlQ0pZIqW8UEq5K8a8KeFrDPS4bbgvVtEf765dWBIQa4jGPL46I55pQ7cmbq0LNvRFCMGFMy9k06FNbG3dinf7dggGk7pfuq3BxVceXMv4EjsPXLkIhyW1Kja1HbVMLpqcNYYgmnSLtg+Ht+vepifQw+mTT8/0UiKU2VLv0Usp+xnTYlsx5fbyIcsKZovIfTTZKNyQPUU6irQjg0F8tbUJ75fqmKozY0z1GtOBPFOAc6adg8Vg4antTx1OPkpSjenB9h6uuH8NNrORv355MaVJVhqKRW1HLdOLhvZlJ13oxjSbGzmt3LuSImvRsGorU4XT7qTT14kvGK8IYmQ0uhvpCfQwtbD39s1wMnqzRZc3msq87JMUVMZ0DOM/eBDp9SYkIxiNuaqKYHMLIV/qPgxioasfDeSZgpaxefrk03mh9gW6P/kIQ2Eh5vEjD5G2u31ccf8aun0BHvryYiaUDKgzkjQ8AQ91XXVZuV8KWrjSF/Lh8rsyvZSY+II+Xt//OqdMPAWzwTz4CWkiHTW6evJR3/63NSU11LbXEgwFY50Wk2xpDB6Nrs+bTV/klDEdw3h3alF2y7ShfVibqzXjFKhPb0ZvfXc9JmGi3B5fhu2CGRfg8rto/nANttmzR5wc1OML8uUH17Kv1c19X1rI7Kr0fKjs6dyDRDK1OPMNwWMRUfPJ0n3T9+rfo8vfxacnfzrTS+lFxJimUAVpIGM6o3gGnqCHg12x1F1jk42eaYWjgp5AT1Z9kVPGdAzj3aWXxQzdM4X015rWddVRmVc56P7honGLmOKYiKn2wIjF7QPBEN/6+wds2N/OXZcsYEmUZm6qydayGJ1sF25YuXcl+eb8ARsgZIp0qCDt7thNvjm/n6jBjJIZAEPaN81KzzQLa02VMR3D+HbuwlRRMWQlI/P4zNSa1nfXx90v1RFCcKl9KaaAxDV1+GLiUkq+/8zHvLK1iR+fN4+z5g0cXk4FtR21GIQhUnSfbTht2Ssp6A/5eXXfqyybuAyLMfV720MhHV9CdnfujigfRaN/MRtKRm82JiCNc4wDyKp9U2VMxzDeXbuGvF8KYK6sBCEy4pnG2y+NZqlbkz57xbZ72Pf77crtPLHuANedNoMvLJk87OsMl9qOWibkT8g6Y6CTzZ7p2vq1dPo6syqLV0dvgZbqPdO+IV7QFJgm5E8YUhJSp68TgzBE6lWzgQqHJsKSTRm9ypiOUWQohLe2FssQM3kBhMWCqbw8rcbUH/LT3NOckGcKYN65H7/FwKPu1/EHB2w0NCBPrNvP3a/uZMXCidxw+owhn58MdIH7bKXQWojJYMpKY7py30rsJvuwNI1TjcVoodBSmLL3rdvfTZO7KaYxBS0JaUfb0MK82dLLVKfcXo5AqDCvIvME6uuRbveQ90t1zNXV+NOYgNTY3UhIhgZUP+qLd/MWqJnCIV8bqw+sHtK93tnZwvef/pilM5z85Px5GWk1FwgF2NO5J2uTj0Arnk9HzeRQCYaCvLrvVU6acBI20+BtBTOB0+5MWQLSno49AP3KYnRmFM9gb+fehEtzsklKUMdsNFNmL1NhXkXm8eoygsMI80LYmKbRM63v1gx3LF3evshQCM+WLTiPWkyFo6Kf+H08dja5+NrD65lWnsfvU6xuFI8DrgMEQoGs9kwhrOaTpt6cifJB0we0elqzLos3Gqc9depRugTlgJ5pcQ0BqX1ZSwSXz5VVyUc6FY4KZUwVmSdSFjNsz7RK825Dg6pJJgW9xjQRz9S/fz+h7m4cc+dyfs35vHPwncj58Wh2ebnygbVYTUbuv3IRhbbM1SZmsyZvNKk0CsPl5T0vYzPaWDp+aaaXMiCp9Oh3d+zGKIxMLJgY87jeKDzRJKRsNaZ6rWm2oIzpGMW7ayfGsjJMJSXDOt9UXY30+wm0pCfEp6sfjcsbN+hcz+bNAFhnz+b8GecD8OzOZ+Of4w9y1V/X0dLl5S9XLEyLKEM8BvMusoVskxQMyRCv7HuFE8afkFUJM31JZZOAPZ17mFgwEbMx9pfBqYVTMQlTwklI2dR+LZpKR6XaM1VkHt/OXcPeL4XDrdgCaQr11nfVU24vTyiz1bN5M5jNWGfMYHz+eD5V/Sme2fnMgKovoZDkhsc38uGBdu5ccTRHTSxO8uqHzu6O3VTYK7LyQyyaMlsZrZ7WISnqpJIPmz+kuac5q0O8oH0JcQfcuP3upF97d8duphRNGfC42WhmcuHkhGtNs3HPFLRa005fJz2BnkwvBVDGdEwipRx2WYyOuSpca5qmJKSB+pjGwrN5C9YZNRgsmuFdPmM5Dd0NvFP3Tsz5v3xpKy9+0sD/nD2bs+YN7vmmg13tu7I6+UjHaXcSlMFIA+5Ms3LvSswGMydPODnTS4lLqlSQAqEAezv3DhrRqCmpSTjMm82eKWRPeYwypmOQQFMzIZcLy7QRGNOIcEP6PNNE9kullHg2b+6lfHTqxFMpsZbw9I6n+83/+/v7+NPrtXxxyWS+cmJ2GC+940e275dCdtWaSilZtXcVx1cfT74lP9PLiUuqpBjruurwh/wDZvLq1BTXcKDrwKCesT/kpyfQk9XGNFtCvcqYjkF8uozgCDxTY34+hoIC/AdTb0xDMkR9d31CnmmgsZFgW1uvtmtmo5nPTf8cq/evpt3THhl/Y3sz/++fn7BsVjk/PHdORkpgYtHobsQdcGdtt5hoskmfd9OhTdR312elUENfUvUlZCBN3r7MKNZqp/W9+YHo8mldNrPRmOrCDdmShKSM6RhEz+QdyZ4ppK/W9FDPIfwhf0KeqZ581Lch+PHVxxOQgcg+0bYGF9985ANmVORzz2XHYMpQCUwsIpq8xaPHM82G8piX976MSZg4ZeIpmV7KoKSqc0yixlTP6B1MvCEbdXl1lDFVZBzvrl0YioowOp2DT45DumpNE+ljquPZtBmEwHbErF7jEwu1MoH9rv00dXr48oNrybMaeeC/FpFvTW2D76EyWjJ5IXvCvFJKVu5ZyeKqxRRZizK6lkQothYjELR4kuyZdu6m1FY66HswIX8CVqN10IzebOwYo+MwOyi0FKowryJzeHftxDp9+ojDmuaqqrQY0/qusGBDArq8ni1bsEybhsHRuyyiKq8Kk8HErrbdfOWhdbS5ffzlikVUFdlTsuaRUNtRS6GlkDJb+jrUDBeHyYHdZM+4Md3Wto0DXQeyPotXx2QwUWIrSUmYN5EvYUaDkWlF0wY1ptkoch9NhaNCJSApMoOUEt+OnSMO8YKWhBRyuQi6UttTcEieaZ/kIx2TwcSE/Ak8v+VjNtV1cPelRzNvfHZ6MLUdtUwrmpY1e7jxEEJkhaTgy3texiAMnDrp1IyuYyikQvAiUWMKWju2wTJ6sznMC1p5jArzKjJCsLWVYEfHiJKPdPRa01S3YqvrqqPQUkieOS/uvEBrK4GGhl7JRzqhkMTbU0qz5yA/OGcOp82uTNVyR8zujt2jYr9UJ9MqSFJKVu5dycLKhZGOLKOBZL9vbZ422r3tg2by6tQU19DU00SHt2PAOdkc5gWtFVu2GNPs2ixSpBzvLl1GcOjdYvoSaRJeX4dt1sxhX0dKiT8o6fEH8fiD9PiC9Pi1h8cX5OOGPeQZy/nH+gORsR5/ELcvSI8vgNsXxO0PUrltIxcBP90e4OPfvq5dwxee5w9irbBjL2vjiuOnjPi1p4p2TzutntZRURajU2Yvi4irZ4Jd7bvY07mHy2ZflrE1DIcyW3LfN11rN1HPtKY4LCvYvpNjK4+NOSfpnqm/B1q2Q9NWaN4CTVvggr+AdXilTBWOikiCotmQOflPUMZ0zOELG9NkeKam6pHXmoZCkq/+dR2vbh1438MxdQ8hfxnf+eDDXuMWkwGHxYjdbMRuMTJtrxay6ppUQ01hPvbwMYfFiN1ioj50JP9peJsmdxOVednpmY6m5CMdp93J+sb1Gbv/yn0rEQhOm3RaxtYAgK8b2vdBwAMBHwS92nPA0+ffPgh4cbbU0tLdgHz1ZwizFYxWMFnBaAk/m2OMWcBsh/xKsJdA1FaAnskbT/0omhklWnnMzraBjWmnrxOjMGI3DTG3IOCDQzs0Y9m0BZq3as9tu0GG9bwNJiibAd3NwzamlY5KJJIWd0vCoi6pQhnTMYZ35y4MeXmYKkduTExOJ8JsHpGk4FMfHODVrU1cungSNRX5YcNowG42YjMbsZkMXPuui9MmnMQ1l50SMZA2sxGjofee4oEb/olnwgTu/Wbs0oh36lr4TwPsc+3LemM62jzTdm87/qB/QD3YVLJy70qOrjg6UiqRdtr3wft/gg/+BnFCpn0pKyzAV1ZC15u/okDKod/X7IDC6vBjArtDzViEkeqDH0NxOxSO72dwo6l0VJJvzo8rK6irH8Xcvw8FobMO2vdC217tuXmr5nUe2gkyLDEpjFA2HSrnwvwLoWI2lM/Wxkb4+6L/HTe6G5UxVaQX765dWJKQyQsgDAZMVVXD3jPt6PHzy/9s5ZhJxfz08/MwGPqvqcPbgSfoZnb5ZCaWxhcuHyj5SGdSwSQA9nXuY9G4RcNac6qp7ajFZrQl3AQ9G4iuNU2kEUEy2dOxhx1tO/jeou+l9b4A7F8D7/4etjyn/TznPDjis5qRM+kepRVMFjDZorxL7VjZ/lfg7Vtpue4DCvKrD3uvwSivttezF4J+8HeDq0EzZJ0Htefdb7Db7mWyyYjxsUsPr9Fk04xtQZVmWO3FYCsGewnCXkyNpYSd9evg4Afh4yVgLQSDAUIhXN1NFBjM8NETvY1m+z7oOAChwOF7CQOUTNWM5exzteeK2VBWo73uFKB/gWpwN6Tk+kNBGdMxhnfXTvJPTF5rqpHUmt65ajuHun08+F+LYxpSONzHdDDjEuzqwr93H8Xnnz/gnKq8KswGM3tde4e13nRQ21HLlKIpGMToyQ102g4LEKTbmK7atwqA0yelSfUoGIAt/4R3/wAH14G1CD51DSy+GopjtzwbCGfYq2rxHmJqyTQwj6yR+e6nz+aIwqnwmS9D54HextbVAK27wdMOPW0QlhGsKSthZZ4Ded8pRP4ChQFsReBz43IWUmA0wNNXacfyK6F4MoxfCPMu0P5dPAlKJkPhBO2LQxqJ6PN2Z748RhnTMUSwvZ1gc0tS9kt1zNXVdL/11pDP29bg4q/v7uWyxZPilqgk2sfUu2ULQFzP1GgwMqFgAvs69w15velid/tujqo4KtPLGBKZFG5YuXcl853zUx/i62mHDx6C9+/VDFXpNDj7N3DUpcPe74t8CUmCepQv6ONA10E+M/VsmHAsEHsPNELACz3t1Gz5O//Ycj8tF9xLeTCoGdqedu3ZbMPVvoYCSz6c/7z2ZcGcXXXZhZZC7CZ7VmT0KmM6hvDWavtxw20IHgtzVRWB5makz4ewJPatVErJD//1CQU2E985Y1bcubpnOtiHZURGMEZZTDSTCyazz5WdxtTtd1PXXcf5RQN719lIpozpAdcBNh/azI3H3pi6mxzaBe//ETY8ooVXpyyFz/4GZpyphUJHQDIlBfd17iMkQ4knrpmsUFDJzEknwpb72VE6kfLxx/eb5nr285QXT4Hy4WfrpxIhBBWOCmVMFenFu1MXuB95WYyOuboapMTf2IhlYmJhruc/que92lZ+ev48SvLiG+C6rjpsRhsl1vhNzD2bt2Asd2IqL487b2LhRN6rf4+QDGVdKHV3p5aNOZqSjwBK7VptZ7r1eV/Z9wpA8oXtg37Y9SqsfxC2vaglycy7EJZ8A6qOTNptCq2F2Iy2pJTH6L87Q80Cn16sfbHe0b6D42MZU58rawUbdCodlVmhgqSM6RjCt2sXwmaLiC0kA3N1uNb0YF1CxrTbG+CnL2xh3vhCLlk0adD5ereYwRKmPJs3D+qVguaZeoIemtxNad/fGwxd4F7/gBstWI1WCiwFafdMX977MrNLZzOxYGh7lTGRUkvC+egx+OQpcB8ChxNO+i4s+ioUJD/72yAMHF99PK/ue5VbjrtlRF/uImUxhVOGdF6prZQyW9mAsoIuf3Y2Bo+m0lGZ0dIsHWVMxxDenbuwTpuGGGF4KpqIClKC3WPueW0nDZ0efn/5Mf1KW2JR11U36H5pyOPBW1tL/umD1xlOKtQM+H7X/qwzprs7dmMUxkjW8WjCaXem1Zg2dDfwUfNHXHv0tSO7UGstfPQkfPQ4tO7Ssl9nfQaOvARqThtx6cZgnDnlTF7d/yobmzZyTOUxw77O7o7djMsbh8McP+M9FgM1CvcHs7eXaTS6Pm+mo03KmI4hvLt24Vic3JIQk66CVHdw0Lm1zV38+c1aLjhmAsdOjh+21anvrmd22cBJRQDe7dshGIybfKSjG9O9nXuzrjymtqOWiQUTM1KrOVLSLSmoh3iHJWzvboVNT8OHj8OBNYCAKSfC0hu1kg5b+jSbT554MhaDhZf3vjxiY5qojGBfZhTP4KkdT/UzRtkucq9TmVdJQAZo9bRG9qEzQXZtGilSRrCzk0BDA9YkyAhGY7BYMJY7By2PkVJy23ObsZmM3PyZ+ElHOj2BHlo9rYN6pp7N4UzeOXMHveY4xzjMBnNWZvTqAvejEactvZ7py3tepqa4JvE9Qr8HNj0Dj14Kv5kBL9wEvi44/X/hhk/gyufh6C+k1ZAC5JnzWDphKSv3rCSkKwMNESnlkATu+1JTXENPoIeDXb2/EGe7Lq+OXh6T6SQkZUzHCN5t2wD69flMBubqagKDhHlXbm7kje3NXP/pmVQUJFZPN5RMXkNREebxg+8FGw1GJhZMZG9ndtWa+kN+9nfuH1UC99GU2dPXOaalp4UNTRsS80rdrfDqT+H2mfDklVC3QUsk+vpb8I134MTroWhCqpcclzMmn0FTTxMbmzYO6/wmdxPugHv4xjTcKLxvqDfbO8boRIxphvuaqjDvGMGzbTsA1iOOSPq1zdXVeMPeYcx7+4P86PnNzKzM50ufmpzwdfU+poN7ppryUaKqTpMKJmVdecz+zv0EZGDUeqZl9jLcATduv3tY+3ZD4ZW9ryCR8bN4u5rgnbth7V+0kpYjztESiaaeBAZjStc3VE6eeDJWo5WX9rw0rFDvcDN5daYXaQlvO9t3csqkw1Kco8YzDYtfZDqjV3mmYwTvtq0Yi4sxVSRfv9RcVY2/vh45gL7oH1/fxYG2Hm773FzMxsR/5RLpYyr9frzbtyeUyaszqXAS+137hx1WSwWjUZM3mmhJwVSzct9KphROYUbxjP4HO+vgxZvhzvnw7j1aMtE33oVLHoHpp2SdIQUt1Hvi+BNZuXd4oV49k3e4xjTfkk91XnU/jd5Ov7Znmu2eaamtFJMwqTCvIj14tm3HOmtWShpOm6urkT4fwUP9P0j3t7r5v9W7OOfIKo6fPrTkgPquekzCRLl94NpRb20t0udLKPlIZ3LhZLxBb8a/yUYzGrvFRJNMAYJ4dHg7WNewjlMnndr7d7ltLzx3PfzuKFhznyZ1d81auPAvUJn4F61MceaUM2nuaWZD04Yhn7u7Yzd55ry4fyeDUVNS0688ZrR4pgZhoNxRnvEwrzKmYwAZDGreWwr2SyG6SXj/JKQfP78ZgxD8z2cTN3Y6dd11VOZVYozjTUSSj+YOzTMFsioJqbajdtilDdlAulSQ3jr4FkEZ5JSJ4XBky0549ptw19Gw8REtiei6DfD5P4Azucl2qeTkCVqo9+U9Lw/5XD2TdyRflGuKa9jdsRt/yB8ZGy3GFLJDuEEZ0zGAb+8+pMeDdWaqjKleHtM7CWn1tiZe3tzItafVUFU0dE3P+q56qvIGTz4SdjuWyYnvxep1nNkkeF/bPnozeSF9xvT1/a9TaitlfsgE//gK/H6RJrKw+Gq4biOcc4cmuj7KcJgdLB2/dFih3pFk8urUFNcQCAV6fcHs9HZiMpiwGUcmwJ8OKvMqMx7mVQlIYwDvdi2T15pGz9QbCPK/z21mqjOPr5w4vD/0uu46Fo9bHHeOZ/NmbEccgTAmvhc2Lm8cFoMlOzzTgI9Qyzb2dOzm2BHUGWaaEksxBgQtm5+Bgzv6N7SObkcW/Wy0aP02fd1Rjy6tq4n+b5/2b7+3k7e8n3B60ILxjyeAJR+OvxY+9S3Iz1Av0yRyxpQzWLVvFRuaNgzYrLsv3f5uGt2NIzameqPwHe07IgpcupRgKraGkk2Fo4I3DryBlDJj61XGdAzg2boVjMakavJGYygowJCX18uY3v/WHna3dPPgfy3Cahp60oc/5KfJ3RTXM5WhEN4tWyiK03Yt5nqFgYkFEzNjTN2tWh/M/e/Bvveh7gMa8NMzcTxT3/szfLQKymZoIcqyGVovyNKRt+dKGT1t8OHjGD94iGJbgJa6NfDxy5Cs5C6jFSwOsOSz3m7DZQ+xzFAAJ98Mx30dHKXJuU8WoId6X9rzUsLGdE/nHmDke+1Ti6ZiEAatPGaKNubyZb+UoE6lo5KeQA8uf+a0hJUxHQN4t23HMnUKBmtqGvQKIbS+puFa04YOD3e/uoNPz6lk2azheQy6PFi8TF7f3r2E3G5sc4a+HzuxcGLqy2OkhLbdsO897bH/fWjeqh0zmKDqKFj0VWrz8mDXo0ybeCJ0tEDta/Dh3w9fRxigaCI4Z4QN7HSt6XL10WDJS+1rGOh17XtPE4Lf/CwEPFB9DM48O4cmHQGn/0Hr+xlpaO3r89yn8TVSex2WPM3bNDsO/xylBrV6zS+wbv8HS1Y8r83JMfRQ76q9q7h50c1xcwV0RprJq2M1WplUMKlXElKnv5MC8ygxpnmHa02VMVWkDM+2rTgWHJ3Se0Q3Cf/Zv7cQCEl+cM7wsyj1PqbxPNNID9MhlMXoTC6YzLt17yZfz7N5G+xcBfve1TxPvWmxtQgmLob5F8GkJVB9jOZxAbs2PQTAtM/8FmxhT8vrgkM7tQSbQzugZYf28953Io2dEUati8nE47THpCVQmLwmBv1wt8KHj2lGtGUbWAu1hJ9jroCqI3Gu/BqHvO3aXKNJeyTJ2EspWb1/NcdVHTdqk7QS4cwpZ0ZCvQvHLRx0vq7nnAyx/xklM9jetj3y82jzTEFTQdJD1ulGGdMcJ9jZSaCuHusll6b0PqbqKtwbN/Je7SH+9WEd3z5tBhNLh/+hp6sfxfNMPZs3g9mMdRj9WScVTsIb9NLY3ZicxtJ+D6z+ObxzlxbiLJ6s1TVOWgITl0D5EQP2v9zdsZsSawmltqiQpbVA8zyr+3wJklKrpWz8RPN0970P6x/Sem6C5sHqhnXiYqiYqxm14SIl7H077IX+S/MmJyyC834Pc8/vZSyddmfEU0o2O9t3crDrIF+Z/5WUXD9bOGnCSVpW796XEzamEwomYDEm1ks4HjXFNazauwpPwIPNZMPlczHOkV3NIAZCN6aZzOhVxjTHicgIzppJs7uZImtRUv7w+mKuribU0cEfX/yIcYU2vrFsZG3EdM80XmcXz+bN2GbMSLgpeTSTC7WMz32ufSM3pgfXa+UZzVvh6C/CKd8fkodY21GbeJhOCCgarz1mnqmNBf3Q8JFmWPe/rxm/T/6hHbPkw4SFmoEtnqwZ+sgjqBnL6LFQ8PC/fd1aGPfQTs2zPvZKOPYKqIytgaxLCqYiCWT1/tWAtq+YyzjMDk6acBIr965MKNQ7EoH7vtQU1yCR1HbUMqdsjpaAZM1uwQadcns5ApHRWtOEjKkQwgB8G/ga2vZ0M/AE8AMpZXeC1zgbuBU4CvACrwDfk1Lu7jOvCvgWcGz44QQeklJemch9FL3RZQSNM6bz+X9+nkuPuJRvHf2tpN9Hz+it3VTLFRcvw2YemdJMfXc9ZbYyrMbY+7xSSjybtyTUdi0WkfKYzr0cV3Xc8BYZ8MLrv4S37oT8Srj8HzBjaF1MpNQ+vIbV/UTHaIbxx2qPT31TM5Dt+3onOr3x6+ElBU1cAku/A3POi4SlB8Jpc+IP+en0dVJkTa5g/Or9q5lXNo8Kx+jP2h2MMyafwcq9KwcN9QZDQfZ27mXp+KVJuW9Eo7d9Z8SYjpYwr9loptRWmtHymEQ90zuA64BngNuB2eGfjxZCnC5l/L9SIcRy4B/Ah8B3gSLgeuBtIcRCKWV0tf8s4PvAfmAt8JmEX42iH7qM4C5zG52+zpQ10TVXacZ0gq+TSxePfP+mrqsubog3UF9PsL19WPuloCUsWI3W4Wf01m3QvNGmzbDgcjjzZ2AvHvJldrTvoMPbkdwaUyG0WsuSyXDkRdqY16U1vBZGLaEp+mEwauf0Gg/PMyXu9eu1po3uxqQa05aeFj5q+YhvLUj+l8Bs5KQJJ2Ez2nhpz0txjWldVx3+kD9pqlmTCiZhNpjZ2bYTb9CLN+jNeinBaDJdazqoMRVCzAWuBZ6WUl4QNb4buAu4BPj7AKcjhDADd6MZx6VSyq7w+IvAeuA24OqoU9YDFVLKZiGEE80LVgwTz9ZtWGfNYm3LRwBsPrSZYCiYUKbgUHAVlwFwpjNEsWPkYeT67npmlQxcF+sJJx/Zh2lMI+UxQ83oDfg0L+/N2yGvHC574nC4NUF8QR+v7n+Vf2z/B+/Xv4/JYBq0nnbEWAu0Rwo5svxIBIKVe1cys2Rm0q77+v7XAVg2cVnSrpnNOMwOlk5Yyqp9q/jvxf894N/qSAXu+2IymJhWNI0d7TsOqx+Nkmxe0PZND3QdyNj9E0ljvBQQwJ19xu8D3MAXBjn/ZKAa+LNuSAGklBuB1cCKsMHVx11SSmVAk4AMBvHu2IHtiFl82PQhAO6AO1Kblkwe29mDXxhZkucffPIghGSI+q76+MlHmzaDwYB11vCFKIZca1r/Edx3CrzxKzjyYrjmvSEZ0t0du7l93e2c/uTpfPf177K/cz/XLLiGF5e/yKzS1AhqpJMJBRM4fvzxPLX9qV6ydCNl9YHVVOdVJ9VAZztnTDmDlp4WPmj6YMA5erLXlMIpSbtvTUkNO9p2jJrG4NFUOCoyumeaiDFdBISANdGDUkoPsDF8fLDzAd6Ncew9oBAYO38laSRaRvCjlo+oKdb2RD5p+SSp9/EGgvxtzX66C0vJ7xi50HmrpxVfyBe3LMazeTOWaVMx2IcuU6gzuXByYt1jgn5Y/QvNkHY3w6WPwfl/BHvJoPfwBr08X/s8V/7nSj737Od4ePPDHFt5LH88/Y/8e/m/+fpRX4+bZDXaWDFzBc09zZGEoZHSE+jhvbr3OHniyaNCiSdZnDReC/XG0+rVs8CLbcVJu++M4hk0uhsjCYCjyZiOyxtHp6+TnkBPRu6fiDGtBlqklN4Yxw4CTiFEvLheddTcWOcDjE9gHYMihLhaCLFOCLGuuVk5t7qMYM/USg52HeS86eeRZ85LujF97sN6Wrq8OCZNiCl2PygBH3Q1a4kzHM7kjeuZbtmCbfbIuoFMKpyEL+SL/2224WPNiK7+OcxdDt98T2vrNQg723byyzW/5NQnTuWWN2+hyd3E9cdcz8qLVnLHKXdwwvgTkh5qzwZOmnAS4/LG8fjWx5Nyvffr38cT9IyZEK+OHupduXclwVAw5pxkaPL2Ra/R1LvXjCZjmunymEQSkBxo2bex8ETN8cU5nwGu4ekzZ0RIKe8F7gVYuHBh7OaaYwhdRnBzgbb/saBiAXPK5rDp0Kak3UNKyf1v7WZmZT5OOQn3++8P7QJdTfCXMzSlILMDiidRV6h5fFU7V4OrQyvpKJkMtmIQAn9DA4HGxmEnH+lEC973K4/prIf3fg/v/VFLLFrxCMw+Z9BrvnngTe796F42Nm/EbDBz+qTTuWDmBSwatyi54hBZitFg5KKZF3H3hruT8mG/ev9q8sx5LKocLACWe5wxRcvq/aDpAxaN6//693TuOdw9J0no0SvdmI6mBCQ907uxuzFS+pZOEjGmbmCgfHRb1Jx45wPEqnFI5HzFMNFlBD/s2IzZYGZO2Rzmlc3j4S0P4w/6MUdJtQ2X92pb2VzfyS+Wz8fyXjWdTU1Ivx9hTuDaPjf8fQW4GuC0H0B3C7Tvo961HSxQ/cadEW8V0BR3iifj2qGFdvOnmLW6yGF6eJFa0859LKlaog227IC3fwcfPQ6hABy5As74KeSVDf5ygj5uXH0jZfYyvrPwO3xu+ucosQ0eCs41ls9Yzv9t/D+e2PYENy++edjXCckQq/ev5sTxJybld3W0oYd6X9rzUj9j2u5pp9XTmnTPtCqvCofJwcfNHwOMmjpT6K2ClAkSMaZ1wBwhhDVGqHc8Wgh4IK9UP1+fuyXG+RA7BKwYIbqM4IfNHzK7bDYWo4W5zrn4Q362t29nblns4vuhcP/buylxmPn80ePx7KuGUAh/YxOWCYNE7kNBePoqrcTkkkfgiM9GDtW991MKal+g4Hu7tabP7fugPfzctpeujzdjKQxiff2b8MGPtWSgoy7V9GqHQIWjAqvRyt7OvbB/Lbx9J2x9QetwcsyXtG4kpYl/WG06tAlP0MP3Fn2PUyedOqS15BJOu5PTJp/GP3f9k+uOuQ67aXj72ptaNnHIc2jMhXh1Ilm9e1dxy+Jbem0LJEvgvi9CCGpKavioWcv+H01h3ohnmiFjmkjcaW14Xq/cfSGEDVgArEvgfIBPxTi2BOgEtsc4phgBuoygeeYMNh3axJHOIwGY55wHaB9UI2XvoW5WbWnk8uMmYzMbMVXpfU0T+G608gew9Xk46+e9DCloZTFV+VVagk/1ApjzOa3V1tm/JnjOfXTXCwou+ipc9BBULYB37oE/LIE/nQTv/Z+2/5oABgQTLSXs2/QE/OV02PMWnPRduP4T+OztQzKkAOsatD+FYypGbyu1ZLFi1gpcPhf/2f2fYV/jtf2vYRTGpIkSjEbOnHImhzyH+mX1RgTuk6R+FM2MYm3f1GKwDCiako04zA4KLAUZy+hNxJg+Dkg0kYVorkLb63xEHxBCVAkhjhBCRO+Bvg7UA18VQuRHzT0KWAY8KaVMXh69AjgsI9g8Pg9v0MtRFUcBUJ1XTYm1JClJSA+8vQeTQfDFT2nhUl0FKVBfH+80WHMfvHsPLP4aLPlGv8N13XVU58VOPup6/XUIBCg440yY+3m47DG4aRuc9Qttwn/+G357BPz9Etj0rKaZ25egHzY+Cv93PJNaatkX7IEzfw43bIJT/wfyyxN9C3qxvnE9NcU1Sc2uHK0srFzItKJpPLHtiWFfY/WB1RxdcXTS1ZRGE0vHL42EeqPZ3bEbs8EcN0lvuOj7pqPJK9WpdFRmLAFpUGMqpfwY+D2wXAjxtBDiq0KI24HfohnKaMGGn6OFchdHne9HkyKcCLwphPimEOK/gZfRBBl+2PeeQohbhRC3AjeGh47Ux4QQJw3nhY41PFs1Y7qpRCvtXVC+ANDCOHOdc/nk0MiMaafHz5Pr9nPOkdVUFmpb3+aIZxono3f7S/Di92DmZzSvNAb1XfUD6uW6Vq7CVFGBbf78w4P55ZpR/tob8I134VPXQP1GePIKuH0mPHe9Jq3ndcG7f4DfLYBnvw7A5Kmnst9iIXjc18CaH+uWCREIBYbU1DnXEUJw8ayL+eTQJ8NKeDvgOsCOth1jNsSro2v1rtq7qldW7+6O3UwunJySjHBdVnBUGtMMqiAlml54PfAdYC6aYb0ETdXonMGkBAGklE8Cn0PL6P0NcDPwJnCClDJWTPDH4cct4Z+Pjhobu5tRQ8C7fRvG4mLWBWupcFT0qmWc55zHrvZduP3Dz/t6Yu1+un1BvnzC4TCTwWbDWFaGv24Az7T+Q3jyv2DcfLjgzzEThzp9nXT5u2J6piGPh6633iL/tFMRA3RgoXIOfPpHmpf5xWdgxpla27C/fBp+OQVeukXLDL7sSfjGO0yafib+kH/Ef4BbW7fiDrgT6vQxVjh3+rnYTfZheaevHxhbqkfxOGPKGf1Cvbs7k18Wo6N7pqMpk1en0pE5Y5qQNq+UMoimyXv7IPOuBK4c4NjzwPMJ3m/sVGenCF1G8KOWjzmq/Khex+aVzSMkQ2xt3coxlUPf3wsEQzzw9h4WTyll/oTeIbjovqa96DioZe7aSzQJvgG8wPouzRDH8ky733kH2dNDwemnD75IgxGmn6o9vC6tfVj9Rph/MUw8nBkZLXg/kpCZrnl8bIXyTHUKLYV8Zupn+Hftv7lp4U1D+nB+bf9rTCualpESh2xj6fil2E32SFavL+jjgOsAZ04ZmoxlopTZyiixloxOz9RRyaGeQ/hDfsyG9GaA537h2xhElxGUNZM42HWwnzGd69SyeIe7b7pqSyMH23v48olT+h2LaUw9nfD3i8HbBZc/AQUDK/5EBBtieKauVa9gKCggb/EQdWytBXD05XD2r3sZUtCEG4DhC96HWde4jsmFkyl3DG+/NVdZMWsFnqCH53Y9l/A5Lp+L9Q3rlVcaxmF2sHT8YQGH/a79BGUwZZ6pEIKvzP8K504/NyXXTyWVjkokkhZ3S9rvrYxpDqLLCNZVasJUfY2p0+5kXN64Ye+b/uWt3UwosfPpOf2Nonn8ePwHDxJyh0PIQT88eSU0bYGLHxqwF6ZOXbdmTPt6pjIQoOvVV8lftiyxGtYEqXBUYDPa2OvaO+xrhGSIDxo/YGGlCvH2ZU7ZHOY75/P4tseRMjEdlbcPvk1ABpIuSDCaOXPKmbR6WlnfuP5wJm+KjCnAFXOv4LPTPjv4xCwjk+UxypjmILqM4OZSNyaDidll/esv55XNG1Z5zEcH2lm7p40rj5+C0dA/Gl9w2qlIn4/OF1/UBBf+/R3Y9QqccwfUDN57tL6rHqvRSpmtt0iCe/0HBNvbEwvxDgGDMDCxcCL7O/cP+xq6MLhKPorNxbMuZnfHbtY2rB18MlqIt9RWynzn/MEnjxGWTtBCvS/vfTmlZTGjncq8zAk3KGOag+gygu9Y9jOndE7MWrG5zrnsc+2jw9sxpGvf/9Zu8q0mViyK3bPUfswxWGfU0PbY45qS0PoH4cQb4NgrErp+XXcdVXlV/UTNXa+sQlgs5J94wpDWmwiTCiaNyDON7JcqYxqTs6acRaGlkMe3Da7X6w/5efPgmywdvzQntYuHi91k56QJJ7Fy70p2tu+k0lGJw5wUFdacIqKClIFaU2VMcxDvtu1Ypkzh486tHFl+ZMw5EfGGIZQtNHZ6eP6jei5aOIECW+xQqxCC4hWX4Pn4Y3qe+IkmDn/qDxK+R31Xfb9uMVJKXKtWkXfCCRjy8hK+VqJMKpzEAdeBAQXFB2N943qq86pTUvOXC9hMNs6rOY9X971Kszu+oMaGxg24fC4V4o3BGZPPoNXTyqv7Xk1piHc0U2gpxGa0Kc9UkRw827binVqFJ+iJiDX0ZU6ZJhI/lFDv397dS1BKrjx+Stx5RcdWI4yS9oYp8Pn/g4HKWGJQ113Xzyh5t2whUFef9BCvzuSCyfhDfhrcDUM+V0rJusZ1yisdhItnXkxABnh6x9Nx560+sBqLwcKnqmMJpo1t9FCvJ+hRxnQAhBBU5mVGuEEZ0xwj2NFBoK6eunGa56iLNfSl0FLIlMIpCWf0evxBHnl/L5+eXcnksjjeYetujM99hcIZRjp2hAh6Ehe38gQ8tHpa+3mmrlWrwGAg/5RlCV9rKOgZvXs7hx7q3dO5h1ZPqzKmgzClaArHVR3HP3b8Y8AIgJSS1ftXc1zVcSqEGQM91AupTT4a7WSq1lQZ0xzDu12TOd5U0k2FvSKyhxCLoSghPbPhIG1uP18+Mc4fcSgEz3wdQgFKbvo1sqeHjucSL4lo6NY8w76eqWvlKhzHHouptDThaw0FvdZ0OOUx+n6pEmsYnBWzVtDQ3cAbB96Ieby2o5b9rv2qJCYOn5mi9dKdWTIzwyvJXiocFWrPVDFydBnBd+wHOariqH6JPNHMK5tHk7tp0H0svWfpnKpCjpsax6B98BDsfw/O/Bm2Ez+Dbc4c2h9LvCQiUhYT5Zn69u7Fu2MHBacPngk8XPTymH2uoRvTdY3rcNqdEYOsGJhlE5dRbi/n8e2xE5Fe2/8aACdPODmdyxpVnDrpVB45+xHVTCEOlY5KmnqaCA0uzpdUlDHNMbzbtyGKi9hsaOhXX9oXPQlpsFDvmzta2NHUxVdOnDqwcXY1wsofwpSlsOByLRHpkhV4t2+nZ8PGhNauqx9Fe6auVa8AkH9aavZLQdtnmVg4ccieqZSSdQ3afmm8Ly0KDbPBzIUzL+Sdg++w39W/FGn1/tXMLZsbKW9Q9EcIwZHlR6rftzhU5lUSCAVo9bSm9b7KmOYYnq3b8EyuBCEGNaazSmdhFMZBQ733v70bZ76Vc46KLT4PaN1aAj1aPWn4D73os5/FkJdH++OPJbT2uu46jMIYKbwGcL3yCtY5swfvjzpCJhdMHvKeaV13HY3uRrVfOgQumHEBBmHgye1P9ho/1HOIj5o/4uSJyitVjIxMCTcoY5pD6DKCdVWWAcUaorGb7NQU18TN6N3Z5GL1tma+9KnJWE0D1P3tWAmbnoal3wHnjMiwIS+PovM+R+eL/yHQ1jbo+uu76qlwVGAyaJLRgZYWejZsoOC01IV4dSYVTuJA1wECoUDC50T2S5XyUcJU5lWybOIynt3xLL6gLzL+xoE3kEhVEqMYMeMcmjJbU3d6M3qVMc0hdBnBzcXdA4o19GWecx6fHPpkwH3NB97eg8Vk4LLjBtgT9HXD8zeCcyaceH2/w8UrViB9Pjqe/eega9EFG3Rcr7wKUlJw+qcHPXekTC6cTCAUiCRBJcK6hnUUWYuYXjw9hSvLPS6edTFt3jZe3vtyZGz1/tWMyxvHrJJZmVuYIifIlAqSMqY5hC4j+F5ew4BiDX2Z65xLh7eDA10H+h1r7fbx1AcH+PyCapz5Axjm1T+Hjn1w7u/A1H+ObdYs7EcfTfvjgyci1XfV994vfWUV5okTsc6cEees5DCxQFN0Gsq+6frG9RxTcQwGof6MhsKSqiVMKpjE41u1RCRPwMO79e+ybMIytReoGDGltlJMwqSMqWL4eLZuRRoN1Jb6Bt0v1ZlXFlZC6hPqlVLy//75CYGg5Kql02KfXP+h1mz7mC/B5OMHvEfJJSvw7dmD+/01A84JhAI0uhsjnmmwqwv3u+9RcPrpafmA1Vt9JSor2ORuYp9rnwrxDgODMHDxrIvZ2LyRba3bWNOwhp5AjwrxKpKCQRgod5SnvTxGGdMcwrt1G57qUvymwZOPdGpKarAarf0yep/+4CAvfFTPDZ+eyYzKGH0NQ0F47tvgKNWacceh4MwzMRYV0RYnEanZ3UxQBiOeafcbbyD9/pSWxERTbi/HbrIn7JlG9HjHqeSj4XDe9POwGCw8se0JXtv/GnnmPFWrq0galY70qyAl1BxcMTrwbN9G/QQrFfYKxuUN3DM0GrPBzKzSWb0yeve3uvnhvzaxeEopXz95gP3ANfdC3Qa44C9aw+84GGw2is4/n9aHHybQ0oLJ6ew3R68x1fuYulatwlhWhn3BgoRex0gRQjCxYGLCtabrG9eTZ85Te3zDpNhWzFlTz+L52uexm+wcX308FqMl08tS5AgVjgq2t21P6z2VZ5oj6DKCm4u7BxVr6Mu8snlsPrSZYChIIBji+sc3IoDfrjgqZps1Og7Aqz+B6afBvAsSukfxxRdDIED7U7G1WfWm4FX5VYR8Prpef4OCU09FGNPXOWRy4eQheaZHVxwdyTxWDJ0Vs1bgDrg55DmkQryKpFKZp0kKJioYkwyUMc0RdBnBj4o7Ew7x6sxzzqMn0ENtRy1/WL2L9Xvb+PHn5zGhJIY+qpTw7+9qYd5zfhupKR0M67SpOJYsof2JJ5DB/tqs9d2aYENVXhXu994j1N2dthCvzqSCxMpj2jxt7GzfqepLR8h853xml87GIAwsHb8008tR5BCVjkp6Aj24/K603VMZ0xxBlxHcW5H4fqnOXOdcAF7cvobfvbKDzx1VzeePHkAkYctzsO3fcMotUDJlSPcpuWQF/oMH6X777X7H6rrqKLWVYjPZcK1chcHhwPGp9HYO0ctjdMM+EB80fgCo+tKRIoTg+8d9n/857n8othVnejmKHCITfU2VMc0RvNu34cu34iocXKyhL1MKp5BnzuevH7zFuEIbP/78vNgTPR3w4vegcj4s+eaQ11hw6qkYnU6tcXgf6rvrqc6rRgaDuF59lbyTT8JgSe8eWqLlMesa12Ez2phbNjcdy8ppFlQs4OJZF2d6GYocIxO1psqY5gierduor7IyuywxsYZoDMKALTQJt9jD7RcfRZE9duNvXvkxuBq0mlLjAHPiICwWii+4gK7Vq/HX9/b+6rrqqMqvoufDDwkeOpSy3qXxiJTHDCIruL5xPUeVH4V5GO+BQqFIPbpnms6MXmVMcwBdRnBLSc+QQ7wA//mkgbrGcsz2eo6ZHKMMBmD/Wlj7Z1h8NUwY/l5h8UUXgZS0P/mPyJiUkobuBqrzqnGtXAVmM/knp1+j1Wl3YjfZY4qw67h8Lra2blX7pQpFFlNuLwdUmFcxRHQZwdry4JCNaWOnh1ue/ojxjhmECMZOJw/6tZrSgio49dYRrdUyYTx5Jy2l/cknkX6tcXirpxVP0ENV3jhcr7xC3pIlGPPzR3Sf4SCEYFLBpLie6YamDUikMqYKRRZjNpops5WpMK9iaHi3bQWGnnwUCkm+8+SH9PiD/PTss4EB2rG9ew80bYKzfw22whGvt2TFJQSam3GtXg0czuSd1Az+ffsyEuLVmVQ4KW6t6frG9ZgMpoTlGhUKRWbQy2PShTKmWcJI6qE827YRMgi8ExIXawB46N09vLmjhf/57Bw+NamGUltpf2PauhtW/xKOOAdmnzPsNUaTf/JJmKqqaA8nIuk1puXrakEICk7NXM3h5MLJHHQdHLA8Zl3jOuY752Mz2dK8MoVCMRQqHBXKmI412v/xD3aevAzvjh3DOt+7dRtNThNzqhMXa9jW4OLnL27ltCMq+MJxkxBCMLdsLpsORWn0Sgkv3AgGE3zmV8NaWyyE0UjxRRfS/fbb+Pbti3impjc/wL5gAaby8qTda6hMKphEQAYijcqjcfvdbG7ZrEK8CsUooNJRqfZMxxK+/ftp+NnPCTQ1ceDa6wh2dQ35Gu6tW9jpDCQc4vUGgnz7sQ0U2kz88sIjIwZ4nnMetR21uP1uTZThxe/BrlfhtP8HRcltzl18wYVgNNL+xBPUddUxuduOf+u2jIZ4QQvzQmzB+49aPiIgA6q+VKEYBYzLG0enr5OeQE9a7qeMaQaRoRD1/3MrQgiqf/0rfPv3U3/L94cU8g12dBBqaNT2SysSM6a//s82tja4+PWFR/VqrTbPOY+QDLG58QN4/Aua/u6nvgWLrhryaxsMc2UFBaeeSvtTT9PQfoCT92hqS+lWPepLvPKYdQ3rMAgDCyoWpHlVCoViqFQ4KoD0lccoY5pB2h9/HPeaNVT8980UnXsuFd/5Dq6VK2m9//6Er6HLCB6oNDKnbM6g89/a0cKf39rNF5dM5pQjKnod00UINr10E2z/D5z9Gzjzp2BIza9J8SUrCLa1YXpjLcds8WGdMQPL5MkpuVeilNnKcJgcMctj1jeuZ3bpbPLMeRlYmUKhGArpVkFSxjRD+A4cpOnXvyHv+OMpvvBCAEqvvIKCM8+k6fbf0v3e+wldR5cRtM6aOahYQ1u3j5ue3Mj08jy+f3Z/laSyrhaqgvCJrw0u+TssTr5HGo1jyRI6yh18+s0uqnd1kJ9hrxTC5TGF/ctjfEEfHzV/pEK8CsUoIWJM05SEpIxpBpBSUv//bgUhqPrJjyN7lkIIqn76UyxTpnDwxhvxNzQMeq2ebVtx2WHa9Pgf8m5fgO/+40Nau3387pKjsVv6dGPZ/Sb85dPMCwT5pGwizPrMsF9foryw59/8a56HyU0SQqGM75fqTCqY1E9S8OOWj/GFfCr5SKEYJehhXmVMc5j2J57E/e57VHz3u5irq3sdM+bnMeHuu5AeDwe/fT3S54t7rY5NH4b3SxcMOOeN7c2ccccbrNrSxC2fmc288UW9J3z4OPztfCioYu7RX+FATxPtnvZhvrrEaOhu4Gfv/4zWU49CmM2YqquwzRk8TJ0OJhdOpq6rDn/IHxlb37gegeCYymMyuDKFQpEoDrODAkuBCvPmKv66Opp+9SscS5ZQvCK2wLd1+nSqfvZTej78kP/f3r1HV1XdCRz//kIeNw8SEvIwEEJ4BTQBowYKagXUUqT1MXasSq21jlWnqEVtZUGRUIuidRQ6aFcVl3VUdCq+qlXHhU5lUHwRXhJBqZiABBISMCEhr5vs+eOcGy7hJrnkvsi9v89aWSc5Z59z9y/7JL979zl7n6oHuh+SYtrbMV+VU5GJx0kEahtauP2vm7n2yU+Ii47ihZumcP25I9wOYGDtH+CVGyF3Mlz/NoU55wIcO0TGzzpMBwvfX0i7aee3Mx8gc948Mu+484SewRpIwwYOO254TGlVKWNSx5ASl9LDnkqpk0lWQlbQbkDSJxsHkdW9uwhjDNlLlvSYPJJnzqTpui0cfOop4otOJ+Xii48r01qxm6hWJwdzUshOzD7mdV7euJclb3xOQ4uT2y4Yw5zpo4iLduvabW+Dv8+FTc/ChKvgkhUQHctpA6xPh9tqtnHO0HP8Fru753c8z8f7P6ZkSon1pJZrfhKQ1+kr9zt6c5NzcXY42VS9ictGXxbaiimlTkhWQvBmQdJkGkR1L71E4wcfcErJImJzeh+3mXnnHTRv28a+uxcRl5+PY+zYY7a7phFMGHdaZ2LeXXuE3776Get21nDW8FSWXj6e/Kwuk9c318EL18Ku92DqPJg2v/Mh3wNjB5KXnMe2Wg/TCvrBrrpdLCtdxnk55/GjMT8KyGv4yjXW1DWt4Pba7TQ5m/R6qVL9TFZiFl8c+iIor6XdvEHStm8fVfc/QMKkSQy68kqv9pGYGIYue5gBAwfyzW230V5ff8z2Q2WbaRcYNv5snO0dPLb2K2YsX8um3d/y+0sLWH3TlOMTad038ORFUP4+XPonmL6gM5G6FKYXUlbj/27eto42FqxbQHx0PL87+3cnTbduV67hMa6bkEqrSgE0mSrVz2QlZFHbVHvM/Q+Bosk0CIwx7FtUgmlvJ/veJUiXcZulFQe5943PefrDcj78qpaahpbObdEZGQxdvoy2vZVUzl+A6ejo3Hbws41UDobE2LFc+ugHLH1rB98dk8GaO87jp1PyiIrqkqz2bYEnLoS6PfCTF+EMz92rhemFHGg64PcL909sfYKy2jLunnw36fHpfj22P4kIw5OHd86CVFpVSl5y3kldZ6XU8TITMjEYao7UBPy1tJs3COpeeZXGdevIWriQ2GHDOtdXH27m/rd28PLGvUQJdLhNfJSWGMvozCTGZCaRnzWYwuvnwON/pHblStJvugmAjn+WszsrivueqyU9MYk/X3MmMwuPXjvFGNi/Fb74H2sShsqNkJwD178NWd3fOeuavGFb7bbOJ9b7alvNNh7b+hg/HPlDZuTN8MsxAyk3OZfPaz+nvaOd0upSZgw/+euslDqW+1jT7KTsXkr7RpNpgLVVVVG1dCkJxcWkzr7aWtfewX+tL2f5OztpdXbwy2mjmDN9NIebneysPszOqobO5etbKqlvdoLJ4a6cM5i6/I88WDEAR8FpXFXbwNfjBnHVxFHMmzmOlPgYaGuCXWut5Pnl23C4EhDIKbaeRXrmzyAps8c6j0sbR7REU1ZTxgW5vk+k0OxsZv66+aTHpzP/O/N9Pl4w5A7M5Z2Kd9hxcAeHWw9rF69S/ZDrw0AwbkLSZBpAxhj2LyrBtLWRfd+9SFQU6/9ZQ8lrZeysbmDa2AxKLi5gRLo1PV1iXDSnpDj47piMY45x4HALO6sb+GrGSOrvmcsVbz3Gk/suBSBt/ATuvGAwlD1rJdBda8HZBLFJMGo65C+EMTMgyfsnsTiiHYxOHe352aZ9sHzjcsrry3n8e4+THOv781CDITc5l3bTzmtfvQbAxFMmhrhGSqkTFcwpBTWZBlDd3/5Gw9q1ZC2YT01yBveu2sgbn+1jWFo8T1xbzAWnZnZ/E44x0N6KtDaSaY6QOaiJcxJaabnv3ym/5R5u2fDfAIzv2AQP21MDDsqFM6+F/O9D3rkQ3fP0gj0pGFzAmoo1GGN8ulHoo30fsWr7KmaPm82UIVP6fJxgcw2P+fuuvzM0aegJPSdWKXVySI5NxjHAoZ9M+7O26mqq7luK48wzeX7oZB55aC0dxnDH9/K58byROKI6oHITfPMp7PkEDuyA1gZoPWJ11bY1guk47rhxQPZZDva+n0Z9PBQkJ8HEEmv6v4xxx92Z21eF6YW8tPMl9hze0zlU5ETVt9az8P2F5CXnMfesuX6pV7DkDrRirm+tZ9qwaaGtjFKqT0SEOUVzyE/ND/hraTINAGMM+0sW097czF0jL+HTNTu5YmwM8wrrST/0NDyzwUqkrufsDRwC2RMgLhliEyAmEWLi7e+tLxOTQEV7I5ub9rOlcQ/RCR8T44Tf/Nu7fkug7grTCwHrxqG+JtP7P76fmqYanrnoGeKj4/1ZvYBLc6SRGJNIY1ujTm6vVD92XeF1QXkdr5KpiEQBvwJuAvKAA8ALwCJjTKOXx5gFLAROB1qAd4G7jDFfeyibAiwBLgcGA18BjwB/NifysM8Q+XrVC7T84x9smpDPzY5neSZuF46Kb6ACGBAL2adD8c8hZyIMmwQpOccdo8nZRFlNGZsPbGZL9Qa2HNjCoZZDgDWxwoRLirl89OUBG6s5atAo4gbEsa12G7NGzjrh/ddUrOH1Xa9z8+k3Mz5jfABqGFgiQu7AXLYf3K43HymleuXtJ9NlwG3AK8BDwKn2z2eIyIXGeOiPdCMilwMvAluA3wApwFzgAxEpNsZUupWNBdYAZwArgO3ARcCfgCxgsZd1Dqj6hjo+L32XyrL1NO7+ElN7gNhvG0iodzKsEvYNgdfO30HygGjejE8jJbGA5NQRpKSOJjk+jZS4FFLiUkhubySlcT8dpoOtNVvZUr2FzdWb2XFwB07jBCAvOY+pw6ZSlFFEUWYRI1JGECWBHSIcExXDuLRxfZq8oaaphns+vIfTBp/GjRNuDEDtgmNM6hi+bfnWmvJQKaV60GsyFZEC4FbgZWPMj9zWfw38J3AV8FwP+8dgJcU9wHeNMQ32+reAUqzk6P4f9wZgInCbMWaFvW6liLwELBCRvxhjjn3YZAD934uPcGDHBlr27WFA7SEcdS0kHe4grQ5S2qx3BS4N8VCXHEXFaAebLh7O4CGDqOtoYX9LPfWtVdTv3omz4s0eX88xwEFheiHXFV5HUUYREzImkOpIDWyQ3ShML+TlnS/j7HASHeXd+y5jDIvXL6bJ2cTSc5cSExUT4FoGzq+Lf01jW+NJO1OTUurk4c1/yKsBAZZ3Wb8SuB+4hh6SKTAVGILVJdzgWmmM2Swi7wFXisgcY4xrvqfZwBH7+O6WY3X7Xgl0/ygVP5MHH+W0Ouv7plj4NkVoSInhUF4ikpnBwLyxDC86hxFF04hNHtS532UejmWM4YjzCPUt9dS11h2zbDftFAwuID8t/6RJQAWDC1i1fRVXvH5FZ50MVi+7e2+7ax2As8PJrrpdzJs4j5GDRga3wn6W6kgN2RsZpVT/4k0ynQh0AJ+4rzTGNIvIZnt7b/sDfOhh20fA+UA+UGZfmz0T2GiMae5S9hO7HkEd8Hf455fhHJTOmEnfZ9yIAp8+pYgIiTGJJMYkkk1gZ+Pwh/NyzmNm3kyanW5NIe7fHvu7cP18Qe4FzD51djCqqJRSJwVvkukQoMYY0+Jh217gbBGJNcZ09xTrIW5lPe0PMBQoA1KBeE9ljTEtIlJrl/VIRG7E7jLOze3bHahdzbp5qV+O0x+lxKXw4NQHQ10NpZQ66XlzF0sC1t23njS7lelpf7o5Rtf9eyrrKt/taxljHjfGFBtjijMyvJ/xRymllPKFN8n0CNZcAZ443Mr0tD/dHKPr/j2VdZXv6bWUUkqpoPMmmVYC6SLiKcENxeoC7q6L17W/q6yn/eFot+4hoMlTWfv1B+O5u1gppZQKGW+S6ad2uUnuK0XEARQBG7zYH8DTxKyTgXrgSwB7vOpGrPGrXZP3JLsevb2eUkopFVTeJNO/AgZrkgV3v8C6frnKtUJEskVknIi4X9dcC+wDbhCRJLeypwPTgNVuw2IAnreP23W0/1zAiTXzklJKKXXS6PVuXmPMZyLyKHCLiLwMvMnRGZDWcuwY06XAz4DpwHv2/m0i8iuspLxORFYCycDtWNMSlnR5yZXAz4GHRSQPawakWcC/AEs8TT+olFJKhZK30wnOBcqxPi3+AKjBmtVoUW9TCQIYY1aLSBPW3Lz/wdG5eecZY/Z2KdsqIhdizc17NUfn5r0VeNTL+iqllFJBI/1g3vg+KS4uNhs26OVVpZRS/iEipcYYj4+RCuxs6UoppVQE0GSqlFJK+UiTqVJKKeUjTaZKKaWUjzSZKqWUUj4K27t5ReQA4Okh4ulYQ3siVSTHH8mxg8YfyfFHcuzgv/iHG2M8PkUlbJNpd0RkQ3e3NkeCSI4/kmMHjT+S44/k2CE48Ws3r1JKKeUjTaZKKaWUjyIxmT4e6gqEWCTHH8mxg8YfyfFHcuwQhPgj7pqpUkop5W+R+MlUKaWU8itNpkoppZSPIiKZikiUiNwuIjtEpFlE9ojIQyKSGOq6BZqImG6+GkJdN38SkfkislpEdtnxlfdSfqyIvCoih0SkUUTWicj5QaquX51I7CKyuIdz4tdBrLZfiEi+iNwjIh+JyAEROSwim0Xkt57+vsOp3eHE4g+3tofO9lwlIttFpE5Ejtj/5x8Wkexuygek/b19nml/twzrYeavAA9x9OHmZ4jIhd48k7WfW8fxF+DbQlGRALoPOAhsBAb1VFBERgHrASfwB6AO+AXwtohcZIx5J7BV9TuvY3dzO8cPYi/1Y52C5XpgDvAasArrvJ6O9TzkH4vIZGNME4Rlu8MJxO8mXNoeIAfIxvrf/g1W247Hevb2VSJSZIyphiC0vzEmrL+AAqADeKnL+lsBA8wOdR0DHL8Bngp1PYIQ50i377cB5T2UfQFoB4rc1iVhzZj1BfaNef3l6wRjX2yfE3mhrrefYi8GUjysX2LHeUu4tnsf4g+rtu/l93KFHetdwWr/SOjmvRoQYHmX9SuBI8A1wa5QKIhIrIgkhboegWKM2eVNObvr6xLgPWPMZrf9G4AngHxgYiDqGCjext6ViCSLSL/unTLGbDDG1HnY9Fd7WQjh2e7gffxdhUPb98I1lWwqBKf9IyGZTsT6ZPqJ+0pjTDOwmX74B9QH/4r1xuGwiFSLyAoRSQl1pUJkAhAHfOhh20f2MhLOia1Y3VzNIrJeRC4KdYX8LMdeVtnLSGv3rvG7C7u2FxGHiKSLSI6IzAAesze9aS8D3v7h/M7EZQhQY4xp8bBtL3C2iMQaY1qDXK9g+QRYDfwTSAZmAbcAU0XkbPudWSQZYi/3etjmWjc0SHUJhW+xrp+vBw4BY4G5wBsicr0x5qmQ1cxPRGQAsAjr2thz9uqIafdu4ofwbvsbgBVuP5cD1xhj1tk/B7z9IyGZJgCeEilAs1uZsEymxpjvdFn1tIhsBe4FfmUvI0mCvfR0TjR3KRN2jDHLu64TkSexrrUuE5EXw+AN1nJgMrDAGPOFvS6S2n05x8cf7m3/KrAD6xroGVhduu5Pdwl4+0dCN+8RrI/3njjcykSSB7HePPwg1BUJAVdbezonIvJ8MMbUAn/GuhP47NDWxjci8nusnpfHjTFL3TZFRLv3EL9H4dL2xphvjDHvGGNeNcaUAD8DHhCR+XaRgLd/JCTTSiBdRDz9EodidQGH5afS7hhj2rB/L6GuSwhU2ktPXTqudZ66gsJdub3st+eEiCwGFgJ/AW7usjns272X+HtSbi/7bdt3ZYzZCmwCfmmvCnj7R0Iy/RQrzknuK0XEARQBG0JQp5CyY8/B880J4e4zrK6eKR62TbaXEXdOAGPsZb88J0SkBCgBngZuMPa4Bzdh3e5exN+Tft32PYgH0uzvA9/+oR4PFITxRuPpeZzpNaGuYwBjH9zN+gfpMgYrnL7ofazlaqzxZqe7rXONN/uSfjje0JvYse6RSPGwfhhQizWQPz7UMfQh5kX2+fw0EBVp7e5N/GHc9qd0s3663dbvBqv9I+KpMSKyAus6witYt0q7ZkD6ADjfhOkMSCKyDOtd1z+A3VgnziysE+1jYLo5fnaUfklEfgoMt3+8FYjFmu0KoMIY84xb2dFYdzm3Yc2OVY81E8p44AfGmLeDVW9/8DZ2ERkEfI11s8Z2jt7ReQPWuXG1MWZ10CruByIyB3gE6/y+G+uNs7sqY8wau2xYtTt4H384tj2AiLyCNQPS/2IlRQdwFnAV1jXQacYeVxrw9g/1O4sgvXsZANyJNctFC1bf+MNAUqjrFuC4LwXetuNtBhqxxtYuAByhrp+fY30P6925p6/3PJQ/Ffgb1nCBI8D7wIWhjiOQsWPdfPEEVpfXIfufyj7gRWBSqOPoY+xP9RD7cW0fTu1+IvGHY9vbcf0YeAPYY/+Pa8K6q3cFkOuhfMDaPyI+mSqllFKBFAk3ICmllFIBpclUKaWU8pEmU6WUUspHmkyVUkopH2kyVUoppXykyVQppZTykSZTpZRSykeaTJVSSikfaTJVSimlfKTJVCmllPLR/wPPnmmX5RUyzgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -824,23 +846,23 @@ "import matplotlib.pyplot as plt\n", "from utils import plot_multiple_line\n", "plt.rcParams.update({'font.size': 18})\n", - "title = 'ML1M(activity)'\n", + "title = f'Movies({group_feature})'\n", "plot_multiple_line({title: group_differences}, [title], ncol = 2,\n", - " ylabel = 'Eq.(1) with F = 1 - loss', xlabel = 'epoch', legend_title = 'lambda')" + " ylabel = '', xlabel = '', legend_title = 'lambda')" ] }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 7, "metadata": { - "scrolled": true + "scrolled": false }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9QAAAQPCAYAAADxiqPmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzde5xVVd348c+XO8hNBRMjRCUFb2WiaF4Cb49aqGXq4xXI8sm8pJJaaYq3Ss00MVNMIVB8UlP5WZq3xEfNVEwqEU1CNNEQBBS5CMj6/bHPDGeGM8PMmTNzZobP+/Wa1+asvfba33Mc+fI9e+21I6WEJEmSJEmqnzblDkCSJEmSpJbIglqSJEmSpCJYUEuSJEmSVAQLakmSJEmSimBBLUmSJElSESyoJUmSJEkqggW11AQiIkVEs31GXURMyMU4ssTjNtv3HRFHRMTUiFgcER9FxHMRMaoB43WJiMsi4rWIWBER8yLirojYqZRxS5JKoznnKDA3NzQ3R8S+EXFhREyJiHcq3ndEdC113NqwtSt3AJLU1CLiIuASYCXwOPAxcCBwW0TsmVI6pZ7jdQOeAj4HvA1MAT4DHAUcFhGHpJSeKOFbkCSpVSl1bgauJ8vLUqPyCrWkDUpE7EGWsD8EdkspHZpS+iqwPfBv4FsR8fV6Dns1WdL+I/DZlNIxKaUvAqOAjsCdEbFRyd6EJEmtSCPl5keBi4BDgU+VMl4pnwW1pA3N+bntT1JKf69oTCm9lbfv+3UdLCI2BU4GVgPfSimtyBtzAvAIWSIvejq5JEmtXElzc+7Yc1NKl6WUHkopvVeiOKV1WFBLZRQRB0TEjRHx94hYmLv3dnZE3BQRW9ZwzNTcPUBDI+JLEfFYRHyQO/7+iPhsrl+biBgdETMiYnlEzI2IKyOiw3piGhwRf8iNtzQino6Ir9TSf5uIuDMi5kfEsoj4W0ScWur3XQoR0RH4r9zLOwt0uY9sitmuEdG3jsMeSnb7zNMppbcL7K84z+H1iVWSVB7m5laRm6UmY0EtlddNwEhgOfAnsquZ7YD/Af4aEdvVcuzhZPcYdQEeBhbl2v4vInoBd5FNn/pPbuwewHm5c9ZkD+BpYJvcmC8BewEPRMT/VO8cETsCLwD/TTZNawqwELghIq5rpPfdENsBnYH3U0pvVt+Zu7o8I/fy83Ucc5fc9sUa9r9YrZ8kqXkzN7f83Cw1nZSSPyX4AX4A3A3MBhIwpxnENDQXS6Gf35f4XEcD44G/Aaty5+hf7s+gufxUfO4F2g8HuldrawdcnjvmjwWOmZrb9wlwRF57R7IEmICXgVfy/xsAO5Et9LGm+n8bYELe78aVQOTt+2ruXCuArasd91LumF8BbfPa9wGWlvh9j6nl97nGn2pjDM+1v1TLf6spuT6n1/G/7e9y/b9bw/6N8+LpWu7fRX/88ccff7Ifc3NJ3nezzM21/fc2F/tT6h9X+S6dH5N9+/dXoGd5Q1nHOLIViPMVmpraEN8BhpAV1P8i+7ZR65FSmlKgbTVwYWSPiTgwIrqllJYUOPzOlNL9ecd9HBG/AIYBOwAHpJTm5O3/R0T8ATgC+BIwh3X9G7gwpZTyjrsvIu4Fvk72LfX5kD2Oguyb4gXA6JTSJ3nHPBURNwHnlPB9Twd+U2i8euiW2y6tpc9H1fo2dMyP8v7crdprSVIzY26u1/ueTvPMzVKTsaAunW1SSrMBIuJloDk94+7ZlNLtxRwY2XMKL0kpjVlP15OAd1JKqyPiBiyo6yx3X9KXgW3JEkXb3K52ZLdlDCD7trm6Rwq0zcptV5F9W17T/i1qCOeelNKqAu23kyXtffPavpTb3p9SWlbgmEnUkLSh/u879w+U+2sar46iYrgGjlOfMUt5LklSEzA3t/jcLDUZC+oSqSim6yoiBgMXkE2/6Ub2jeRE4Mrct4ElFdkjez5JeSsQl1LKVmFUPUXE5WSrVratpVv3GtoLzTKo+Hb3P/nfShfY37GGMde5dylnTm6bvxjIp6vtq+mYdTTwfTdExbfqtX3hVfF4q0JXHooZM7+9rmNKksrE3NwqcrPUZCyoyyAiDiVbsXAWcA3ZVPE9gUvJpukcVeJT/oLs/mYi4nXgl8D1+VOH1PQie57iBWQLhpwFPEGWbFfk9v+Z7PciahhiTS3D17avNjX9TtT27XG9rswW+74j4giyKXH1klIamfey4h8ln6nlkIp/mNT0D5jq1jdmxXgLU0pO95akZszc3Gpys9RkLKibWER0Am4DngP2y7safXNE/A34eUQMTSlNLcHpVgH/D3gQeIdsKtHJwHVkhbvPxS2vr+e2F6SUxhfYP6Apg8nZcj3tc/PaKv7cv4Zjtqqhvdj3/XlgRA37ajMy78+vki3gsmlE9Ks+syL36I4dcy+n13H8iqlvX6hh/+B6jidJKh9zc+vIzVKTsaBuegcCnyJbFbxnRJUv+h4Efg4cRO4em4gYSrZad128lVK6reJFSukZqj37NiJuyZ1nZETcmlJ6Om/fxhSe5tMl96iHfEtSSh/XMS4Vtklu++/qOyJif6B304YDwNcj4vwCtx0cl9v+X17bk7ntERHx3ZTS8mrHHF/DOYp637n7+MfUMGad5BaHeZjs/4v/Bq6q1uUIsil3f00prRNfDR4EVgP7RMSnU0pzq+0/Jre9v6igJUlNydxcTQvNzVKT8TnUTW9QbnsbML/az6u5fZ/K6z8UuLiOP99Y38lTSmuAn+ReHlpt90sFYgI4t0D7ses7l9ar4r/3tyKiQ0VjRPQne9RFOfQDLo28b3oi4jCyb64/Bm7O6/sU2TfFvYGrI6Jt3jF7AafWcI5yv++KRP3D3LM6K87fN2/fldUPioiJEfFqRJye355SWkB2S0U7YFzum/SKY04CDgbey/WRJDVv5c5RhZibM3XOzVJT8gp106v4y/Bcap628k7FH0rxzV8Bc3Lb6ledjwc6V2t7lGxFyInV2meUOKYN0fVk06S+DLweEc+RLVA3FHie7IuLLzZxTDcDo4GvRsRLZPcz7UX2e3tW/uJ7KaWUKxifBE4DDo6IF4DNyFYZ/SVwZoFzlPV9p5T+HBGXAhcBL0bEY2TPAD2AbEGU21JKdxU4tB/Z6vXV/7+B7P/nPci+pJqVu9esL9n7WAkc7/3TktQimJtbSW6OiG8C3yxwzJ8iouJ+9j+klC4rxXvQhssr1E3v9dx2aUrpsRp+XmnkGD6b287Lb0wpPVM9ltyu2QVifLeRY2z1UkqzgF2Be8i+3BpOdm/TlWTT/gs9IqOx/YVs5fk3yYrDXYFngeEppZuqd04p/QPYDfhfsuevH0GWtM/K/ayjObzvlNLFwJFkaxnsQ3YrxqvAN1NKJxcx3gdki7X8mOw+sMPJ/j/7HbBb3v9LkqRmrDnkqALMzUXkZrIvtofk/VTYLa9tm4bELAGECz2XXsVzqFNK/Qvs2wiYTfaP7l1SSgur7e8MtEspNfixABGxaUrp/WptHYHHyb7ZHJJSen49Y9T1OdT5x9xA9q3oVimlOfWNW5IkSZJaAqd8l0hEnMja1RZ7Ax0i4sLc6zdTSpMAUkpLc1Nx7gdei4jbyB6f1RMYCHwN+Cq5Rcka6I8R8Q7wImtX+T6B7MrZ2PUV0/UREfsC++ZeVqxqfHpELAZIKV1eqnNJkiRJUnPgFeoSiYipZPemFPJkSmlotf47At8HhpEV4IuAfwEPAb+sfuW6yJjOJ5vmM4CsYF9KtvDYuJTSnXUco05XqCNiDNnCaAWllGp6XqMkSZIktUgW1JIkSZIkFcFFySRJkiRJKoL3UDdQr169Uv/+/csdhiSplXjxxRcXpJR6lzuOlszcLEkqpdpyswV1A/Xv359p06aVOwxJUisREW+WO4aWztwsSSql2nKzU74lSZIkSSqCBbUkSZIkSUWwoJYkSZIkqQgW1JIkSZIkFcGCWpIkSZKkIlhQS5IkSZJUBAtqSZJUo4j4QUTcHRGzIyJFxJwixjg6IsZHxN8iYlVunP619O8REWMjYm5ErIiIGRFxakREQ96LJEml5nOoJanEPvjgAxYsWMDKlSvLHYqagbZt29KtWzc22WQTOnbsWO5wivFjYCHwV6BnkWN8BxgC/A34F7BdTR0jogPwKLALMBaYCRwC3Ah8ChhTZAySJJWcBbUkldCKFSuYN28effv2pXPnznhBbcOWUmLVqlV8+OGHvPXWW/Tr168lFtXbpJRmA0TEy0DXIsY4CXgnpbQ6Im6gloIa+CawG3BmSmlsru2WiPgd8MOIGJ9SerOIGCRJKjmnfEtSCc2fP5/evXvTpUsXi2kREXTo0IFevXqx8cYbs3DhwnKHVG8VxXQDx3grpbS6jt2PA5YBt1Rrvw5oDxzT0HgkSSoVr1BLUgmtWLGCzTffvNxhqBnq3r07c+bMoU+fPuUOpdmKiDbAF4C/ppRWVNv9PLCG7Op1k7jkgRm88s6HTXU6SVIJbb9Fdy4evkOjn8cr1JJUQqtXr6ZdO7+r1Lrat2/PJ598Uu4wmruNgc7A3Oo7UkofA+8Dny50YEScEhHTImLa/PnzGzdKSZJy/FefJJWYU71ViL8XddIlt/24hv0r8vpUkVIaB4wDGDx4cCpFME1xZUOS1LJ5hVqSJDUXy3LbmlZu65TXR5KksrOgliRJzcUiYDkFpnVHREdgUwpMB5ckqVwsqCVJUrOQUlpD9rzrXXIFdL7dyf7dMq3JA5MkqQYW1JIkqSQiok9EDIyIgvc519GdZPdJn1Kt/SxgNXBXA8aWJKmkXJRMkiTVKCJOBLbMvewNdIiIC3Ov30wpTcrr/hNgBDAMmJo3xr7AvrmXg3Pb0yNiMUBK6fK8MW4BRgE/j4j+wEzgUOCrwOUppTdK8sYkSSoBC2pJUtGWLFlCt27dyh2GGtfJwJeqtV2W2z4JTGL99gMurtY2Ou/PlQV1SmllRByQazuW7L7pfwFnAL+se9iSJDU+p3xL0gZszpw5HHnkkXTv3p0ePXpw+OGH88Ybb9C/f3+GDh1apW9EMHLkSB5//HH23ntvunbtyvDhwyv333///ey111507dqVrl27stdeezFlypR1zlkxTnUTJkwgIpg6dWpl25gxY4gIZsyYwZlnnsnmm29O586dGTJkCI8//nipPgbVIqU0NKUUNfwMrdZ3ZK59arX2MbWMsc7zxFJKi1NKp6eUtkgpdUwpbZ9SuiGlVJLHYUmSVCpeoZakDdT777/PPvvsw7x58/j2t7/NoEGDeOqppxg2bBhLly4teMy0adP43e9+x7e+9S1GjBhR2X7jjTdy2mmnMXDgQC688EIiggkTJnDEEUdw8803c8op1W+HrZ+TTjqJtm3bcv7557NkyRJuvvlmDj74YB566CEOOOCABo0tSZJULAtqSdpAXXnllbz99tvcfvvtHH/88QCceuqpnHfeeVx99dUFj5kxYwaPPvpolSJ20aJFnHfeeWyzzTY899xzdO/evXKsXXbZhdGjR3P00UfTs2fPomNt164dTz31FB06dADgG9/4BgMHDuSMM85g5syZRY8rSZLUEC12yndEtImIsyPi1YhYERH/johrImKjIse7KyJSRLxc6lglqTl64IEH6NOnD8cee2yV9u9973s1HvO5z31unSvCjz76KEuXLuXMM8+sLKYBunfvzhlnnMFHH33EY4891qBYzz777MpiGqBv374cf/zxvPrqqxbUkiSpbFpsQQ1cC/wceIVsoZK7gTOBByKiXu8rIr4CHAksL3WQktRcvfHGGwwYMIA2bar+lbnZZpvVeDV52223LTgOwA477LDOvh133BGA2bNnNyjWQYMGrdO2/fbbl2RsSZKkYrXIKd8RsQNZEX1vSunIvPY3gOuB/wYm13GsrsCNZCuHHlb6aCWp9ejSZd3HC5dqnajVq1fXuC9inXWrSnZeSZKkYrXUK9THAgFcV639FmAZcEI9xrqC7IuFC9fXUZJak/79+zNr1izWrFlTpf29995j8eLFdR5nm222AbL7q6t75ZVXANh6660r2zbZZBMWLly4Tt/arjRXjJOvYqp3/tiSJElNqaUW1LsBa4Dn8xtTSiuA6bn96xURuwOnA2ellD4scYyS1KwNHz6cd999lzvvvLNK+89+9rN6jXPggQey0UYbMXbsWJYsWVLZvmTJEsaOHUvXrl058MADK9u33XZbnn32WZYtW1bZtmjRIsaPH1/jOa699lpWrlxZ+frtt99m8uTJbLfddgWng0uSJDWFFjnlG9gCWJBS+rjAvrnAFyOiQ0ppZYH9AEREO7Ir2o+klO6qz8kj4hTgFIB+/frV51BJajbOP/98Jk+ezKhRo3j++ecZOHAgTz/9NM888wy9evUqOM26kJ49e3LVVVdx2mmnMWTIkMpnTE+YMIFZs2Zx880306NHj8r+p59+OieccAL77bcfJ554IosXL+aWW25hyy235D//+U/Bc6xevZp99tmHY489liVLlnDTTTexfPlyrr/++gZ/DpIkScVqqQV1F6BQMQ2wIq9PjQU1cC7wWeCr9T15SmkcMA5g8ODB3sQnqUXq1asXTz/9NKNHj+a2224jIhg2bBhPPPEEu+22G507d67zWN/5znfo06cPV199NZdccgmQrQh+3333ccQRR1Tpe/zxx/POO+9www03cM4557D11ltz0UUX0aZNG5577rmC40+cOJGbbrqJn/70pyxevJidd96ZCRMmVLnyLUmS1NRaakG9DNishn2d8voUFBEDgIuAy1NKLg8raYO11VZbce+991Zpe//993n//ffXmYGzvkXAvvrVr/LVr9btO8pzzz2Xc889d532iqvb1VVMKR87dmydxpckSWoKLbWgfgfYPiI6Fpj2/Wmy6eC1XZ2+BlgI3Jcrriu0Azrk2pamlN4tadSS1MwsX758nSvRV155JYBXfyVJktajpRbULwAHAbsDT1U0RkQn4PPA/63n+C3J7sNed0nazOvAH4CvNDRQSWrODjnkELbccksGDx7MJ598wuOPP87vf/97vvjFL64zVVuSJElVtdSC+rfAD4GzyCuogW+R3Tt9R0VDRPQBegBvpZQqpoF/D+hZYNwbye7BPgfw6rSkVm/48OFMnDiR+++/n+XLl9O3b19Gjx7NxRdfTNu2bcsdniRJUrMW67snrrmKiLFkj7y6D3gQGAScCTwD7JdSWpPrNwEYAQxLKU1dz5hzgI9SSjvWNY7BgwenadOmFfEOJLVGM2fO9DFOqlFdfj8i4sWU0uAmCqlVMjdLkkqpttzcUq9QQ3Z1eg7Z46u+DCwAxgIXVRTTkiRJkiQ1lhZbUKeUPiFbXOya9fQbCYys45j9GxqXJEmSJGnD0KbcAUiSJEmS1BJZUEuSJEmSVAQLakmSJEmSimBBLUmSJElSESyoJUmSJEkqggW1JEmSJElFsKCWJDVrU6dOJSKYMGFCuUORJEmqwoJaklR206dPZ8yYMcyZM6fcoUiSJNVZu3IHIEnS9OnTueSSSxg6dCj9+/evsm/fffdl+fLltG/fvjzBSZIk1cCCWpLUrLVp04ZOnTqVOwxJkqR1OOVbklRvS5Ys4cILL2TIkCH06tWLjh07MmDAAL7//e+zbNmyKn1TStxyyy0MGTKErl270rVrV3baaScuuugiAMaMGcOoUaMAGDZsGBFBRDBy5Ehg3XuoZ86cSURwzjnnFIzt2GOPpUOHDsyfP7+y7d133+XUU0+lX79+dOjQgS222IJTTjmF9957r8SfjCRJ2pB4hVqSVG9z587l17/+NUceeSTHHXcc7dq148knn+Sqq67ipZde4uGHH67se+KJJ3LHHXcwZMgQLrjgAnr27Mmrr77KPffcw6WXXsrXvvY13n33XcaNG8cPf/hDBg0aBMA222xT8NyDBg1it912Y/LkyVx99dW0bdu2ct+HH37IlClTOOSQQ+jduzcAb731FnvuuScrV67k5JNPZptttmHWrFn86le/4oknnmDatGn06NGjET8tSZLUWllQS1ITuOSBGbzyzoflDqOK7bfozsXDdyjq2K233pp///vfVe5rPu200/jRj37E5ZdfzvPPP8/uu+/OXXfdxR133MEJJ5zAb37zG9q0WTsxas2aNQDsvPPO7LnnnowbN44DDzyQoUOHrvf8I0aM4PTTT+fhhx/m0EMPrWy/++67Wb58OSNGjKhsO+OMM1i1ahUvvfQSffv2rWw/6qij2GOPPbj22msZM2ZMUZ+DJEnasDnlW5JUbx06dKgsplevXs2iRYtYsGABBxxwAADPPfccAHfccQcAP/vZz6oU08A6r+ujYlr3xIkTq7RPnDiRTTbZhK985SsAfPDBB/z+97/nsMMOo1OnTixYsKDyp3///gwYMIBHHnmk6DgkSdKGzSvUktQEir0S3JzdeOON3HTTTcyYMaPyanOFRYsWAfD666/Tp08fPvWpT5X03Jtssglf/vKXmTJlCh988AE9evRgzpw5PPXUU3znO9+hQ4cOALz22musWbOGW2+9lVtvvbXgWFtvvXVJY5MkSRsOC2pJUr39/Oc/Z/To0Rx00EGceeaZbLHFFnTo0IG5c+cycuTIygI7pURENEoMI0aM4L777uPuu+/mm9/8JpMmTSKlxEknnVTZJ6UEwAknnFBlGni+zp07N0p8kiSp9bOgliTV26RJk+jfvz8PPfRQlanbf/zjH6v022677ZgyZQrz5s2r9Sp1MUX3oYceSu/evZk4cWJlQT1w4EB23333yj4DBgwgIli5cmXldHRJkqRS8R5qSVK9tW3bloiovAIM2b3UP/3pT6v0O/744wE477zz1pkWnn9s165dAVi4cGGdY2jfvj3HHnssTz/9NJMnT+b1119f5yr0pptuyqGHHsq9997LX/7yl3XGSClVebyWJElSfXiFWpJUb1//+tf5wQ9+wCGHHMLXvvY1PvzwQyZPnlxl1W/IVtI+5phjmDhxIq+//jqHHXYYG2+8Mf/85z95+OGHefnllwHYbbfdaNOmDVdccQWLFi1io402YquttmLIkCG1xjFixAiuv/56Tj31VNq0acMJJ5ywTp9f/epX7L333uy7776cdNJJ7LLLLqxZs4bZs2czZcoUTjrpJFf5liRJRbGgliTV27nnnktKiVtvvZXvfve7bL755hxzzDGMGjWK7bffvkrfyZMns88++3Drrbdy6aWX0rZtW7baaiuOOuqoyj79+vXjtttu48orr+TUU09l1apVjBgxYr0F9Re+8AV23HFHXn75ZQ444IAqj8Wq8JnPfIYXX3yRK6+8kilTpnD77bfTqVMnPvOZzzB8+HCOPvro0nwokiRpgxP5U+5Uf4MHD07Tpk0rdxiSmomZM2cyaNCgcoehZqouvx8R8WJKaXAThdQqmZslSaVUW272HmpJkiRJkopgQS1JkiRJUhEsqCVJkiRJKoIFtSRJkiRJRbCgliRJkiSpCBbUkiRJkiQVwYJakiRJkqQiWFBLkiRJklQEC2pJkiRJkopgQS1JkiRJUhEsqCVJkiRJKoIFtSRJkiRJRbCgliQVZerUqUQEEyZMKHcodTJ06FD69+9f7jAkSVIrYkEtSWo1rrvuuhZT4EuSpJavXbkDkCS1TPvuuy/Lly+nffv25Q6l0nXXXUf//v0ZOXLkOvseeeQRUkpNH5QkSWq1vEItSSpKmzZt6NSpE23bti13KHXSoUMHOnbsWO4wWpyI+EFE3B0RsyMiRcScIsc5NCL+HBFLI2JhbsytCvQbmjtPoZ/fN/gNSZJUQhbUkqSiVL+HOv/1+PHj2WGHHejYsSNbbrklV1111TrHP/LIIxxzzDFsvfXWdO7cmZ49e3LQQQfx5JNPFjzfrFmzGDVqFH379qVDhw5sscUWHH744bz44osARARvvvkmTz75JBFR+TNnzhxg3XuojznmGDp06MCCBQvWOddrr71GRHDWWWdVaf/tb3/L3nvvTbdu3ejSpQtDhgzhnnvuqf+H17L8GNgP+BewqJgBIuJrwO+BzsC5wNXAvsAzEbFFDYeNA06s9vOzYs4vSVJjccq3JKmkbrrpJubNm8fJJ59Mz549uf322zn//PPp27cvxx13XGW/CRMmsHDhQk466ST69u3L3Llz+fWvf83+++/PE088wT777FPZd9q0aey///6sWrWKk08+mR133JGFCxfy5JNP8uc//5ldd92VSZMmcfbZZ9OrVy8uuOCCymN79+5dMM4RI0Zw11138b//+7+cfvrpVfZNnDixsk+FCy+8kCuuuIKDDz6Yyy67jDZt2nDfffdx1FFHccMNN3DaaaeV5PNrhrZJKc0GiIiXga71OTgi2gNjgX8D+6SUPsq1PwS8CIwBTilw6LMppdsbELckSY0uvJ+sYQYPHpymTZtW7jAkNRMzZ85k0KBB6+546Pvwn380fUC12XwnOOSnRR8+depUhg0bxvjx4xk5cmTl6z59+vDKK6/Qs2dPAJYtW8aWW27JgAEDePbZZyuPX7p0KRtttFGVMefNm8cOO+zA7rvvzoMPPghASomddtqJWbNm8fzzz7PzzjtXOWbNmjW0aZNNuOrfvz/9+/dn6tSp68Q7dOhQ5syZU3nF+pNPPqFv37585jOf4fnnn6/sl1Kif//+9OjRg7///e8A/PWvf2XXXXflBz/4AT/+8Y+rjHvEEUfwpz/9iblz59KtW7daP7Mafz/yRMSLKaXBtXYqk4qCOqXUvx7HHAA8ClyUUrqs2r7HgcFAr5TSqlzbUOAJYBRwN/BJSmlFfeI0N0uSSqm23OyUb0lSSY0aNaqymAbo0qULe+yxB6+//nqVfvnF9EcffcT7779P27ZtGTJkCM8991zlvunTpzNjxgxGjRq1TjENVBbT9dW2bVuOP/54XnjhBV599dXK9qlTp/LWW29VuTp9xx13EBGMGDGCBQsWVPk57LDDWLJkSZUvC1TFbrltoQ/oL0B3YNsC+34BfAQsj4h/RsR3IyIaKUZJkorilG9JagoNuBLc0my99dbrtG266aa8//77Vdr+9a9/ccEFF/Dwww+zePHiKvvy66aKQnyXXXYpeawjRozgmmuuYeLEiZVXnidOnFhZbFeYOXMmKSUGDhxY41jz5s0reXytRMU90nML7Kto+zQwI/fnVcD/Ax4E3skdfzJwHfB5sivX64iIU8hNHe/Xr1/Do5YkqQ4sqCVJJVWXVb8/+ugj9t13X5YuXcpZZ53FTjvtRLdu3WjTpg0/+clP+NOf/lTZt+LWpMa4OLnTTjvx+c9/nttvv50rrriC5cuX87vf/Y6DDjqIzTffvEoMEcFDDz1U4/vbYYcdSh5fK9Elt/24wL4V1fqQUnoGODy/U0TcQlZgj4yIW1NKT1cfKKU0jmwhMwYPHuz9bJKkJmFBLUlqco8//jjvvPMOt912G6NGVb3geOGFF1Z5vd122wHw0ksvrXfcYoruESNGcPbZZ/PEE0/w7rvvsmTJkirTvQE++9nP8sc//pF+/fqt9x5orWNZblvomWWdqvUpKKW0JiJ+AvwXcCiwTkEtSVI5tNh7qCOiTUScHRGvRsSKiPh3RFwTERvV4diNc/diPZI7bnlEvBYR4yLiM00RvyRtyCqu8lZfGPORRx6pcv80wOc+9zl22GEHbrvtNmbMmEF1+WN07dqVhQsX1iuW4447jnbt2jFx4kQmTpxIjx49OPzwKhdIOfHEEwH44Q9/yCeffLLOGO+99169zrmBeSe3/XSBfRVthaaDVzcnt+3V0IAkSSqVlnyF+lrgTOA+4BpgUO71LhFxQEppTS3HDskd8zhwA7AA2BH4H+DoiPhiSumVxgxekjZke++9N5tvvjmjR49mzpw59O3bl+nTpzNp0iR22mkn/vGPtSuiRwTjx49n//33Z/fdd698bNbixYt58sknOfjggznjjDMA2GOPPbj11lv50Y9+xKBBg2jTpg3Dhw9fZzXxfJttthmHHHII99xzDytWrODkk0+mU6dOVfrstttuXHLJJVx88cV8/vOf56ijjmKLLbbg3Xff5cUXX+TBBx9k5cqVjfNhtXwv5LZ7Ao9V27cH8CHwzzqM89nc1pvVJUnNRossqCNiB+AM4N6U0pF57W8A1wP/DUyuZYhXge1SSv+qNu4fyB7tcSnw9VLHLUnK9OzZk4cffpjzzjuPsWPHsnr1anbddVcefPBBbr311ioFNWQF7QsvvMBll13GXXfdxU033USvXr3Yfffd2WuvvSr7XXHFFSxcuJBf/vKXLF68mJQSb7zxRq0FNWTTvh944AEATjrppIJ9LrroInbddVeuv/56rrvuOpYuXcpmm23GjjvuyC9+8YsGfiKtQ0T0AXoAb6WUKqZxPwm8C3wzIq7New7154ChwPiKR2bl2jdNKb1fbdyOZM+rBnigUd+EJEn10CKfQx0RlwMXAPumlJ7Ka+8EvA88mVI6tMix3wfmp5RqXso1j8+6lJSvLs8Z1oarJT6HOiJOBLbMvTwD6EA2ywvgzZTSpLy+E4ARwLCU0tS89qOA3wJ/A24he1TW2UACdk0pzc3r+wLZNPEXWbvK9wlkV6jHppTOXF/M5mZJUinVlptb5BVqsmdargGez29MKa2IiOmsfeZlvURED6Ab8HJDA5QkqZU4GfhStbbLctsngUmsR0rp7ohYDlwI/Ixsxe/HgfPzi+mce4AjyIr3nsBS4CXg4pTSncW9BUmSGkdLLai3ABaklAo9gmMu8MWI6JBSqu8NbRcC7YHf1NbJZ11KkjYUKaWh9eg7EhhZw77fA7+vwxhXAlfW9ZySJJVTS13luwuFn2cJBZ5pWRcR8XVgNPAwML62vimlcSmlwSmlwb17967PaSRJkiRJrURLLaiXUfh5llDHZ1rmi4hDgTvI7tc6OrXEG8slSZIkSU2qpRbU7wC9cqt+VvdpsungdZruHREHA/cCM4CDUkofli5MSZIkSVJr1VIL6hfIYt89vzG3yvfngTot7RkR/0X2HOtXgQNSSotKG6YkSZIkqbVqqQX1b8ketXFWtfZvkd07fUdFQ0T0iYiBEVHlnuqIOAi4H/gnsH9KaWFjBixpw+FdIyrE3wtJklqfFrnKd0rpHxHxS+D0iLgXeBAYBJxJ9giPyXndf0LumZjAVICIGAxMAYJsAbJDIqL6OW5v3HchqTVq164dq1evpn379uUORc3MqlWraNu2bbnDkCRJJdQiC+qcs4A5ZI+v+jKwABgLXJRSWrOeY3dk7eJl19bQx4JaUr116tSJjz76iI033rjcoaiZ+fDDD+nWrVu5w5AkSSXUUqd8k1L6JKV0TUppu5RSx5TSp1NK56SUPqrWb2RKKVJKU/PaJuTaavxp8jckqVXo3bs38+fPZ9myZU7xFSklVq5cyYIFC1i0aBGbbLJJuUOSJEkl1JKvUEtSs9OpUyc+9alP8Z///IePP/643OGoGWjbti3dunWjX79+dOxY0xMfJUlSS2RBLUkl1qNHD3r06FHuMCRJktTIWuyUb0mSJEmSysmCWpIkSZKkItRryndEdAa2BroDHwKzU0rLGyMwSZJUf+ZqSZKaTp0K6ojYE7gE+FK1Y1ZFxFSyR1U9X/rwJElSXZirJalmH3zwAQsWLGDlypXlDkXNQMWCoZtsskmDFwxdb0EdEccAE4H2wJvA38m+8e4O7AwcBAyLiONSSr9rUDSSJKnezNWSVLMVK1Ywb948+vbtS+fOnYnwCbkbspQSq1at4sMPP+Stt95q8FM4ai2oI+JTwDhgHjAqpfR4gT4HAOOBWyPiqZTSe0VHI0mS6sVcLUm1mz9/Pr1796ZLly7lDkXNQETQoUMHevXqBcDChQvp06dP0eOtb1GybwCdgUMKJWiAlNJjwKHARsDIoiORJEnFMFdLUi1WrFhB165dyx2GmqHu3buzZMmSBo2xvoJ6P+CPKaUZtXVKKf0DeAg4sEHRSJKk+jJXS1ItVq9eTbt29VqLWRuI9u3b88knnzRojPUV1NsDz9RxrGdy/SVJUtMxV0vSenjftAopxe/F+grqnmT3ZNXFPGDjBkUjSZLqqyfmakmSymJ9BXVnoK5ry68CGrbmuCRJqi9ztSRJZbK+ghogNXoUkiSpIczVkiSVQV3uzr81Im4u0ViSJKn0zNWSJJXB+hLr/+G33pIkNWfmakmSyqTWgjqlNLSJ4pAkSUUwV0uS8i1ZsoRu3bqVO4wNRl3uoZYkSZIkNYE5c+Zw5JFH0r17d3r06MHhhx/OG2+8Qf/+/Rk6dGiVvhHByJEjefzxx9l7773p2rUrw4cPr9x///33s9dee9G1a1e6du3KXnvtxZQpU9Y5Z8U41U2YMIGIYOrUqZVtY8aMISKYMWMGZ555JptvvjmdO3dmyJAhPP7446X6GFoM76WSJEmSpGbg/fffZ5999mHevHl8+9vfZtCgQTz11FMMGzaMpUuXFjxm2rRp/O53v+Nb3/oWI0aMqGy/8cYbOe200xg4cCAXXnghEcGECRM44ogjuPnmmznllFMaFOtJJ51E27ZtOf/881myZAk333wzBx98MA899BAHHHBAg8ZuSSyoJUmSJKkZuPLKK3n77be5/fbbOf744wE49dRTOe+887j66qsLHjNjxgweffTRKkXsokWLOO+889hmm2147rnn6N69e+VYu+yyC6NHj+boo4+mZ8+eRcfarl07nnrqKTp06ADAN77xDQYOHMgZZ5zBzJkzix63pXHKtyRJkiQ1Aw888AB9+vTh2GOPrdL+ve99r8ZjPve5z61zRfjRRx9l6dKlnHnmmZXFNED37t0544wz+Oijj3jssccaFOvZZ59dWUwD9O3bl+OPP55XX33VglqSJEmS1LTeeOMNBgwYQJs2Vcu0zTbbrMarydtuu23BcQB22GGHdfbtuOOOAMyePbtBsQ4aNGidtu23374kY7ckNRbUEdEvIjo3ZTCSJKnuzNWSpC5duqzTllJpnqa4evXqGvdFRKOdtyWp7Qr1G8BXK15ExJ8iYv/GD0mSJNWRuVqSWpH+/fsza9Ys1qxZU6X9vffeY/HixXUeZ5tttgGy+6ure+WVVwDYeuutK9s22WQTFi5cuE7f2q40V4yTr2Kqd/7YrV1tBfUqoH3e66HApxo1GkmSVB/maklqRYYPH867777LnXfeWaX9Zz/7Wb3GOfDAA9loo40YO3YsS5YsqWxfsmQJY8eOpWvXrhx44IGV7dtuuy3PPvssy5Ytq2xbtGgR48ePr/Ec1157LStXrqx8/fbbbzN58mS22267gtPBW6vaVvl+AzgsIu5PKX2Qa9vwruFLktR8maslqRU5//zzmTx5MqNGjeL5559n4MCBPP300zzzzDP06tWr4DTrQnr27MlVV13FaaedxpAhQyqfMT1hwgRmzZrFzTffTI8ePSr7n3766Zxwwgnst99+nHjiiSxevJhbbrmFLbfckv/85z8Fz7F69Wr22Wcfjj32WJYsWcJNN93E8uXLuf766xv8ObQktRXUY4EbgCNy/+EScHtE3F7LMSml5KO4JElqGuZqSWpFevXqxdNPP83o0aO57bbbiAiGDRvGE088wW677UbnznVfNuM73/kOffr04eqrr+aSSy4BshXB77vvPo444ogqfY8//njeeecdbrjhBs455xy23nprLrroItq0acNzzz1XcPyJEydy00038dOf/pTFixez8847M2HChCpXvjcENSbUlNKNEfEKcCDQBxgBPA1sOEu2SZLUjJmrJan12Wqrrbj33nurtL3//vu8//779OvXr0r7+hYB++pXv8pXv/rVWvtUOPfcczn33HPXaa+4ul1dxZTysWPH1mn81qrWb6hTSlOBqQARMRK4OaU0udGjkiRJdWKulqTWZfny5etcib7yyisBNrirvy1BfaZ8bQXMb6xAJElSg5mrJamFO+SQQ9hyyy0ZPHgwn3zyCY8//ji///3v+eIXv7jOVG2VX50L6pTSmwAR0R04AKhYC3028GhKaUlNx0qSpMZnrpaklm/48OFMnDiR+++/n+XLl9O3b19Gjx7NxRdfTNu2bcsdnqqJ+jx8OyK+CVwDdAUqlphLwEfAOSmlW0seYTM3ePDgNG3atHKHIUlqJSLixZTS4AYcv8HnanOzpHwzZ87coB7jpPqpy+9Hbbm5zleoI+IwYBzZt9wXAS/ndu0AnAGMi4j3UkoP1HVMSZJUOuZqSZKaVn3uoT4PmAkMSSl9lNf+eESMB/4CnA+YpCVJKg9ztSRJTahNPfp+DphQLUEDkLsn6ze5PpIkqTzM1ZIkNaH6FNSw9l6sQup+M7YkSWos5mpJkppIfQrqvwEjImKj6jsioiswMtdHkiSVh7lakqQmVJ97qH8G3Av8NSKuB17JtVcsdDIA+Fppw5MkSfVgrpYkqQnV5znU90fE6cCVwFjWThsLYClwekppSulDlCRJdWGuliSpadXnCjUppRsjYjJwILAVWYL+F/BoSumDRohPkiTVg7lakqSmU6+CGiCltBi4u/ShSJKkUjBXS5Ia09SpUxk2bBjjx49n5MiR5Q6nrOq7yrckSZIkqZWbPn06Y8aMYc6cOeUOpVmr9xVqSZIkSVLrNn36dC655BKGDh1K//79q+zbd999Wb58Oe3bty9PcM1Ii71CHRFtIuLsiHg1IlZExL8j4ppCjwqpZYxDI+LPEbE0IhZGxN0RsVVjxi1JUksSET/I5cfZEZEiYk6R49Q550ZEj4gYGxFzczl+RkScGhG1PWNbktRE2rRpQ6dOnWjbtm25Qym7FltQA9cCPyd7JMgZZPeKnQk8EBHrfV8R8TXg90Bn4FzgamBf4JmI2KKxgpYkqYX5MbAf2cJmi4oZoD45NyI6AI8C3wZ+S5bjXwNuBC4u7i1IUuu3ZMkSLrzwQoYMGUKvXr3o2LEjAwYM4Pvf/z7Lli2r0jelxC233MKQIUPo2rUrXbt2ZaedduKiiy4CYMyYMYwaNQqAYcOGERFEROX90lOnTiUimDBhAgAzZ84kIjjnnHMKxnbsscfSoUMH5s+fX9n27rvvcuqpp9KvXz86dOjAFltswSmnnMJ7771X4k+mcbXIKd8RUfE8zXtTSkfmtb8BXA/8NzC5luPbkz1O5N/APimlj3LtDwEvAmOAUxorfkmSWpBtUkqzASLiZaBrfQ4uIud+E9gNODOlNDbXdktE/A74YUSMTym92YD3I0mt0ty5c/n1r3/NkUceyXHHHUe7du148sknueqqq3jppZd4+OGHK/ueeOKJ3HHHHQwZMoQLLriAnj178uqrr3LPPfdw6aWX8rWvfY13332XcePG8cMf/pBBgwYBsM022xQ896BBg9htt92YPHkyV199dZUr1x9++CFTpkzhkEMOoXfv3gC89dZb7LnnnqxcuZKTTz6ZbbbZhlmzZvGrX/2KJ554gmnTptGjR49G/LRKp0UW1MCxZI8Bua5a+y3AT4ETqKWgBr4EbAFcVJHYAVJK0yNiKnBMRJyWUlpVyqAlSWppKorpBqhvzj0OWEaW0/NdB3wNOAa4qoExSRKXPDCDV975sNxhVLH9Ft25ePgORR279dZb8+9//7vKfc2nnXYaP/rRj7j88st5/vnn2X333bnrrru44447OOGEE/jNb35DmzZrJ/euWbMGgJ133pk999yTcePGceCBBzJ06ND1nn/EiBGcfvrpPPzwwxx66KGV7XfffTfLly9nxIgRlW1nnHEGq1at4qWXXqJv376V7UcddRR77LEH1157LWPGjCnqc2hq9SqoI6ItcDxwEPAp4LyU0ksRsTEwHHg8pTS39GGuYzdgDfB8fmNKaUVETM/tX9/xAM8W2PcXsqlt2wIzGhZm3f3lxm/RbfHMpjqdJKmElvQcxB7fqV7/lUczytUV6pxzc7dsfQH4a0ppRbW+z5Pl/vXleEnaIHXo0KHyz6tXr2bJkiV88sknHHDAAVx++eU899xz7L777txxxx0A/OxnP6tSTAPrvK6PY489lnPOOYeJEydWKagnTpzIJptswle+8hUAPvjgA37/+98zatQoOnXqxIIFCyr79u/fnwEDBvDII4+0voI6IroAjwBfBJYCXYCNc7s/JLsyfBtwYYljLGQLYEFK6eMC++YCX4yIDimllbUcX9G30PEAn6aGgjoiTiE3Pa1fv351DlqSpMbUzHJ1hfrk3I3J7rNep29K6eOIeD/Xdx3mZkn1VeyV4Obsxhtv5KabbmLGjBmVV5srLFqULYPx+uuv06dPHz71qU+V9NybbLIJX/7yl5kyZQoffPABPXr0YM6cOTz11FN85zvfqSz4X3vtNdasWcOtt97KrbfeWnCsrbfeuqSxNab6XKEeAwwGvgr8GZhXsSOl9ElE3Av8F02TpLsAhYppgBV5fWoqqLvktoXGWFGtzzpSSuOAcQCDBw9OtUZaR83lyoYkqUUbQ/PJ1RXqk3Nr61vRv2B+bozcLEktyc9//nNGjx7NQQcdxJlnnskWW2xBhw4dmDt3LiNHjqwssFNKNNZDE0aMGMF9993H3XffzTe/+U0mTZpESomTTjqpsk9K2V/RJ5xwQpVp4Pk6d+7cKPE1hvoU1EcB41JKUyJi0wL7Z5Hd19QUlgGb1bCvU16f2o4H6Fjk8ZIkNUfNKVdXqE/Ora1vRX/zsyQVMGnSJPr3789DDz1UZer2H//4xyr9tttuO6ZMmcK8efNqvUpdTNF96KGH0rt3byZOnFhZUA8cOJDdd9+9ss+AAQOICFauXMkBBxxQ73M0N/WZJL8F8Lda9i8DujUsnDp7B+gVEYUS7qfJpoPXdHW64viKvoWOh8JT0yRJas6aU66uUJ+cuwhYXqhvLudvivlZkgpq27YtEVF5BRiye6l/+tOfVul3/PHHA3DeeeetMy08/9iuXbOHOixcuLDOMbRv355jjz2Wp59+msmTJ/P666+vcxV600035dBDD+Xee+/lL3/5yzpjpJSqPF6ruavPFeoa71vK2YG1SbOxvUC22MruwFMVjRHRCfg88H91OB5gT+Cxavv2ILvP7J+lCFSSpCbUnHJ1hTrn3JTSmoj4K7BLRHSstlbK7mQXAqY1cryS1CJ9/etf5wc/+AGHHHIIX/va1/jwww+ZPHlylVW/IVtJ+5hjjmHixIm8/vrrHHbYYWy88cb885//5OGHH+bll18GYLfddqNNmzZcccUVLFq0iI022oitttqKIUOG1BrHiBEjuP766zn11FNp06YNJ5xwwjp9fvWrX7H33nuz7777ctJJJ7HLLruwZs0aZs+ezZQpUzjppJNazKJk9blC/TgwKrfgSRURsRXwDeCP6xzVOH4LJOCsau3fIru36o682PpExMBqcT8JvAt8MyK65vX9HDAUuNtHZkmSWqCy5uoS5dw7yXJ5/rOpIcv5q4G7GiF0SWrxzj33XH784x8ze/Zsvvvd7/LLX/6Sgw46iIkTJ67Td/Lkydxwww2sWLGCSy+9lO9973s8+uijHHXUUZV9+vXrx2233cby5cs59dRTOfbYY/nVr3613ji+8IUvsOOOO/Lhhx+y3377VXksVoXPfOYzvPjii3z3u9/l//7v/xg9ejQ/+tGPeOyxxxg+fDhHH310wz6MJhT5l/Vr7RgxgOxb4blkye4S4BrgE+Dbue0uKaV/N06o68QzFjgduA94EBgEnAk8A+yXUlqT6zcBGAEMSylNzTv+KLLC/G9kz7rsDpxNVqjvWtdHigwePDhNm+aX5ZKk0oiIF1NKg4s8tuS5OiJOBLbMvTwD6JAbE+DNlNKkvL4TaGDOjYgOZAuqfQ64HpgJHEq20NrlKaUfrS9mc7OkfDNnzmTQoEHlDkPNVF1+P2rLzXWe8p1SmhUR+5M9buPSXPP3ctuXgRObqpjOOQuYQ/YN9peBBcBY4KKKYro2KaW7I2I52UqnPyNbUfRx4Pwmfj6nJEkl0Ui5+mTgS9XaLsttnwQmsR71ybkppZURcQBwOXAs2X3T/yIr5n9Zz9glSWpUdb5CXeWgiB3JrggH8HpK6aVSB9ZS+C24JKmUGnKFuto4G2yuNjdLyucVatWmya5Q50spvUz2TbckSWqGzNWSJDW++ixKJkmSJEmScup8hToi1pAtHlKblFIq6qq3JElqGHO1JElNqz4JdSLrJul2wDbAEODvwPTShCVJkopgrpYkqQnVZ5XvkTXti4gvAv8POLUEMUmSpCKYqyVJaloluYc6pfRnYDxwVSnGkyRJpWWuliSp9Eq5KNnrwBdKOJ4kSSotc7UkSSVUyoJ6KLC8hONJkqTSGoq5WpKkkqnPKt8n1bBrE+AA4BDg16UISpIk1Z+5WpKkplWfVb4nkK0cGgX2rQZuBc4pQUySJKk4EzBXS5LUZOpTUA8r0JaAhcAbKaWlpQlJkiQVyVwtSRuwqVOnMmzYMMaPH8/IkSPLHc56DR06lDlz5jBnzpxyh1K0+jw268nGDESSJDWMuVqS1Nxcd9119OzZs0UU+MWozxVqSZIkSVIzte+++7J8+XLat29f7lAqXXfddfTv379gQf3II4+QUmr6oEqoxoI6Ii4qYryUUrqsAfFIkqQ6MldLkvK1adOGTp06lTuMOuvQoUO5Q2iw2h6bNabIH0mS1DTGFPkjSWqFpk6dSkQwYcKEdV6PHz+eHXbYgY4dO7Llllty1VVXrXP8I488wjHHHMPWW29N586d6dmzJwcddBBPPln4jqJZs2YxatQo+vbtS4cOHdhiiy04/PDDefHFFwGICN58802efPJJIqLyp+Ke6aFDh9K/f//K8Y455hg6dOjAggUL1jnXa6+9RkRw1llnVWn/7W9/y9577023bt3o0qULQ4YM4Z577qn/h1ek2qZ8b9VkUUiSpGKYqyVJ63XTTTcxb948Tj75ZHr27Mntt9/O+eefT9++fTnuuOMq+02YMIGFCxdy0kkn0bdvX+bOncuvf/1r9t9/f5544gn22Wefyr7Tpk1j//33Z9WqVZx88snsuOOOLFy4kCeffJI///nP7LrrrkyaNImzzz6bXr16ccEFF1Qe27t374Jxjhgxgrvuuov//d//5fTTT6+yb+LEiZV9Klx44YVcccUVHHzwwVx22WW0adOG++67j6OOOoobbriB0047rSSfX22ipc9ZL7fBgwenadOmlTsMSVIrEREvppQGlzuOlszcLCnfzJkzGTRo0Lo7Hvo+/OcfTR9QbTbfCQ75adGHV1/lu+J1nz59eOWVV+jZsycAy5YtY8stt2TAgAE8++yzlccvXbqUjTbaqMqY8+bNY4cddmD33XfnwQcfBCClxE477cSsWbN4/vnn2Xnnnascs2bNGtq0ySZD9+/fn/79+zN16tR14q2+yvcnn3xC3759+cxnPsPzzz9f2S+lRP/+/enRowd///vfAfjrX//Krrvuyg9+8AN+/OMfVxn3iCOO4E9/+hNz586lW7dutX5mNf5+5KktN9c25VuSJEmS1MKNGjWqspgG6NKlC3vssQevv/56lX75xfRHH33E+++/T9u2bRkyZAjPPfdc5b7p06czY8YMRo0atU4xDVQW0/XVtm1bjj/+eF544QVeffXVyvapU6fy1ltvVbk6fccddxARjBgxggULFlT5Oeyww1iyZEmVLwsaS71X+Y6IwcAQYGPWLchd6ESSpDIzV0tSHTTgSnBLs/XWW6/Ttummm/L+++9XafvXv/7FBRdcwMMPP8zixYur7IuIyj9XFOK77LJLyWMdMWIE11xzDRMnTqy88jxx4sTKYrvCzJkzSSkxcODAGseaN29eyeOrrs4FdUR0Bu4FDgICSLkteX9OgElakqQyMFdLkgpp27btevt89NFH7LvvvixdupSzzjqLnXbaiW7dutGmTRt+8pOf8Kc//amyb8Vtw/lFdqnstNNOfP7zn+f222/niiuuYPny5fzud7/joIMOYvPNN68SQ0Tw0EMP1fj+dthhh5LHV119rlBfRJagrwAeB54ARgDvAT8AOgMnlTpASZJUZ+ZqSVJRHn/8cd555x1uu+02Ro0aVWXfhRdeWOX1dtttB8BLL7203nGLKbpHjBjB2WefzRNPPMG7777LkiVLqkz3BvjsZz/LH//4R/r167fee6AbU30mt38duDuldBHwcq5tbkrpYeAAoAMwsrThSZKkejBXS5KKUnGVt/qi1Y888kiV+6cBPve5z7HDDjtw2223MWPGjHXGyh+ja9euLFy4sF6xHHfccbRr146JEycyceJEevToweGHH16lz4knngjAD3/4Qz755JN1xnjvvffqdc5i1ecK9WeAn+f+XBFxB4CU0uqIuBM4lewbcEmS1PTM1ZKkouy9995svvnmjB49mjlz5tC3b1+mT5/OpEmT2GmnnfjHP9auiB4RjB8/nv3335/dd9+98rFZixcv5sknn+Tggw/mjDPOAGCPPfbg1ltv5Uc/+hGDBg2iTZs2DB8+fJ3VxPNtttlmHHLIIdxzzz2sWLGCk08+mU6dOlXps9tuu3HJJZdw8cUX8/nPf56jjjqKLbbYgnfffZcXX3yRBx98kJUrVzbOh5WnPgX1krz+S4A1wBZ5+z8ANq9+kCRJajLmaklSUXr27MnDDz/Meeedx9ixY1m9ejW77rorDz74ILfeemuVghqygvaFF17gsssu46677uKmm26iV69e7L777uy1116V/a644goWLlzIL3/5SxYvXkxKiTfeeKPWghqyad8PPPAAACedVPhupYsuuohdd92V66+/nuuuu46lS5ey2WabseOOO/KLX/yigZ9I3dT5OdQR8RfghZTSGbnXfyObRnZoZBPj/whslVLattGibYZ81qUkqZQa8hxqc3XG3CwpX12eM6wNV1M+h/ox4MiIqFhC7Wbg4Ij4F/A62b1Zt9ZjPEmSVFrmakmSmlCtU74jomNK6ePcy58Ck8g9fiOldGNEdAJOILtP6xbgqkaMVZIkVWOuliSpfNZ3D/W7uQVMbkspvQi8lr8zpfRz1i5+IkmSmp65WpKkMlnflO8PyFYDfT4ipkfEGRGxSRPEJUmS6sZcLUlSmdRaUKeUtiK732oyMAD4BTA3Iv43Ig6KYp7SLUmSSsZcLUlS+ax3UbKU0p9SSicCfYBvA9OBo4GHgDkRcUlEbNWoUUqSpBqZqyVJKo86r/KdUlqSUhqXUtoTGARcA7QHfgS8HhGPR8RxjRSnJElaD3O1JBVW10cFa8NSit+L+jw2K//Er6WUzgP6AsOBR4FhwMQGRyRJkhrMXC1Jmfbt27N8+fJyh6FmaPny5XTs2LFBYxRVUOfZHTgM2DP3emUDx5MkSaVlrpa0Qdtss82YO3cuy5Yt80q1SCmxatUqFi5cyNtvv82mm27aoPHW99isdUTE5sCJwChgO7JnXU4HbgXuaFA0kiSpwczVkrRW9+7dAXjnnXdYtWpVmaNRc9CuXTs6depEv3796NSpU8PGqkuniGhH9u32KOC/csctBn4F3JpSeqlBUUiSpAYxV0tSzbp3715ZWEulVGtBHRE7kyXm44GKa+FPkH3DfW9K6ePGDU+SJNXGXC1JUvms7wr19Nz238DlwPiU0pzGDEiSJNXL9NzWXC1JUhNbX0F9D9k33I8k7+CXJKk5MldLklQmtRbUKaWjmyoQSZJUf+ZqSZLKp6GPzZIkSZIkaYNkQS1JkiRJUhEsqCVJkiRJKoIFtSRJkiRJRWjRBXVEnBQRL0XE8oiYFxG/jojedTy2U0R8KyKmRMSc3BizI+LOiBjU2LFLkiRJklq2FltQR8TZwG+AD4DvAjcD/w1MjYiN6jBEf2AcsAnZ40ZOB+4E/guYHhHDGiFsSZIkSVIrsb7nUDdLEdELuBx4Adg/pfRJrv0F4P+RFdg/Xs8w84FdUkrTq419B/AScDUwuLSRS5IkSZJai5Z6hfoIoAswtqKYBkgpPQDMBk5Y3wAppferF9O59leAl4EdSxWsJEmSJKn1aakF9W657bMF9v0FGBgRXYsZOCLaAH2AeUXGJkmSJEnaALTUgnqL3HZugX1zgcjrU1+nkhXUv6mpQ0ScEhHTImLa/PnzizyNJEmSJKklK+s91BHREzirHodcn1JaSDbdG+DjAn1W5LZdCuxbXzxfBK4B/k4t92CnlMaRLWjG4MGDU33PI0mSJElq+cq9KFlP4OJ69L8dWAgsy73uCCyv1qdTbruMeoiIXYE/AO8Ah6aUVqznEEmSWr3crVDfBf6H7AkZ84G7gItSSkvrcHx74FzgRGBr4CNgKnBBSunVan2HAk/UMNQfUkpfKeY9SJLUWMpaUKeU5pBNz66vd3LbTwOzqu37NJDy+qxXRHwBeJTsEVzDUkqFppJLkrQhuhY4E7iPbBbXoNzrXSLigJTSmpoOjIgApgCH5LZjgd7Ad4C/RMQXc4uBVjcOeKpa29sNfSOSJJVaua9QF+sF4BRgT9YtqIcAr6WUPqrLQBGxC1kxvYSsmH6zlIFKktRSRcQOwBnAvSmlI/Pa3wCuB/4bmFzLEIeTFdPjUkr/k3f8JLInalwPHFDguGdTSrc3/B1IktS4WuqiZFPIpnqfHhFtKxojYjiwDXBHfueI6BURAyOiR7X2XYDHgKVkxfQbjR65JEktx7FkM8muq9Z+C9mtVet7TOWw3HZ8fmNKaTbZFej9I6JfoQMjYqOI6FRonyRJzUWLLKhTSvOBHwG7A4/lVt2+BLgTeJV1E//pwEzgqxUNEbEl2ZXpjYFbgS9GxAnVfjZq/HcjSVKztRuwBng+vzG3zsh01j7GsiYdc9tC65pUtA0psO8XZPdaL4+If0bEd3PTxyVJalZa6pRvUkrXRMT7wNlkU8Y+JFsk5ft1nO69FbBp7s9jaumz3gVXJElqpbYAFqSUCj1VYy7Zl9EdUkorazh+Rm67H9kTNACIiC6sLaQ/k9d/FfD/gAfJ1kLZAjiZ7IvyzwOjinoXkiQ1khZbUAOklCYAE+rQbwzViuaU0lSKWxBNkqQNRRcKP6ISqj6msqaC+nbgQuDSiFhKdptVL+CS3LbieABSSs+Q3XddKSJuISuwR0bErSmlpwudKCJOIVtfhX79Cs4ilySp5FrklG9JktQklrF22nZ1631MZUppEdmiY/8iW7l7Ntn08Y2AK3PdPqwtgNwq4j/JvTy0ln7jUkqDU0qDe/fuXduQkiSVjAW1JEmqyTtAr4goVFR/mmw6eE1XpwFIKf0jpbQL8FngS8BnU0pfYm2h/mqNB681J7ftVVsnSZKamgW1JEmqyQtk/1bYPb8xt/r254FpdR0opTQrpfR/KaWKx10eQnZ1+pk6HP7Z3HZeXc8nSVJTsKCWJEk1+S2QgLOqtX+L7N7nysdURkSf3CMqu7AeEXEGsCNwbUppaV77pgX6dmTtOigP1DN+SZIaVYtelEySJDWelNI/IuKXwOkRcS/Z4mCDgDOBJ4HJed1/Aowge/b01IrGiHiQ7N7pV8iK84OAI4A/AFdUO+UfI+Id4EXWrvJ9AtkV6rEppeeRJKkZsaCWJEm1OYvsHuZTgC8DC4CxwEW5BcPW51ngGGBk7vVM4DTg5pTSJ9X63kNWbJ8B9CR7dOVLwMUppTuLfwuSJDWOSCmVO4YWbfDgwWnatDrfQiZJUq0i4sWU0uByx9GSmZslSaVUW272HmpJkiRJkopgQS1JkiRJUhEsqCVJkiRJKoIFtSRJkiRJRbCgliRJkiSpCBbUkiRJkiQVwYJakiRJkqQiWFBLkiRJklQEC2pJkiRJkopgQS1JkiRJUhEsqCVJkiRJKoIFtSRJkiRJRbCgliRJkiSpCBbUkiRJkiQVwYJakiRJkqQiWFBLkiRJklQEC2pJkiRJkopgQS1JkiRJUhEsqCVJkiRJKoIFtSRJkiRJRbCgliRJkiSpCBbUkiRJkiQVwYJakiRJkqQiWFBLkiRJklQEC2pJkiRJkopgQS1JkiRJUhEsqCVJkiRJKoIFtSRJkiRJRbCgliRJkiSpCBbUkiRJkiQVwYJakiRJkqQiWFBLkiRJklQEC2pJkiRJkopgQS1JkiRJUhEsqCVJkiRJKoIFtSRJkiRJRWjRBXVEnBQRL0XE8oiYFxG/jojeDRjvqohIEfFRKeOUJEmSJLU+Lbagjoizgd8AHwDfBW4G/huYGhEbFTHe54GzAYtpSZIkSdJ6tSt3AMWIiF7A5cALwP4ppU9y7S8A/4+swP5xPcZrC9wCPAR0BwaXOmZJkiRJUuvSUq9QHwF0AcZWFNMAKaUHgNnACfUc70xge+CMUgUoSZIkSWrdWmpBvVtu+2yBfX8BBkZE17oMFBFbApcBl6SU3ixRfJIkSZKkVq6lFtRb5LZzC+ybC0Ren/X5FfAG8PO6njwiTomIaRExbf78+XU9TJIkSZLUipT1HuqI6AmcVY9Drk8pLSSb7g3wcYE+K3LbLgX2VT//scDBwN4ppdV1DSKlNA4YBzB48OBU1+MkSZIkSa1HuRcl6wlcXI/+twMLgWW51x2B5dX6dMptl1GLiNgEuA64NaX053rEIEmSJElSeQvqlNIcsunZ9fVObvtpYFa1fZ8GUl6fmlwMbATcEhED8to7A5Fr+zil9O8i4pMkSZIktXLlvkJdrBeAU4A9WbegHgK8llJa3/OktyQrqJ+rYf/rwAxgxwbEKUmSJElqpVpqQT0FuB44PSIm5z2HejiwDfCj/M6551b3At5NKX2Qa76SbAp5dZcAWwMnAh8U2C9JkiRJUsssqFNK8yPiR8DPgMci4k6yqd6jgVfJ7o3OdzrZFO9RwITcGIUeuUVEnA5smVK6p1GClyRJkiS1Ci2yoAZIKV0TEe8DZ5Ndrf4QuAv4fh2me0uSJEmS1CAttqAGSClNIHfFeT39xgBj6jjm0AaEJEmSJEnaQLQpdwCSJEmSJLVEFtSSJEmSJBXBglqSJNUoItpExNkR8WpErIiIf0fENRGxUR2Pbx8RP4yImRHxcUS8HxG/i4iBNfTvERFjI2Ju7nwzIuLUiIjSvjNJkhrOglqSJNXmWuDnwCvAGcDdwJnAAxFR678jckXwFOAK4DXWLiS6N/CXiNi+Wv8OwKPAt4Hf5s73GnAj2dM6JElqVlr0omSSJKnxRMQOZEXtvSmlI/Pa3yArjP8bmFzLEIcDhwDjUkr/k3f8JODl3BgH5PX/JrAbcGZKaWyu7ZaI+B3ww4gYn1J6s+HvTJKk0vAKtSRJqsmxQADXVWu/BVgGnLCe44fltuPzG1NKs4GngP0jol/eruNy495SbZzrgPbAMXWMW5KkJuEVakmSVJPdgDXA8/mNKaUVETE9t782HXPbZQX2VbQNAd7KTR//AvDXlNKKan2fz8WxvvOV1kPfh//8o0lPKUkqkc13gkN+2uin8Qq1JEmqyRbAgpTSxwX2zQV65e57rsmM3Ha//MaI6EJWSAN8JrfdGOicG7eK3PnfBz5d04ki4pSImBYR0+bPn19LSJIklY5XqCVJUk26AIWKaYAVeX1W1tDnduBC4NKIWAo8BvQCLsltK47P39Z2vi417COlNA4YBzB48OBUU796aYIrG5Kkls0r1JIkqSbLWDttu7pOeX0KSiktIlt07F9kxe5ssunbGwFX5rp9WG2c2s5X47kkSSoHC2pJklSTd8imdRcqcj9NNh28pqvTAKSU/pFS2gX4LPAl4LMppS+xtnB+NbddBCynwLTu3Pk3pcB0cEmSysmCWpIk1eQFsn8r7J7fGBGdgM8D0+o6UEppVkrp/1JKs3JNh5BdnX4mt38N8FdglwIF/O65OOp8PkmSmoIFtSRJqslvgQScVa39W2T3M99R0RARfSJiYG7BsVpFxBnAjsC1KaWlebvuzI17SrVDzgJWA3fVM35JkhqVi5JJkqSCUkr/iIhfAqdHxL3Ag8Ag4EzgSWByXvefACPInj09taIxIh4ku3f6FbLi/CDgCOAPwBXVTnkLMAr4eUT0B2YChwJfBS5PKb1R0jcoSVIDWVBLkqTanAXMIbtq/GVgATAWuCg3TXt9ngWOAUbmXs8ETgNuTil9kt8xpbQyIg4ALgeOJbtv+l/AGcAvG/g+JEkquUipNE+W2FANHjw4TZvmLV2SpNKIiBdTSoPLHUdLZm6WJJVSbbnZe6glSZIkSSqCBbUkSZIkSUWwoJYkSZIkqQgW1JIkSZIkFcFFyRooIuYDb5Y7jhLqRbaCq/ws8vlZrOVnsZafxVql/Cy2TCn1LtFYGyRzc6vmZ7GWn8VafhZr+Vms1SS52YJaVUTENFeXzfhZrOVnsZafxVp+Fmv5Wagx+fu1lp/FWn4Wa/lZrOVnsVZTfRZO+ZYkSZIkqQgW1JIkSZIkFcGCWtWNK3cAzYifxVp+Fmv5WazlZ7GWn4Uak79fa/lZrOVnsZafxVp+Fms1yWfhPdSSJEmSJBXBK9SSJEmSJBXBglqSJEmSpCJYUEuSJEmSVAQL6g1cRGwbEZdGxF8iYn5ELImI6RFxQURsVO74yikiukTEGxGRIuKGcsdTDhGxSUT8LCJmRcSK3O/IExGxT7lja0oR0TUifhgR/8j9P7IgIv4cESMjIsodX2OIiB9ExN0RMTv3/8Cc9fTfLiLuj4hFEbE0Ip6KiP2aKNxGVdfPIjInRMT/5v6fWRYRb0XE/4uIIU0ctlowc3PNzM3m5grmZnNzc8nN7UoxiFq0bwCnAf8PuANYBQwDLgeOjog9UkrLyxhfOV0K9Cp3EOUSEVsCU4GuwK3AP4EewM7Ap8sXWdOKiDbAQ8AXgd8AY4EuwLHAeGAQcH7ZAmw8PwYWAn8FetbWMSK2Af4MrAauAj4AvgU8HBGHpJQea9xQG11dP4uOwCRgOvC/wBtAH+DbwLMRcVJK6fZGjVSthbm5ZuZmc7O52dwMzSg3u8r3Bi4iBgOvp5Q+qNZ+OXABcEZKaYP7BjgivgA8D5wHXAP8MqV0enmjaloR8RTQH9g9pfRumcMpm4jYkywhXZdSOjuvvQPwKrBJSqlnmcJrNBGxdUppdu7PLwNdU0r9a+h7F3AksGtKaXqurSswA1gBDEwtONnU9bOIiHbAXimlJ6u1f4rss/gE6JNSWtP4UaslMzcXZm42N1cwN5ubm1Nudsr3Bi6lNK16ws75bW67Y1PG0xxERFvgFuCPwL1lDqcsImJfYG/gqpTSuxHRPiK6lDuuMume276T35hSWgksAJY2eURNoCJJrU9u+ulhwNSKhJ07/iPg18C2wG6NEWNTqetnkVJaXT1h59rnAU8Cm+V+pFqZm9dlbjY3V2NuroW5uUq/Rs/NFtSqSd/cdl5ZoyiPs4GBwAb1rXc1h+a2b0XEA8ByYGlE/DMiTihjXOXwPLAYOC8ijoqIfrl7kn4C7AqMKWdwzcDOZNOpni2w7y+5bYtO2iXSF1hJ9rskFcvcbG4GczOYm9fH3Fw3JcnN3kOtdeS+Bb6I7J6LyWUOp0lFxFbAJcClKaU5EdG/zCGVy3a57S3A68AIsr+YzwEmRUT7lNL4cgXXlFJKiyLiMLJvdO/K27UEODKldH9ZAms+tsht5xbYV9G2wdzXV0hEHArsDkxKKa0odzxqmczN5mbMzZXMzetlbl6PUuZmC2oVch2wB/DDlNJrZY6lqf2KbLGCn5c7kDLrltsuAYblplAREfcBs4EfR8RvNqB7QT8CXiZbIOjPwCZkCwZNjojDU0qPljO4MquYbvhxgX0rqvXZ4ETEZ8kWQ5kLjC5zOGrZrsPcbG7OmJsz5uaamZtrUerc7JRvVRERl5FNpxqXUvpJueNpSrnpUgcB304prSp3PGVWsXrsnRUJG7JvhMkS1+as/aa8VYuIncgS9aMppXNTSvellG4lu4/tP8AtuStHG6pluW3HAvs6VeuzQcldVXscSMAhKaX5ZQ5JLZS52dycY27OMTevl7m5Bo2Rmy2oVSkixgAXkj1u4NvljaZpRURHsm++HwT+ExEDImIAsGWuS49cW89yxdjE3s5t/1NgX8Wqohs3USzldjZZ8rk7vzGltAz4A9nvSP+mD6vZqFgQptDUsYq2QlPOWrXclNQnyB5tc2BK6R/ljUgtlbnZ3JzH3LyWubl25uYCGis3W1ALgIi4GLgYmAh8syUvo1+kzkBv4Mtk9yVV/EzN7T8h9/qb5QiuDJ7PbfsW2FfR9l4TxVJuFYmn0Dfd7aptN0T/IJtStmeBfXvkttOaLpzyyz0n9gmyZ8MemFJ6qcwhqYUyN5ubqzE3r2Vurp25uZrGzM0+h1pExEVki31MAkZuQPfeVIqI9sDhBXb1Bm4ke0zHrcDfU0r/bMrYyiEiNgbeBD4ke07hR7n2PmT/eHknpbRtGUNsMhFxLXAWcH5K6aq89p7AK2TfkG+WUlpdlgCbQB2edXk38DXgCymlv+XaKp51+TGwXWspBOrwWWxJ9o/9jckS9gtNF51aE3Ozubk6c/Na5mZzc75y52YL6g1cRJwG3AC8BfwIqJ6w523Iizrkpoa8AfwypbRBPaojIk4Bbib7i/c2oANwKtAH+EpK6ZEyhtdkcn8J/5XsL+E7gGfIFj75Ftl0stNSSjeWLcBGEhEnsnZa5Rlk//2vyb1+M6U0Ka/vALIrJ6uAa8n+sfctYCfgyymlh5sq7sZQ188iIroBfwO2Asay9mpSvkdzz76UamRurp252dxsbgbMzc0mN1tQb+AiYgLZYxdq8mRKaWjTRNP8bMhJGyAivgacR/aX7xqy5xleklJ6pqyBNbGI2IbscTX7A58iWxhmOnBdSuneMobWaCJiKvClGnav8/dCRAwCfpo7pgPZP3TGpJQea8Qwm0RdP4u8vy9qMyylNLVUsal1MjfXztxsbgZzcwHm5rWaNDdbUEuSJEmSVAQXJZMkSZIkqQgW1JIkSZIkFcGCWpIkSZKkIlhQS5IkSZJUBAtqSZIkSZKKYEEtSZIkSVIRLKglSZIkSSqCBbUkSZIkSUWwoJYkSZIkqQgW1JIkSZIkFcGCWpIkSZKkIlhQS5IkSZJUBAtqSZIkSZKKYEEtSZIkSVIRLKilJhARKSJSueOoSURMyMU4ssTjNtv3HRFHRMTUiFgcER9FxHMRMaqIcdpGxMUR8f8iYlZEfBARKyPi7Yi4KyL2boz4JUkN05xzFJibG5Kbc2NNrXivNfzcVOr4tWFqV+4AJKmpRcRFwCXASuBx4GPgQOC2iNgzpXRKPYZrD4wBlgH/AP4OrAEGAUcBX4+Is1NKvyjdO5AkqXUpcW7O9zDwnwLtzxY5nlSFBbWkDUpE7EGWsD8E9kkp/T3X3g94GvhWRDySUrqnjkOuBPYFnksprax2riOB3wI/i4j7Ukpvlep9SJLUWjRCbs7305TS1JIFK1XjlG9JG5rzc9ufVCRsgFyxW7Hv+3UdLKW0JqX0VPViOrfvd8CTZF9eDi06YkmSWreS5mapKVlQS2UUEQdExI0R8feIWBgRKyJidkTcFBFb1nBMxT1BQyPiSxHxWO6+3YURcX9EfDbXr01EjI6IGRGxPCLmRsSVEdFhPTENjog/5MZbGhFPR8RXaum/TUTcGRHzI2JZRPwtIk4t9fsuhYjoCPxX7uWdBbrcRzbFbNeI6Fui067ObT8u0XiSpEZkbt4gcrNUMhbUUnndBIwElgN/Ah4hu5r5P8BfI2K7Wo49nOweoy5k9wctyrX9X0T0Au4imz71n9zYPYDzcuesyR5kU6u2yY35ErAX8EBE/E/1zhGxI/AC8N9k07SmAAuBGyLiukZ63w2xHdAZeD+l9Gb1nSmlFcCM3MvPN/RkEXEIMAxYSnalWpLU/JmbW1du/lpEXJ/7YuCCiNi9+FClAlJK/vjjTyP/ACn7322d9sOB7tXa2gGX5475Y4Fjpub2fQIckdfekSwBJuBl4BWgf97+ncju912T357bN6EiRuBKIPL2fTV3rhXA1tWOeyl3zK+Atnnt+5AVkaV832PyYqzzT7UxhufaX6rlv9WUXJ/Ti/jv/KPcZ/nbvM/mQ+Dwcv8O+uOPP/74U/XH3FyS991sc3Pef5NCP38ANin376A/rePHRcmkMkopTSnQthq4MLLHRBwYEd1SSksKHH5nSun+vOM+johfkF0R3QE4IKU0J2//PyLiD8ARwJeAOazr38CFKaWUd9x9EXEv8HWyb6nPB4iIfcm+KV4AjE4pfZJ3zFORPY7inBK+7+nAbwqNVw/dctultfT5qFrf+vgyMCTv9fvANwu9X0lS82Rurtf7nk7zzc3/B4wHngHmAp8C9gOuAA4lu8K/T0ppTf3ClaqyoJbKLHdf0peBbckSRdvcrnZkt2UMIPu2ubpHCrTNym1XkX0zW9P+LWoI556U0qoC7beTJe1989q+lNven1JaVuCYSdSQtKH+7zv3D5T7axqvjqJiuAaOU1BKaQ+AiOgBbA/8ELgvIiYA38j/x5AkqfkyN7f83JxSuqha0xyyR3A9QvaIyy8CRwJ3l/K82vBYUEtlFBGXk61a2baWbt1raH+7QFvFt7v/yf9WusD+jjWMuc69Szlzctv8xUA+XW1fTceso4HvuyEqvlXvWkufjar1rbeU0gfAsxFxONn9biPJ/hHV0G/xJUmNzNzcOnNzhZTS2xExnuyLhUOxoFYDWVBLZRIRXwcuILvH9izgCbJkuyK3/8/Anqz95ra62qYoFTt9qaZvh2v79rimYwq2F/u+I+IIsilx9ZJSGpn3suIfJZ+p5ZCKf5jU9A+Y+px7TURMAg4guzfNglqSmjFzc+vPzTmv5bY1zQqQ6syCWiqfr+e2F6SUxhfYP6Apg8nZcj3tc/PaKv7cv4Zjtqqhvdj3/XlgRA37ajMy78+vki3gsmlE9EvZ8y0r5R7dsWPu5fQizlXI/Ny2d4nGkyQ1HnPzhpGbN8ltP6q1l1QHPjZLKp+Kv8z/XX1HROxPeQqwr0dEoS/ajstt/y+vreIxUEdEROcCxxxfwzmKet8ppTEppajvT7UxPiabgg3Z40SqO4Jsyt1fU0rrxFekYbntrFp7SZKaA3NzNa0tN0dEkN07DTCtoeNJFtRS+bya234rIjpUNEZEf7JHXZRDP+DSXLKpiOcwsm+uPwZuzuv7FNk3xb2BqyOibd4xewGn1nCOcr/vq3LbH+ae1Vlx/r55+66sflBETIyIVyPi9Grth0XEVyKiTbX2thExEjgz13Rrqd6AJKnRlDtHFWJuztQnN+8XEcPz33+uvSdwGzCY7H7s20r3FrShsqCWyud6snuVvgy8HhF3RcRDwEzgXeDPZYjpZmA08EpETI6Ip8hW72wDnJVSml3RMbdi9UnAIuA04LWIuDMiHif7hrymArKs7zul9GfgUqAH8GJE/CEi7sudvx9wW0rprgKH9gO2A3pVa/8C8AAwNyIejIg7IuJhsvu8xpPdWjM6pfR047wjSVIJmZtbR27eGfh/ZLn5oVxufoJsUbaRZMX00SmleY3xfrRhsaCWyiSlNAvYFbiHrOgaTnZv05XAQWSP12hqfwH2ISsGD83F9ywwPKV0U/XOKaV/ALsB/wv0JJuWtRnZgiZnFTpBc3jfKaWLyaZ7PUf2fg8k+3b+mymlk+s53L3Az8iS9C7AUcBeZP8wuRnYNaX089JELklqTM0hRxVgbq5/bn4SuIls1fUvkOXm3cg+w2uAHVNKfyxR6NrAhY9FlSRJkiSp/rxCLUmSJElSESyoJUmSJEkqggW1JEmSJElFsKCWJEmSJKkIhR4Sr3ro1atX6t+/f7nDkCS1Ei+++OKClFLvcsfRkpmbJUmlVFtutqBuoP79+zNt2rRyhyFJaiUi4s1yx9DSmZslSaVUW252yrckSZIkSUWwoJYkSZIkqQgW1JIkSZIkFcGCWpIkSZKkIlhQS5IkSZJUBAtqSZIkSZKK0GIL6oj4QUTcHRGzIyJFxJx6Ht8+Im6KiBcjYkFEfBwRb0TEbyNil0YKW5IkSZLUSrTk51D/GFgI/BXoWcTxHYDBwDPAJGAJ0A8YBTwXEQenlP5UmlAlSZIkSa1NSy6ot0kpzQaIiJeBrvU5OKW0lKygriIibgLeAr4HWFBLkiRJkgpqsVO+K4rpRvAesALYuJHGlyRJkiS1Ai35CnVJRERbsuK5HfAZsivTXYEHmzKOSx6YwSvvfNiUp5Qklcj2W3Tn4uE7lDsMlZi5WZJarqbKzRt8QQ0MAv6R9/oD4Ce5n4Ii4hTgFIB+/fo1anCSJEmSpObJghreAA4kW6RsAHAC0APoCKwudEBKaRwwDmDw4MGpFEF4ZUOSpObF3CxJWp8NvqDOLU72WMXriLiNbOXwe4H/KldckiRJkqTmrcUuStZYUkofkRXTB0XENuWOR5IkSZLUPFlQF9Y5t92krFFIkiRJkpqtDaKgjog+ETEwIrrktfWOiHXef0RsDhwFfATMaMIwJUmSJEktSIu9hzoiTgS2zL3sDXSIiAtzr99MKU3K6/4TYAQwDJiaazseOCsi7iNbmGwlsG2u38bAN1NKyxr1TUiSJEmSWqwWW1ADJwNfqtZ2WW77JDCJ2j0F7AYMBzYnW+V7HtkCZb9IKf25dKFKkiRJklqbFltQp5SG1qPvSGBktbYXya5SS5IkSZJUbxvEPdSSJEmSJJWaBbUkSZIkSUWwoJYkSZIkqQgW1JIkSZIkFcGCWpIkSZKkIlhQS5IkSZJUBAtqSZIkSZKKYEEtSZIkSVIRLKglSZIkSSqCBbUkSZIkSUWwoJYkSZIkqQgW1JIkSZIkFcGCWpIklURE/CAi7o6I2RGRImJOCca8KzfWyyUIUZKkkmpX7gAkSVKr8WNgIfBXoGdDB4uIrwBHAssbOpYkSY3BK9SSJKlUtkkpbZpSOhB4pyEDRURX4Ebgl8B7pQhOkqRSs6CWJEklkVKaXcLhriCbSXdhCceUJKmknPItSZKalYjYHTgdODal9GFElDskSZIK8gq1JElqNiKiHXAL8EhK6a56HHdKREyLiGnz589vvAAlScpjQS1JkpqTc4HPAqfV56CU0riU0uCU0uDevXs3TmSSJFVjQS1JkpqFiBgAXARcUeL7sSVJahTeQy1JkpqLa8geu3Vfrriu0A7okGtbmlJ6tyzRSZJUjQW1JElqLrYEtgBm1LD/deAPwFeaLCJJkmphQS1JkppcRPQBegBvpZSW5Zq/B/Qs0P1GYAVwDuDVaUlSs2FBLUmSSiIiTiS7ygzQm2yadsVzpN9MKU3K6/4TYAQwDJgKkFJ6rIZxfwZ8lFK6pzHiliSpWBbUkiSpVE4GvlSt7bLc9klgEpIktSIW1JIkqSRSSkPr0XckMLKOffsXFZAkSY3Mx2ZJkiRJklQEC2pJkiRJkopgQS1JkiRJUhFabEEdET+IiLsjYnZEpIiYU8/jN46I70bEIxHx74hYHhGvRcS4iPhMI4UtSZIkSWolWmxBDfwY2A/4F7CoiOOHANcACbgBOB14EDgB+EdEbF+iOCVJkiRJrVBLXuV7m5TSbICIeBnoWs/jXwW2Syn9K78xIv4APApcCny9FIFKkiRJklqfFltQVxTTDTh+Tg3tj0XEQmDHhowvSZIkSWrdWvKU70YRET2AbsC8csciSZIkSWq+LKjXdSHQHvhNTR0i4pSImBYR0+bPn990kUmSJEmSmg0L6jwR8XVgNPAwML6mfimlcSmlwSmlwb17926y+CRJkiRJzYcFdU5EHArcAbwIHJ1SSmUOSZIkSZLUjFlQAxFxMHAvMAM4KKX0YZlDkiRJkiQ1cxt8QR0R/wXcR/YYrQNSSsU801qSJEmStIHZIArqiOgTEQMjoku19oOA+4F/AvunlBaWIz5JkiRJUsvTYp9DHREnAlvmXvYGOkTEhbnXb6aUJuV1/wkwAhgGTM0dPxiYAgTZAmSHRESVc6SUbm+s+CVJkiRJLVuLLaiBk4EvVWu7LLd9EphE7XYEOuX+fG0NfSyoJUmSJEkFtdiCOqU0tB59RwIjq7VNACaUMCRJkiRJ0gZkg7iHWpIkSZKkUrOgliRJkiSpCBbUkiRJkiQVwYJakiRJkqQiWFBLkiRJklQEC2pJkiRJkopgQS1JkiRJUhEsqCVJkiRJKoIFtSRJkiRJRbCgliRJkiSpCBbUkiRJkiQVwYJakiRJkqQiWFBLkiRJklQEC2pJkiRJkopgQS1JkiRJUhEsqCVJkiRJKoIFtSRJkiRJRbCgliRJkiSpCBbUkiRJkiQVwYJakiRJkqQiWFBLkiRJklQEC2pJklQSEfGDiLg7ImZHRIqIOfU8fuOI+G5EPBIR/46I5RHxWkSMi4jPNFLYkiQVzYJakiSVyo+B/YB/AYuKOH4IcA2QgBuA04EHgROAf0TE9iWKU5KkkmhX7gAkSVKrsU1KaTZARLwMdK3n8a8C26WU/pXfGBF/AB4FLgW+XopAJUkqBQtqSZJUEhXFdAOOn1ND+2MRsRDYsSHjS5JUak75liRJzVpE9AC6AfPKHYskSfksqCVJUnN3IdAe+E1NHSLilIiYFhHT5s+f33SRSZI2aBbUkiSp2YqIrwOjgYeB8TX1SymNSykNTikN7t27d5PFJ0nasFlQS5KkZikiDgXuAF4Ejk4ppTKHJElSFRbUkiSp2YmIg4F7gRnAQSmlD8sckiRJ62ixBXVE/CAi7o6I2RGRImJOEWMcHRHjI+JvEbEqN07/0kcrSZLqKiL+C7iP7DFaB6SUinmmtSRJja7FFtTAj4H9gH8BxSba7wD/DSzPjSNJkppARPSJiIER0aVa+0HA/cA/gf1TSgvLEZ8kSXXRkp9DvU3F8y4j4mWgaxFjnAS8k1JaHRE3ANuVMkBJkjYkEXEisGXuZW+gQ0RcmHv9ZkppUl73nwAjgGHA1Nzxg4EpQJAtQHZIRFQ5R0rp9saKX5Kk+mqxBXVFMd3AMd4qRSySJAmAk4EvVWu7LLd9EphE7XYEOuX+fG0NfSyoJUnNRostqCVJUvOSUhpaj74jgZHV2iYAE0oYkiRJjarJCuqI6AxsDXQHPgRmp5SWN9X5SykiTgFOAejXr1+Zo5HU3HzwwQcsWLCAlStXljsUNQNt27alW7dubLLJJnTs2LHc4VTRmnKzJNXG3Kx8pczNjV5QR8SewCVkU8Dyz7cqIqYCF6WUnm/sOEoppTQOGAcwePBgn4kpqdKKFSuYN28effv2pXPnzlS//1MblpQSq1at4sMPP+Stt96iX79+zaKobo25WZJqYm5WvlLn5kYtqCPiGGAi0B54E/g72Tfg3YGdgYOAYRFxXErpd40ZiyQ1hfnz59O7d2+6dOmy/s5q9SKCDh060KtXLwAWLlxInz59yh2TuVnSBsXcrHylzs2N9tisiPgU2VXcecCBKaWtUkqHp5ROzG23Ikva7wG3RsRmjRWLJDWVFStW0LVrMQ8dUGvXvXt3lixZUtYYzM2SNkTmZtWkFLm5MZ9D/Q2gM3BISunxQh1SSo8BhwIbUW1hEklqiVavXk27dq73qHW1b9+eTz75pNxhmJslbXDMzapJKXJzYxbU+wF/TCnNqK1TSukfwEPAgY0VSET0iYiBEeE8D0mNznuzVEgz+b1oNrlZkppSM/k7WM1MKX4vGvOrmu2B6+vY9xngzPoMHhEnAlvmXvYGOkTEhbnXb6aU8p91+RNgBDAMmJo3xr7AvrmXg3Pb0yNiMUBK6fL6xCRJUjPXqLlZkqQNTWMW1D3J7tGqi3nAxvUc/2Sy1UnzXZbbPglMYv32Ay6u1jY6788W1JKk1qQnjZubJUnaoDTmlO/OQF0f9LYKqNda5SmloSmlqOFnaLW+I3PtU6u1j6llDOeFSJJam0bNzZIkbWgas6AG8BnNkiQ1L+ZmSZJKpLGXu7s1Im5uBnFIkqSMuVmSpBJpzGT5f/gtuCS1akuWLKFbt27lDkN1Z26WpFbO3Ny0Gm3Kd+4e52H1+WmsWCRJhc2ZM4cjjzyS7t2706NHDw4//HDeeOMN+vfvz9ChQ6v0jQhGjhzJ448/zt57703Xrl0ZPnx45f7777+fvfbai65du9K1a1f22msvpkyZss45K8apbsKECUQEU6dOrWwbM2YMEcGMGTM488wz2XzzzencuTNDhgzh8ccLPkZZtTA3S1LzZ25uWZzOJUkbqPfff5999tmHefPm8e1vf5tBgwbx1FNPMWzYMJYuXVrwmGnTpvG73/2Ob33rW4wYMaKy/cYbb+S0005j4MCBXHjhhUQEEyZM4IgjjuDmm2/mlFNOaVCsJ510Em3btuX8889nyZIl3HzzzRx88ME89NBDHHDAAQ0aW5Kk5sLc3PJYUEvSBurKK6/k7bff5vbbb+f4448H4NRTT+W8887j6quvLnjMjBkzePTRR6skykWLFnHeeeexzTbb8Nxzz9G9e/fKsXbZZRdGjx7N0UcfTc+ePYuOtV27djz11FN06NABgG984xsMHDiQM844g5kzZxY9riRJzYm5ueVp7FW+JUnN1AMPPECfPn049thjq7R/73vfq/GYz33uc+t86/zoo4+ydOlSzjzzzMqEDdC9e3fOOOMMPvroIx577LEGxXr22WdXJmyAvn37cvzxx/Pqq69uUElbktS6mZtbHgtqSdpAvfHGGwwYMIA2baqmgs0226zGb6y33XbbguMA7LDDDuvs23HHHQGYPXt2g2IdNGjQOm3bb799ScaWJKm5MDe3PBbUkqQ669KlyzptKZVm0ejVq1fXuC8iGu28kiS1ZObm8mqUgjoi+kVE58YYW5JUGv3792fWrFmsWbOmSvt7773H4sWL6zzONttsA2T3cFX3yiuvALD11ltXtm2yySYsXLhwnb61fZtdMU6+iulk+WOrZuZmSWr+zM0tT2NdoX4D+GrFi4j4U0Ts30jnkiQVYfjw4bz77rvceeedVdp/9rOf1WucAw88kI022oixY8eyZMmSyvYlS5YwduxYunbtyoEHHljZvu222/Lss8+ybNmyyrZFixYxfvz4Gs9x7bXXsnLlysrXb7/9NpMnT2a77bYrOOVMBZmbJamZMze3PI21yvcqoH3e66HArxvpXJKkIpx//vlMnjyZUaNG8fzzzzNw4ECefvppnnnmGXr16lVwKlchPXv25KqrruK0005jyJAhlc+xnDBhArNmzeLmm2+mR48elf1PP/10TjjhBPbbbz9OPPFEFi9ezC233MKWW27Jf/7zn4LnWL16Nfvssw/HHnssS5Ys4aabbmL58uVcf/31Df4cNiDmZklq5szNLU9jFdRvAIdFxP0ppQ9ybRvehHpJasZ69erF008/zejRo7ntttuICIYNG8YTTzzBbrvtRufOdZ8d/J3vfIc+ffpw9dVXc8kllwDZqqP33XcfRxxxRJW+xx9/PO+88w433HAD55xzDltvvTUXXXQRbdq04bnnnis4/sSJE7npppv46U9/yuLFi9l5552ZMGFClW/XtV7mZklq5szNLU80xo3jEfEd4Abql6hTSqnFPRd78ODBadq0aeUOQ1IzMXPmzBY/zen999+nV69e/M///A833XRTWWMZM2YMl1xyCW+88Qb9+/cvayylUJffj4h4MaU0uNTnNjdL2lCZm0vL3FxVoyTJlNKNEfEKcCDQBxgBPA1sOOunS1ILsHz58nW+7b7yyisBNrhvmFs7c7MktQzm5pal0b51TilNBaYCRMRI4OaU0uTGOp8kqf4OOeQQttxySwYPHswnn3zC448/zu9//3u++MUvrjMdTC2fuVmSmj9zc8vSVNO4tgLmN9G5JEl1NHz4cCZOnMj999/P8uXL6du3L6NHj+biiy+mbdu25Q5PjcvcLEnNkLm5ZWmUe6hrPFlEd+AAoOLBZLOBR1NKS2o+qnnzPi1J+VrDfVpqPOW8h7qW85mbJbVq5mbVplneQ11DEN8ErgG6AhXrvSfgo4g4J6V0a1PFIkmSzM2SJDVUkxTUEXEYMI7sW++LgJdzu3YAzgDGRcR7KaUHmiIeSZI2dOZmSZIarqmuUJ8HzASGpJQ+ymt/PCLGA38BzgdM2pIkNQ1zsyRJDdSmic7zOWBCtYQNQO4erd/k+kiSpKZhbpYkqYGaqqCGtfdmFdJ0K6NJkqQK5mZJkhqgqQrqvwEjImKj6jsioiswMtdHkiQ1DXOzJEkN1FT3UP8MuBf4a0RcD7ySa69Y+GQA8LUmikWSJJmbJUlqsCYpqFNK90fE6cCVwFjWTiMLYClwekppSlPEIkmSzM2SJJVCk91DnVK6EfgMcAzwA+CHwNFA35TSr5oqDklSyzJ16lQiggkTJpQ7lFbH3CxJKoa5ea2mmvINQEppMXB3U55TktT8TZ8+nfvvv5+RI0fSv3//coezQTE3S5IKMTfXTZMW1JIkFTJ9+nQuueQShg4duk7S3nfffVm+fDnt27cvT3CSJG2AzM1105SPzSqpiPhBRNwdEbMjIkXEnCLHOTQi/hwRSyNiYW7MrUocriSpSG3atKFTp060bdu23KFoPczNkrRhMDev1WILauDHwH7Av4BFxQwQEV8Dfg90Bs4Frgb2BZ6JiC1KFKcktTpLlizhwgsvZMiQIfTq1YuOHTsyYMAAvv/977Ns2bIqfVNK3HLLLQwZMoSuXbvStWtXdtppJy666CIAxowZw6hRowAYNmwYEUFEMHLkSGDd+7RmzpxJRHDOOecUjO3YY4+lQ4cOzJ8/v7Lt3Xff5dRTT6Vfv3506NCBLbbYglNOOYX33nuvxJ/MBs/cLEllYm4uj5Y85XublNJsgIh4Gehan4Mjoj3Zqqb/BvZJKX2Ua38IeBEYA5xSyoAlqbWYO/f/s3fn8XHV9f7HX5+kWZs2mdC9maZsQtkEKS3IYpHlAl4WQeSydRHlJ7JckCtcBJFFRFAWwQWLBWyhKiCIeFlFWkEUKFCFsliEpklbSksm3ZK0afL9/XFmJpNkssx+Jnk/H488DjnrJ0NOv/mc7/d8vqv45S9/ySmnnMIZZ5zBsGHDWLx4MTfffDNvvPEGTz/9dHTfs88+mwceeIDp06dz5ZVXUlVVxbvvvsvDDz/Mddddx8knn8yaNWuYO3cu3/72t5kyZQoAO++8c9xrT5kyhQMOOICFCxfywx/+sMvT8Y0bN/LYY49x7LHHMnr0aABWrlzJQQcdxLZt2zjnnHPYeeedef/99/n5z3/O888/z5IlS6isrMzgpzWkqG0WEckRtc25kbcJdaTBTsHngAnA1ZEGO3zepWa2CDjNzM53zrWleB0REa59fBlvr96Y6zC62GPCSL57/J5JHbvTTjtRX1/f5d2p888/n+985zt873vf45VXXmHatGk8+OCDPPDAA5x11ln86le/oqCgc2BUR0cHAPvssw8HHXQQc+fO5aijjmLGjBn9Xn/WrFlccMEFPP300xx33HHR9Q899BAtLS3MmjUruu7CCy+kra2NN954g5qamuj6U089lQMPPJDbbruNa665JqnPQbpS2ywi+URts9rmdMjnId+pOiC8/FucbX8HRgKfyl44IiL5o7i4ONpgb9++nVAoxPr16znyyCMBePnllwF44IEHAPjRj37UpcEGenyfiMjQsfnz53dZP3/+fKqrq/nP//xPADZs2MAf//hHTjjhBEpLS1m/fn30a/Lkyeyyyy4888wzScchaae2WUQkSWqbcyNrPdRmVgicCRwNjAUuc869YWYB4HjgOefcqmzFg/cEHCDeNSPrJgLLshOOiAxmyT5t9rOf/exn3HXXXSxbtiz6RDsiFPJen12+fDnjx49n7Nixab12dXU1X/jCF3jsscfYsGEDlZWVrFixghdeeIFvfOMbFBcXA/Dee+/R0dHBvHnzmDdvXtxz7bTTTmmNLZ+obRaRoUxts9rmdMhKQm1m5cAzwGeBLUA5EAhv3gj8ALgHuCob8YSVh5db42xr7bZPF2Z2LuF3uCZNmpT+yEREfO7WW2/l0ksv5eijj+aiiy5iwoQJFBcXs2rVKmbPnh1txJ1zmFlGYpg1axaPPvooDz30EF/96ldZsGABzjlmzpwZ3cc5B8BZZ53VZahZrLKysozE53dqm0VEBhe1zbmRrR7qa4CpwBeBl4C1kQ3OuXYzewT4D7LbaEdK3ZXE2VbabZ8unHNzgbkAU6dOdekPTUTE3xYsWMDkyZN58sknuwwPe+qpp7rst9tuu/HYY4+xdu3aPp+EJ9OwH3fccYwePZr58+dHG+3dd9+dadOmRffZZZddMDO2bdsWHfImUdegtllEZNBQ25wb2XqH+lRgrnPuMaAjzvb3gclZiiVidXg5Mc62yLpsDnMTEckbhYWFmFn0KTN472v94Ac/6LLfmWeeCcBll13WY+hZ7LEVFV4x6MbGxgHHUFRUxOmnn86LL77IwoULWb58eY8n3TvssAPHHXccjzzyCH//+997nMM512UKjyFGbbOIyCCitjk3stVDPQH4Rx/bm4ERWYol4tXw8iDgT922HYg33O1fWY1IRCRPfOlLX+KKK67g2GOP5eSTT2bjxo0sXLiwS2VR8Kp1nnbaacyfP5/ly5dzwgknEAgE+Ne//sXTTz/NW2+9BcABBxxAQUEBN9xwA6FQiOHDh7Pjjjsyffr0PuOYNWsWd9xxB+eddx4FBQWcddZZPfb5+c9/ziGHHMJhhx3GzJkz2W+//ejo6OCDDz7gscceY+bMmXlTSTTN1DaLiAwiaptzI1sJ9SfEf9ocsSedT6XTzszGA5XASudcZKjYYmAN8FUzuy1mrstPAzOAezUth4hIfN/61rdwzjFv3jz++7//m3HjxnHaaacxZ84c9thjjy77Lly4kEMPPZR58+Zx3XXXUVhYyI477sipp54a3WfSpEncc8893HTTTZx33nm0tbUxa9asfhvtz3zmM+y111689dZbHHnkkV2m3ogIBoO89tpr3HTTTTz22GPcf//9lJaWEgwGOf744/nyl7+cng8l/6htFhEZRNQ254bFdutn7CJmC4BD8BrnMmAdcKRz7s9mtiPwT2CBc+4bCZzzbKA2/O2FQDFwS/j7Oufcgph97wNmAYc75xbFrD8V+C3eE/q78abjuARwwP4DqWw6depUt2TJkoGGLSKD3DvvvMOUKVNyHYb41EB+P8zsNefc1EzHorZZRIYKtc3Sl1Tb5mz1UF8LLMEbyvVrvEbxGDM7Cvg6XjXPGxM85znA57qtuz68XAwsoB/OuYfMrAWv4MqPwnE8B1ye5WlCREREsk1ts4iISIqyklA75943syPwpt+4Lrz6f8LLt4CznXP1CZ5zRgL7zgZm97Ltj8AfE7m2iIhIvlPbLCIikrps9VDjnHsN+LSZ7QVMAQxY7px7I1sxiIiISCe1zSIiIqnJWkId4Zx7C+/Jt4iIiPiA2mYREZHkZGseahEREREREZFBJSs91GbWgVfspC/OOZf1HnMREZGhSG2ziIhI6rLVSM6nZ6M9DNgZmI43NcfSLMUiIiIiaptFRERSlq0q37N722ZmnwX+AJyXjVhEREREbbOIiEg65PwdaufcS8C9wM25jkVERETUNouIiAxUzhPqsOXAZ3IdhIiIiESpbRYREemHXxLqGUBLroMQERGRqBmobRYREelTtqp8z+xlUzVwJHAs8MtsxCIiIiJqm0VERNIhW1W+78OrJGpxtm0H5gHfzFIsIiKSBosWLeLwww/n3nvvZfbs2bkOp18zZsxgxYoVrFixIteh+MV9qG0WERlU1DZnX7YS6sPjrHNAI/Chc25LluIQEZFB7Pbbb6eqqiov/ojwAbXNIiKScYO9bc7WtFmLs3EdERHJnsMOO4yWlhaKiopyHUrU7bffzuTJk+M22s888wzOdZ92eehS2ywiMviobc6+bPVQi4jIIFNQUEBpaWmuwxiw4uLiXIcgIiKSUWqbsy8jVb7N7Ookvr6TiVhERCQzFi1ahJlx33339fj+3nvvZc8996SkpITa2lpuvrnndMbPPPMMp512GjvttBNlZWVUVVVx9NFHs3hx/I7T999/nzlz5lBTU0NxcTETJkzgxBNP5LXXXgPAzKirq2Px4sWYWfQr8l7WjBkzmDx5cvR8p512GsXFxaxfv77Htd577z3MjIsvvrjL+t/+9rcccsghjBgxgvLycqZPn87DDz+c+IeXA2qbRUQGP7XN2W+bM9VDfU0Sxzjg+jTHISIiWXbXXXexdu1azjnnHKqqqrj//vu5/PLLqamp4Ywzzojud99999HY2MjMmTOpqalh1apV/PKXv+SII47g+eef59BDD43uu2TJEo444gja2to455xz2GuvvWhsbGTx4sW89NJL7L///ixYsIBLLrmEUaNGceWVV0aPHT16dNw4Z82axYMPPshvfvMbLrjggi7b5s+fH90n4qqrruKGG27gmGOO4frrr6egoIBHH32UU089lZ/85Cecf/75afn8MuiaJI5R2ywiMgiobc4cy8SYdTOrTeY451xdumPJtKlTp7olS5bkOgwR8Yl33nmHKVOm9Nzw5P/CR29mP6C+jNsbjv1B0od3ryQa+X78+PG8/fbbVFVVAdDc3ExtbS277LILf/vb36LHb9myheHDh3c559q1a9lzzz2ZNm0aTzzxBADOOfbee2/ef/99XnnlFfbZZ58ux3R0dFBQ4A24mjx5MpMnT2bRokU94u1eSbS9vZ2amhqCwSCvvPJKdD/nHJMnT6ayspJ//vOfALz++uvsv//+XHHFFXz/+9/vct6TTjqJP//5z6xatYoRI0b0+Zn1+vsRw8xec85N7XOnJKhtFpGhSm2z2ua+pNo2Z2TIt3OuLpmvTMQiIiLZNWfOnGiDDVBeXs6BBx7I8uXLu+wX22Bv3ryZTz75hMLCQqZPn87LL78c3bZ06VKWLVvGnDlzejTYQLTBTlRhYSFnnnkmr776Ku+++250/aJFi1i5cmWXJ+APPPAAZsasWbNYv359l68TTjiBTZs2dfmDxI/UNouIDF1qmzNHRclERLIhhafN+WannXbqsW6HHXbgk08+6bLu3//+N1deeSVPP/00TU1NXbaZdU6NHGns99tvv7THOmvWLG655Rbmz58ffbo9f/78aIMe8c477+CcY/fdd+/1XGvXrk17fCIikkFqm9U2p0FWE2ozmwpMBwL07B13zjm9pyUikucKCwv73Wfz5s0cdthhbNmyhYsvvpi9996bESNGUFBQwI033sif//zn6L6RV5NiG/J02Xvvvdl33325//77ueGGG2hpaeF3v/sdRx99NOPGjesSg5nx5JNP9vrz7bnnnmmPLxvUNouIDH5qmzMnKwm1mZUBjwBHA4ZX5CTy6buYdWq0RUSGgOeee47Vq1dzzz33MGfOnC7brrrqqi7f77bbbgC88cYb/Z43mYZ91qxZXHLJJTz//POsWbOGTZs2dRlSBrDrrrvy1FNPMWnSpH7fs8oXaptFRCSW2ubkZOQd6jiuxmuwbwAOx2ukZwHHAi8ArwJ7ZCkWERHJsciT5O6FMZ955pku72gBfPrTn2bPPffknnvuYdmyZT3OFXuOiooKGhsbE4rljDPOYNiwYcyfP5/58+dTWVnJiSee2GWfs88+G4Bvf/vbtLe39zjHxx9/nNA1fUJts4iIRKltTk62hnx/CXjIOXe1me0QXrfKOfdnM3sOr9GeDVyRpXhERCSHDjnkEMaNG8ell17KihUrqKmpYenSpSxYsIC9996bN9/srLpqZtx7770cccQRTJs2LTo1R1NTE4sXL+aYY47hwgsvBODAAw9k3rx5fOc732HKlCkUFBRw/PHH96hYGmvMmDEce+yxPPzww7S2tnLOOedQWlraZZ8DDjiAa6+9lu9+97vsu+++nHrqqUyYMIE1a9bw2muv8cQTT7Bt27bMfFiZo7ZZRESi1DYnJ1sJdRC4NfzfkccHxQDOue1m9mvgPNRoi4gMCVVVVTz99NNcdtll3HnnnWzfvp3999+fJ554gnnz5nVptMFrNF999VWuv/56HnzwQe666y5GjRrFtGnTOPjgg6P73XDDDTQ2NvLTn/6UpqYmnHN8+OGHfTba4A0te/zxxwGYOXNm3H2uvvpq9t9/f+644w5uv/12tmzZwpgxY9hrr7348Y9/nOInkhNqm0VEJEptc3IyMg91j4uYrQOuc87daWaFwFbgXOfcPeHt/w+43TlXlvFg0kxzXYpIrIHMZShDVy7noY5zHbXNIjIkqG2WvvhyHuo4/g18CsA51w4swxtqhnlvqZ8M1GcpFhEREVHbLCIikrJsJdR/Ak4JPwEH+AVwjJn9G1gOHAnMy1IsIiIiorZZREQkZRl7h9rMSpxzW8Pf/gBYQHg6Dufcz8ysFDgL772tu4GbMxWLiIiIqG0WERFJt0wWJVsTLmhyj3PuNeC92I3OuVvpLIYiIiIimae2WUREJI0yOeR7A1510FfMbKmZXWhm1Rm8noiIiPRNbbOIiEgaZSyhds7tiPf+1UJgF+DHwCoz+42ZHR0ueJI0Mysws0vM7F0zazWzejO7xcz6rr/eeXyRmX3bzN4xs61m9omZ/c7Mdk8lLhEREb/KdNssIiIy1GS0KJlz7s/OubOB8cDXgaXAl4EngRVmdq2Z7Zjk6W/DG5b2NnAh8BBwEfC4mfX5c4X/YHgMuAFvuNslwB3AIcDfzWyPJGMSESEb0xFK/vHL70WG22YREV/yy7/B4i/p+L3ISpVv59wm59xc59xBwBTgFqAI+A6w3MyeM7MzBno+M9sTL4l+xDl3snPubufcN4FvAocD/9XPKU4EjgXmOudOcs79zDl3LXAQUIyXXIuIJGzYsGFs374912GID7W1tVFYWNj/jlmS7rZZRMSv1DZLb9LRNmdr2qwo59x7zrnLgBrgeOBZvCR4fgKnOR2vKunt3dbfDTTjVSjty+Hh5b3dYvsAeAE4wswmJRCPiAgApaWlbN68OddhiA9t3LiRESNG5DqMuNLUNouI+JLaZulNOtrmrCfUMaYBJ+D1CgNsS+DYA4AO4JXYlc65Vryhawf0c3xJeNkcZ1tk3fQE4hERAWD06NGsW7eO5uZmDS8TnHNs27aN9evXEwqFqK72ff2vVNpmERFfUtsssdLdNmdy2qwezGwccDYwB9gNr5d5KTAPeCCBU00A1sfMpRlrFfBZMyt2zvX2h8Cy8PLzwD9j4iunM5EO9nZxMzsXOBdg0iR1ZItIp9LSUsaOHctHH33E1q3x/omSoaawsJARI0YwadIkSkpK+j8gy9LYNouI+JLaZukunW1zxhNqMxuG97R7DvAf4Ws2AT8H5jnn3kjitOVAb3dDa8w+vSXU9wNXAdeZ2RbgT8Ao4NrwMnJ8XM65ucBcgKlTp+oxl4h0UVlZSWVlZa7DEOlVhtpmERHfUtssmZKxhNrM9sFrqM8Edgivfh7vifcjvfQuD1QzMKaXbaUx+8TlnAuZ2ZF474bNjdn0F+AmvGR7YwrxiYiI+E6G22YREZEhJ5M91EvDy3rge8C9zrkVaTr3amAPMyuJ0/hPxBsO3ud7X865N4H9zGwXvCHkq51z75vZzeFd3k1TrCIiIn6xNLzMRNssIiIy5GSyKNnDeFNTTXbOfTfNDfareLFPi11pZqXAvsCSgZ7IOfe+c+4vzrn3w6uOxeud/mt6QhUREfGNTLbNmFmBmV1iZu+aWauZ1ZvZLWY2fIDHm5mdYWYvmdl6M9tkZsvM7GozG5nOWEVERNIhYwm1c+7LzrmnXWZK6f0WcMDF3dZ/De/d52gRFTMbb2a7hwuO9cnMLgT2Am5zzm1JX7giIiK5l+G2GeA24FbgbeBC4CHgIuBxMxvI3xzfw2vDW/DqmnwLeDP838+YmWUiaBERkWRltcp3ujjn3jSznwIXmNkjwBPAFLxGezGwMGb3G4FZePNpLoqsNLMngA/wGn0HHA2cBPwfcEPGfwgREZFBxMz2xEuiH3HOnRKz/kPgDuC/6No+dz9+GN6D8teBo5xzHeFNd5nZdrz3vj9N57B1ERGRnMvlPNSpuhj4H2BP4Kd4DfWdwH/GNMJ9+RswA7gZ+CFQA5wPnOica8tAvCIiIoPZ6XhTbt3ebf3deIVCz+rn+CKgDPgoTju+OrzU6DEREfGVvOyhBnDOtQO3hL/62m82MDvO+uuB6zMRm4iIyBB0ANABvBK70jnXamZLw9t75ZxrMbO/AMeY2eXA74DteA+/vwHc75xbnoG4RUREkpbPPdQiIiLiHxPwZtmIN/XWKmCUmRX3c44z8abx+gGwHPgQuAfv3eyZfR1oZuea2RIzW7Ju3bqEgxcREUlG3vZQi4iIiK+UA73NY90as09f01puxatvsgp4Cq/GySnAVeFz9FrjxDk3F5gLMHXq1EwVXRMREelCCbWIiIikQzMwppdtpTH7xBWejeMl4HXn3H/FbPqNmf0GuM7MHnbOvZeWaEVERNJAQ75FREQkHVbjDesuibNtIt5w8L56p78E7Io31VZ3D+H9zXJIylGKiIikkRJqERERSYdX8f6umBa70sxKgX2BJf0cPzG8LIyzbVi3pYiIiC8ooRYREZF0+C3eO88Xd1v/Nbx3px+IrDCz8Wa2e3iYd8Tb4eWsOOeOrHs1PaGKiIikh570ioiISMqcc2+a2U+BC8zsEeAJYApwEbAYWBiz+414SfLhwKLwuj/iTbl1XHj6rN/hzWt9MnAo8JBz7vUs/CgiIiIDpoRaRERE0uViYAVwLvAFYD1wJ3C1c66jrwOdc+1mdiRwBV4SfTNej/dy4HLg1oxFLSIikiQl1CIiIpIWzrl24JbwV1/7zQZmx1m/Cfh2+EtERMT39A61iIiIiIiISBKUUIuIiIiIiIgkQQm1iIiIiIiISBKUUIuIiIiIiIgkQQm1iIiIiIiISBKUUIuIiIiIiIgkQQm1iIiIiIiISBKUUIuIiIiIiIgkQQm1iIiIiIiISBKUUIuIiIiIiIgkQQm1iIiIiIiISBKUUIuIiIiIiIgkQQm1iIiIiIiISBKUUIuIiIiIiIgkQQm1iIiIiIiISBKUUIuIiIiIiIgkQQm1iIiIiIiISBKUUIuIiIiIiIgkQQm1iIiIiIiISBKUUIuIiIiIiIgkQQm1iIiIiIiISBLyNqE2swIzu8TM3jWzVjOrN7NbzGz4AI83MzvDzF4ys/VmtsnMlpnZ1WY2MtPxi4iIiIiISH7L24QauA24FXgbuBB4CLgIeNzMBvJzfQ94AGgBrgW+BbwZ/u9nzMwyEbSIiIiIiIgMDsNyHUAyzGxPvCT6EefcKTHrPwTuAP4LWNjH8cOAi4HXgaOccx3hTXeZ2XbgTODTwNJMxC8iIiIiIiL5L197qE8HDLi92/q7gWbgrH6OLwLKgI9ikumI1eHllhRjFBERERERkUEsL3uogQOADuCV2JXOuVYzWxre3ivnXIuZ/QU4xswuB34HbAdmAN8A7nfOLc9A3CIiIiIiIjJI5GsP9QRgvXNua5xtq4BRZlbczznOBJ4HfgAsBz4E7sF7N3tmXwea2blmtsTMlqxbty7h4EVERERERCT/5WsPdTkQL5kGaI3ZZ1sf59gKfICXgD8FOOAU4KrwOW7o7UDn3FxgLsDUqVNdIoGLiIiIiIjI4JCvCXUzMKaXbaUx+8RlZuXAS8Drzrn/itn0GzP7DXCdmT3snHsvLdGKiIiIiIjIoJOvQ75X4w3rLomzbSLecPC+eqe/BOyKN9VWdw/hfS6HpByliIiIiIiIDFr5mlC/ihf7tNiVZlYK7Ass6ef4ieFlYZxtw7otRURERERERHrI14T6t3jvPF/cbf3X8N6dfiCywszGm9nu4WHeEW+Hl7PinDuy7tX0hCoiIiIiIiKDUV72wjrn3jSznwIXmNkjwBPAFOAiYDGwMGb3G/GS5MOBReF1f8Sbcuu48PRZv8Ob1/pk4FDgIefc61n4UURERERERCRP5WVCHXYxsAI4F/gCsB64E7jaOdfR14HOuXYzOxK4Ai+Jvhmvx3s5cDlwa8aiFhERERERkUEhbxNq51w7cEv4q6/9ZgOz46zfBHw7/CUiIiIiIiKSkHx9h1pEREREREQkp5RQi4iIiIiIiCRBCbWIiIiIiIhIEpRQi4iISFqYWYGZXWJm75pZq5nVm9ktZjY8gXMMM7OLzOx1M9tiZhvC//3/Mhm7iIhIMvK2KJmIiIj4zm14U1g+ilc0NDKl5X5mdmR/s3CYWTHwB7ypLh8A7sL7W2VXoDaDcYuIiCRFCbWIiIikzMz2BC4EHnHOnRKz/kPgDuC/gIX9nOY7wJHAUc655zMVq4iISLpoyLeIiIikw+mAAbd3W3830Ayc1dfB4WHh/w085px73jwjMhGoiIhIuiihFhERkXQ4AOgAXold6ZxrBZaGt/flUGAE8JqZ/RjYCGw0s3Vm9n0z06g6ERHxHTVOIiIikg4TgPXOua1xtq0CPmtmxc65bb0cv1t4eTGwDbgM+AQ4E7gCmAjM6u3iZnYucC7ApEmTkolfREQkYeqhFhERkXQoB+Il0wCtMfv0JjK8uxo40jn3c+fcg865E4FFwEwz26O3g51zc51zU51zU0ePHp1g6CIiIslRQi0iIiLp0AyU9LKtNGaf3rSEl393zr3bbdv88PJzScYmIiKSEUqoRUREJB1WA6PMLF5SPRFvOHhvw70BGsLLj+JsWxNeBlKIT0REJO2UUIuIiEg6vIr3d8W02JVmVgrsCyzp5/hIMbOaONsi6z5OIT4REZG0U0ItIiIi6fBbwOEVFYv1Nbx3px+IrDCz8Wa2u5lF36l2zn0I/BWYZmafidm3MHyO7cAzGYteREQkCUqoRUREJGXOuTeBnwInm9kjZvZVM7sFuBVYDCyM2f1G4B269WYDF+K9Z/0nM7vGzC4MHzsN+L5zbmWmfw4REZFEaNosERERSZeLgRV401d9AVgP3Alc7Zzr6O9g59wbZvZZ4Hvhc5XiJd5znHP3ZSRiERGRFCihFhERkbRwzrUDt4S/+tpvNjC7l23/BE5Id2wiIiKZoCHfIiIiIiIiIklQQi0iIiIiIiKSBCXUIiIiIiIiIklQQi0iIiIiIiKSBCXUIiIiIiIiIklQQi0iIiIiIiKSBCXUIiIiIiIiIklQQi0iIiIiIiKSBCXUIiIiIiIiIklQQi0iIiIiIiKSBCXUIiIiIiIiIklQQi0iIiIiIiKShLxNqM2swMwuMbN3zazVzOrN7BYzGz6AY2eYmevn6+Bs/BwiIiIiIiKSn4blOoAU3AZcBDwK3AJMCX+/n5kd6Zzr6OPYd4Cz46wvAeYC64FX0huuiIiIiIiIDCZ5mVCb2Z7AhcAjzrlTYtZ/CNwB/BewsLfjnXNrgfvjnPd0vF77+c65tnTHLSIiIiIiIoNHvg75Ph0w4PZu6+8GmoGzkjzvV8PLXyZ5vIiIiIiIiAwRedlDDRwAdNBtWLZzrtXMloa3J8TMdgQOB150zr2XjiAT8uT/wkdvZv2yIiKSBuP2hmN/kOsoJN3UNouI5K8stc352kM9AVjvnNsaZ9sqYJSZFSd4zq/g9Xr32zttZuea2RIzW7Ju3boELyMiIiIiIiKDQb72UJcD8ZJpgNaYfbYN5GRmVgjMBjYCD/W3v3NuLl7xMqZOneoGco1+qWdDRETEX9Q2i4hIP/K1h7oZryJ3PKUx+wzUfwA1wK+dc4kcJyIiIiIiIkNUvibUq/GGdcdLqifiDQcfUO902DnhpYqRiYiIiIiIyIDka0L9Kl7s02JXmlkpsC+wZKAnMrMxwPHAP51zAz5OREREREREhrZ8Tah/Czjg4m7rv4b37vQDkRVmNt7Mdjez8l7ONRMoQr3TIiIiIiIikoC8TKidc28CPwVONrNHzOyrZnYLcCuwGFgYs/uNwDt0682O8RW8Qmb3ZzBkERERERERGWTytco3eL3TK4BzgS8A64E7gaudcx0DOYGZfRaYAix0zoUyE6aIiIiIiIgMRnmbUDvn2oFbwl997Tcbb0qseNtewpt7WkRERERERCQheTnkW0RERERERCTXlFCLiIiIiIiIJEEJtYiIiIiIiEgSlFCLiIiIiIiIJMGcc7mOIa+Z2TqgLtdxpNEovIrpos8ilj6LTvosOumz6JTOz6LWOTc6TecaktQ2D2r6LDrps+ikz6KTPotOWWmblVBLF2a2xDk3Nddx+IE+i076LDrps+ikz6KTPgvJJP1+ddJn0UmfRSd9Fp30WXTK1mehId8iIiIiIiIiSVBCLSIiIiIiIpIEJdTS3dxcB+Aj+iw66bPopM+ikz6LTvosJJP0+9VJn0UnfRad9Fl00mfRKSufhd6hFhEREREREUmCeqhFREREREREkqCEWkRERERERCQJSqhFREREREREkqCEeogzs0+Z2XVm9nczW2dmm8xsqZldaWbDcx1fLplZuZl9aGbOzH6S63hywcyqzexHZva+mbWGf0eeN7NDcx1bNplZhZl928zeDN8j683sJTObbWaW6/gywcyuMLOHzOyD8D2wop/9dzOz35tZyMy2mNkLZvb5LIWbUQP9LMxzlpn9JnzPNJvZSjP7g5lNz3LYksfUNvdObbPa5gi1zWqb/dI2D0vHSSSvfQU4H/gD8ADQBhwOfA/4spkd6JxryWF8uXQdMCrXQeSKmdUCi4AKYB7wL6AS2AeYmLvIssvMCoAngc8CvwLuBMqB04F7gSnA5TkLMHO+DzQCrwNVfe1oZjsDLwHbgZuBDcDXgKfN7Fjn3J8yG2rGDfSzKAEWAEuB3wAfAuOBrwN/M7OZzrn7MxqpDBZqm3untllts9pmtc3go7ZZVb6HODObCix3zm3otv57wJXAhc65IfcE2Mw+A7wCXAbcAvzUOXdBbqPKLjN7AZgMTHPOrclxODljZgfhNUi3O+cuiVlfDLwLVDvnqnIUXsaY2U7OuQ/C//0WUOGcm9zLvg8CpwD7O+eWhtdVAMuAVmB3l8eNzUA/CzMbBhzsnFvcbf1YvM+iHRjvnOvIfNSSz9Q2x6e2WW1zhNpmtc1+aps15HuIc84t6d5gh/02vNwrm/H4gZkVAncDTwGP5DicnDCzw4BDgJudc2vMrMjMynMdV46MDC9Xx650zm0D1gNbsh5RFkQaqf6Eh5+eACyKNNjh4zcDvwQ+BRyQiRizZaCfhXNue/cGO7x+LbAYGBP+EumT2uae1Darbe5GbXMf1DZ32S/jbbMSaulNTXi5NqdR5MYlwO7AkHrq3c1x4eVKM3scaAG2mNm/zOysHMaVC68ATcBlZnaqmU0Kv5N0I7A/cE0ug/OBffCGU/0tzra/h5d53WinSQ2wDe93SSRZapvVNoPaZlDb3B+1zQOTlrZZ71BLD+GnwFfjvXOxMMfhZJWZ7QhcC1znnFthZpNzHFKu7BZe3g0sB2bh/cP8TWCBmRU55+7NVXDZ5JwLmdkJeE90H4zZtAk4xTn3+5wE5h8TwstVcbZF1g2Z9/riMbPjgGnAAudca67jkfyktlltM2qbo9Q290ttcz/S2TYroZZ4bgcOBL7tnHsvx7Fk28/xihXcmutAcmxEeLkJODw8hAozexT4APi+mf1qCL0Luhl4C69A0EtANV7BoIVmdqJz7tlcBpdjkeGGW+Nsa+22z5BjZrviFUNZBVya43Akv92O2ma1zR61zR61zb1T29yHdLfNGvItXZjZ9XjDqeY6527MdTzZFB4udTTwdedcW67jybFI9dhfRxps8J4I4zVc4+h8Uj6omdneeA31s865bznnHnXOzcN7j+0j4O5wz9FQ1RxelsTZVtptnyEl3Kv2HOCAY51z63IckuQptc1qm8PUNoepbe6X2uZeZKJtVkItUWZ2DXAV3nQDX89tNNllZiV4T76fAD4ys13MbBegNrxLZXhdVa5izLKG8PKjONsiVUUDWYol1y7Ba3weil3pnGsG/g/vd2Ry9sPyjUhBmHhDxyLr4g05G9TCQ1Kfx5va5ijn3Ju5jUjyldpmtc0x1DZ3UtvcN7XNcWSqbVZCLQCY2XeB7wLzga/mcxn9JJUBo4Ev4L2XFPlaFN5+Vvj7r+YiuBx4JbysibMtsu7jLMWSa5GGJ96T7mHdlkPRm3hDyg6Ks+3A8HJJ9sLJvfA8sc/jzQ17lHPujRyHJHlKbbPa5m7UNndS29w3tc3dZLJt1jzUgpldjVfsYwEwewi9exNlZkXAiXE2jQZ+hjdNxzzgn865f2UztlwwswBQB2zEm6dwc3j9eLw/XlY75z6VwxCzxsxuAy4GLnfO3Ryzvgp4G+8J+Rjn3PacBJgFA5jr8iHgZOAzzrl/hNdF5rrcCuw2WBKBAXwWtXh/7AfwGuxXsxedDCZqm9U2d6e2uZPaZrXNsXLdNiuhHuLM7HzgJ8BK4DtA9wZ77VAu6hAeGvIh8FPn3JCaqsPMzgV+gfcP7z1AMXAeMB74T+fcMzkML2vC/wi/jveP8APAX/EKn3wNbzjZ+c65n+UswAwxs7PpHFZ5Id7//1vC39c55xbE7LsLXs9JG3Ab3h97XwP2Br7gnHs6W3FnwkA/CzMbAfwD2BG4k87epFjPhue+FOmV2ua+qW1W26y2GVDb7Ju2WQn1EGdm9+FNu9Cbxc65GdmJxn+GcqMNYGYnA5fh/ePbgTef4bXOub/mNLAsM7Od8aarOQIYi1cYZilwu3PukRyGljFmtgj4XC+be/y7YGZTgB+EjynG+0PnGufcnzIYZlYM9LOI+feiL4c75xalKzYZnNQ2901ts9pmUNsch9rmTlltm5VQi4iIiIiIiCRBRclEREREREREkqCEWkRERERERCQJSqhFREREREREkqCEWkRERERERCQJSqhFREREREREkqCEWkRERERERCQJSqhFREREREREkqCEWkRERERERCQJSqhFREREREREkqCEWkRERERERCQJSqhFREREREREkqCEWkRERERERCQJSqhFREREREREkqCEWkRERERERCQJSqhFssDMnJm5XMfRGzO7Lxzj7DSf17c/t5mdZGaLzKzJzDab2ctmNieJ88yO/Jz9fP05Ez+HiIgkx89tFKhtTqVtjjnfvmb2azNbY2bbzGyVmf3KzHZOZ9wytA3LdQAiItlmZlcD1wLbgOeArcBRwD1mdpBz7twETvc+8Ks+tn8JGA4sSi5aERGRwS/NbTNm9iXgAaAYWAb8FdgdmAmcYmZHOef+lsYfQYYoJdQiMqSY2YF4DfZG4FDn3D/D6ycBLwJfM7NnnHMPD+R8zrkXw8fFu9YuwCzA0XfSLSIiMmSlu202swl47W4xcIlz7vaYbRcDtwEPmtmnnHMt6fxZZOjRkG8RGWouDy9vjDTYAM65lTHb/jdN15odXj7vnKtL0zlFREQGm3S3zXOAcuAvscl0+Jy3A38BavAeeoukRAm1SA6Z2ZFm9jMz+6eZNZpZq5l9YGZ3mVltL8csCr//NMPMPmdmfzKzDeHjf29mu4b3KzCzS81smZm1hN8busnMivuJaaqZ/V/4fFvM7EUz+88+9t85/H7SOjNrNrN/mNl56f6508HMSoD/CH/76zi7PIo3xGx/M6tJ8VoGnB3+9r5UziUiItmjtnlQtM1Tw8tne9n+p/Dy5AGeT6RXSqhFcusuvF7MFuDPwDN4r2L8P+B1M9utj2NPxHvHqBx4GgiF1/3FzEYBD+INn/oofO5K4LLwNXtzIN7Qqp3D53wDOBh43Mz+X/edzWwv4FXgv/CGaT0GNAI/MbPbM/Rzp2I3oAz4JF6PsXOuFe89K4B9U7zW54FJwCbgdymeS0REskdtc/63zcPDy0962R5Zv98AzyfSO+ecvvSlrwx/4b1D6+KsPxEY2W3dMOB74WOeinPMovC2duCkmPUleA2gA94C3gYmx2zfG6/QR0fs+vC2+yIxAjcBFrPti+FrtQI7dTvujfAxPwcKY9YfCmxJ8899TUyMA/7qdo7jw+vf6OP/1WPhfS5I8f/5gvB5fpnr3z996Utf+tJXzy+1zWn5uX3ZNgP3h/e/uZftP4yJpyLXv4v6yu8vFSUTySHn3GNx1m0HrjJvmoijzGyEc25TnMN/7Zz7fcxxW83sx8DhwJ7Akc65FTHb3zSz/wNOAj4HrKCneuAq55yLOe5RM3sEr1r1/yP8LpOZHYb3pHg9cKlzrj3mmBfM7C7gm2n8uZeSemGvEeHllj722dxt34SZ2Qg6h5Hdm+x5REQk+9Q2J/RzL8WfbfPzwJnAmWZ2jXOuObLBzMrD22KvvxmRJCmhFsmx8HtJXwA+hfePemF40zC81zJ2wXva3N0zcda9H162EX+apsj2Cb2E87Bzri3O+vvxGu3DYtZ9Lrz8fWxDFWMBvTTakPjPHf4D5fe9nW+ALHK6FM/Tn1Pxhvstd879NcPXEhGRNFPbnPdt80Lg28BOwFNmdgnwHt7w8tuA0TH7dqTxujIEKaEWySEz+x5e1crCPnYb2cv6hjjrIk93P4p9Kh1ne0kv5+ytEvWK8DK2GMjEbtt6O6aHFH/uVESeqlf0sU/kvat4PQ8DNTu8vC+Fc4iISA6obc7/ttk512JmXwD+gDfUfUnM5lbgf4Db8ZL4UCLBinSnhFokR8zsS8CVeAVDLsYbnvSR84pvYGYvAQfR+eS2u76eqCb7tLW3p8N9PT3u7Zi465P9uc3sJLwhcQlxzs2O+TbyR0mwj0Mif5gkNc2Vme0EHIL3/2B+MucQEZHcUNs8eNpm59y7ZrYnXnwH4iXsHwK/ofPBw3Ln3LaBnlMkHiXUIrnzpfDySudcvPdsd8lmMGG1/axfFbMu8t+Tezlmx17WJ/tz70ty80XOjvnvd/GeTO9gZpOcN79lVHjqjr3C3y5N4lqR6xnwrHMuXk+FiIj4l9rmQdQ2h4fKPxT+ij3nV8L/+Vwi5xOJR9NmieROdXhZ332DmR1B1/d7suVLZhbvQdsZ4eVfYtYtDi9PMrOyOMecGWcdJPlzO+eucc5Zol/dzrEVb8oR8KYT6e4kvCF3rzvnesTXH809LSKS99Q2d5PvbXOcn6cKOBevt76v6cpEBkQJtUjuvBtefs3MiiMrzWwy3lQXuTAJuC6cGEbiOQHvyfVW4Bcx+76A96R4NPBDMyuMOeZg4LxerpHrn/vm8PLb4bk6I9evidl2U/eDzGy+mb1rZhf0ce4ZeL0CG4BH0xKtiIhkU67bqHjUNnsSapvNbD8zK+q2bgLee9VjgTucc/9M1w8gQ5cSapHcuQPvXaUvAMvN7EEzexJ4B1gDvJSDmH4BXAq8bWYLzewFvOqdBcDFzrkPIjuGp++YiVfM43zgPTP7tZk9h/eEfF4v18jpz+2cewm4DqgEXjOz/zOzR8PXnwTc45x7MM6hk/Cqg47q4/Szw8vfRN47ExGRvKK2efC0zbcBH5nZc+HP7TngA7wiZQvxCpOJpEwJtUiOOOfeB/YHHsarZ3A83rtNNwFH402vkW1/x2to6oDjwvH9DTjeOddjWJRz7k3gALwCH1V4w7LG4BU0uTjeBfzwczvnvgucAryM9/Mehfd0/qvOuXOSOaeZVYTPCRruLSKSl/zQRsWhtjm5tnkBXm/9nni9+fvgvTP9RefcmeE5tkVSZjFzxIuIiIiIiIjIAKmHWkRERERERCQJSqhFREREREREkqCEWkRERERERCQJvkqozewKM3vIzD4wM2dmKxI8fkb4uL6+Dh7g/n9M+w8oIiIiIiIig0a8SeJz6ftAI/A6XlXCRL0DnB1nfQkwF1gPvBJn+1y8eftiNQzkgqNGjXKTJ09OIEQREZHevfbaa+udc6NzHUc+U9ssIiLp1Ffb7LeEeufIXHpm9hZQkcjBzrm1wP3d15vZ6Xi98fOdc/HK/v/NOdfjuIGYPHkyS5YsSeZQERGRHsysLtcx5Du1zSIikk59tc2+GvIdOzF9mn01vPxlbzuY2XAzK83Q9UVERERERGSQ8VVCnQlmtiNwOPCic+69Xnb7MbAZaDGzf5nZf5uZZS1IERERERERyTt+G/KdCV8BjPi9023AH4AngNXABOAc4HZgX2BOvBOa2bnAuQCTJk1Kd7wiIiIiIiKSBwZ1Qm1mhcBsYCPwUPftzrm/Aid2O+ZuvAR7tpnNc869GOe4uXiFzJg6dapLf+QiIiIiIiLid4N9yPd/ADXAr51zzQM5wDnXAdwY/va4TAUmIiIiIiIi+W2wJ9TnhJe9FiPrxYrwclT6QhEREREREZHBZNAm1GY2Bjge+KdzLtG5M3YNL9emNyoREREREREZLPI2oTaz8Wa2u5mV97LLTKCIvqfK2iHOuhLgmvC3j6cap4iIiIiIiAxOvipKZmZnA7Xhb0cDxWZ2Vfj7OufcgpjdbwRm4U2JtSjO6b4CtAL393HJp8xsNfAanVW+z8Lrob7TOfdKkj+KiIiIiIiIDHK+Sqjx3nn+XLd114eXi4EFDICZfRaYAix0zoX62PVh4CTgQqAK2AK8AXzXOffrAUctIiIiIiIiQ46vEmrn3IwE9p2NNyVWvG0v4c093d85bgJuGug1M+nax5fx9uqNuQ5DRESSsMeEkXz3+D1zHYak0fK1m/jxc8tzHYb4UFFhARcfuSu1OwzPXRD1r8LLPweX49lbCwrh4Ith3F45C+G9jzbxs0Xv096hmWz95LQDghy66+jcBbD6DfjrHXDEd6B6p4xeylcJtYiIiIgfbNnWzttr9KBbunHwwfotfGrsCM6bsXPu4nj9Pnj7DxCYnLsYABr/DSPGwbjv5SyER95o4PF/rGbyqBw+4JAuVoVaaG1rz21C/dFbsOwROOLqjF9KCbVPqGdDRETEP/YNVvHnS2fkOgzxof2ue4b6UHNugwjVwcTPwDnP5DaOO6d6seRQQ2MLk3cYrvvVR742fwkrP8nxPdJUB1YAlTUZv1TeVvkWEREREcm2mkA59Y0+SBaqJuU2BvBiaMptQl0famZioCynMUhXNYEy6kPNuFy+ktC0EkZOhMKijF9KCbWIiIiIyAAFq8toCLXkLoD27bBhFVTV9r9vpgVqc95DXd/YTLC6t1l0JReCgXKat7XTuGVb7oII1WXtHlFCLSIiIiIyQMFAOatCLXTkqgjWxgZw7V4ym2tVtdDaBK0bcnL5zVu3E2puIxhQQu0nkQcc9bl88NRUl7V7RAm1iIiIiMgA1VSXs629g483bc1NAE0rvaVfeqihM6Ysawi/yx6s1pBvP4n8/2jIVa2BtlbYtEY91CIiIiIifhMMv6+bs8JkkSHWfumhhpwN+65v9HpA1UPtL5H/H5H/P1m3od5bqodaRERERMRfosNZc1WYrKkOrBBGZr56cb8i03blqDBZ5P+B3qH2l+Elw6geXpz7h05ZKtynhFpEREREZIAmVoV7qHPV+xaqC1cv9sHst2UBKK7IXQ91qJny4kIC5Zmv5CyJqQmU5fahE2jIt4iIiIiI35QWFTJmREnuet+yWGypX2Ze0pKzHuoWgoFyzCwn15feBQPluauG31QHhcUwYnxWLqeEWkREREQkAcHq8twVXMridEADEqjNaVEyFSTzp5rqstxVww/VQWUQCrKT6iqhFhERERFJQDBQlpsh322tsPkj//RQg5fch+rAZTdxcs7REGqhRgXJfCkYyGE1/CyP4lBCLSIiIiKSgGB1OWs2tNDW3pHdC0eqF/uth7ptCzR/ktXLNjW3sXnrdhUk86nOuahzMJIjy6M4lFCLiIiIiCSgJlBGh4M1Ta3ZvXCWqxcPSCSWLBcmiyRqNQEN+fajyP+XrBcm27oJWhqzeo8ooRYRERERSUB0nt1s9741rfCWfhvyDZ2xZYnmoPa3nFXDj7zPryHfIiIiIiL+lLO5qEN1UFgCFeOye92+RBKXHPVQqyiZP5UWFTJ2ZA6q4UdHcUzO2iWVUIuIiIiIJGB8ZSmFBZb9aYGaVkJV9qoXD0jJCCirznql74ZQM1XlRYwo1RzUfuVNnZXtURzhhFo91CIiIiIi/jSssIDxlaU5GPLtsymzIgLZn4s6Mge1+Fewujz7Q75DdVA0HMp3yNollVCLiIiIiCQoGCjPzZBvP70/HRGZOiuL6jUHte8FA2XZr4bfVOcVJDPL2iWVUIuIiIiIJKgmUEZ9Nod856B68YBVTfKm9OrITuLU0aE5qPNBTaA8+9Xwm1Zm/aGTEmoRERERkQQFq8tZt2krrW3t2blgtNiSD3uoA7XQvg02rcnK5dZt3sq27R0ENWWWr9WERxBk7dUI57I+BzUooRYRERERSVhkuHHWCpPloNjSgEUqKmepMFlkqH1NtXqo/Sw6vVy2Xo1oCcG2TeqhFhERERHxu6zPRR1JVrM4HdCARRKYLBUmizzEUFEyf8t6NfzQCm+pHmoREREREX+LzEXdkK3et1AdFFdAeXV2rpeIyqC3zFJhsmgPtYZ8+9qwwgImVGWxGn6ORnEooRYRERERSdDoihKKhxVkrzBZDqoXD1hRKVSMy1oPdX2omdEjSigtKszK9SR5NVVZrIYfHcWR3cJ9SqhFRERERBJUUGDUVJVlL1nIQbGlhASyN3WWNwe1eqfzQbA6i9XwQ3VQWgWlldm5XpgSahERERGRJNRUl2dnOKtzXu+vHwuSRVTVZrWHOqiCZHkhGMhiNfwc3SNKqEVEREREkhAMlGWn4FJLCLZt9n8P9cZV0N6W0ctsb+9gzYZWFSTLE9FaA9m4T3I0ikMJtYiIiIhIEoLV5TQ1t7GpNbNJZLR6sd97qF0HbGjI6GXWbGilvcNFpy0Tfwtmay7qjg7vHWr1UIuIiIiI5IfOeXYz3PsWGUqd5WJLCcnS1FmRxKxGPdR5IXKPZLwa/ua10L5VPdQiIiIiIvkiMm1TxnvfIsW+/DzkO5LsZ7gwWUOj5qDOJ6OyVQ0/WuFbCbWIiIiISF6IvB+a8UrfTXVQFoDSkZm9TipG1oAVZqWHusBgfFVpRq8j6VFQYNQEslANP0dzUIPPEmozu8LMHjKzD8zMmdmKJM6xKHxsvK+pcfavNLM7zWyVmbWa2TIzO8/Mj5P8iYiIiIhfBMqLGF5cmPmCS36fMgugcBhUTuzsKcyQ+sZmxleWUVToqzRG+hAMZKEafih3r0UMy/oV+/Z9oBF4HahK4TzrgUvirP8g9hszKwaeBfYD7gTeAY4FfgaMBa5JIQYRERERGcTMjGB1OQ2ZThaaVsLYPTJ7jXSoyvxc1A2hFhUkyzPB6jL+0dCU2Ys0rYCKsVCU/d8NvyXUOzvnPgAws7eAiiTPs8U5d/8A9vsqcABwkXPuzvC6u83sd8C3zexe51x2JtQTERERkbxTEyjP7HDWSPXi3Y7N3DXSJVALy5/N6CXqQ80ctuvojF5D0isY6KyGP6K0KDMXyeEoDl+NlYgk0+lgZgVmNrKfodtnAM3A3d3W3w4UAaelKx4RERERGXyC1WXUh5pxzmXmAtHqxT6u8B1RNdmLty0zQ+Bb29pZu3GrKnznmZpsVMNvWpmze8RXCXUaTQQ2AxuAzWb2iJntHruDmRUAnwHecM61djv+FaADr/daRERERCSumkA5zdvaadyyLTMXiBZbmpyZ86dTJKHJ0HvUq5rCFb415DuvZHwu6vbt3vznOZqn3W9DvtPhQ+CvwD+BdmA6cAFwhJkd4px7M7xfACgDVnU/gXNuq5l9gpeY92Bm5wLnAkyalAdPC0VEREQkI4LRqbNa2KGiJP0XyIcpsyIiCU2oDkbvlvbTR4bWR6qrS37onK89Qwn1xlXg2nN2jwy6hNo5N6fbqofN7A/AIuBW4Kjw+siduLWXU7XG7NP9GnOBuQBTp07N0PgeEREREfG7SHLXEGpm32BV+i8QnV83DzpxIglNhqbOilRT1xzU+aWqvIiKkmGZq4afwymzYPAO+e7COfcC8BfgcDOLjBGJPCLp7VFiacw+IiIiIiI9dM5FnalkYQVUjIOiPJh3uWIsFJZkLKGuDzVTXFjAmBEZGAkgGWPmzUWdsWr4OR7FMSQS6rAVQCHeUG+AENBCnGHdZlYC7ECc4eAiIiIiIhEVJcMIlBdl7v3QUF1+9E4DFBR4sWZo6qyGxhYmBsooKOir5rD4UbC6PIMPnerACqCyJjPn78dQSqh3BbbjzXONc64Db77r/cIJdKxpeJ/NkqxGKCIiIiJ5J6NTZzXV5Wwoa1KqJmW0h7omoIJk+agmkMFq+E0rYeREKMzQlFz9yNuE2szGm9nuZlYes67SzArj7PsF4GDg2W4VvX+N9570ud0OuRgv+X4w7YGLiIiIyKASrC7LzPuh7dthw6r8KEgWEajNWA91fWOzCpLlqWAmq+HncA5q8FlRMjM7G4h8GqOBYjO7Kvx9nXNuQczuNwKzgMPxCo4R/u9bzexx4AO8pHgacBawHi9RjnU3MCd8zGTgHeA44IvA95xzH6brZxMRERGRwSkYKOdPb39MR4dL73DkjQ1e9eK86qGuhdYmaN0ApZVpO+3mrdsJNbepIFmeitYayEQ1/KY62Pnz6T1nAnyVUAPnAJ/rtu768HIxsIC+vQe8BvwnMBYoAhqAu4DvO+e6vBPtnNtmZkcC3wNOx3tv+t/AhcBPk/8xRERERGSoqKkuZ1t7Bx9v2sq4yjQWD4tW+M6jhDqS/DethHF7p+20kYJWmoM6P0X+v6W9Gn5bK2xaox7qCOfcjAT2nQ3M7rbuHeDUBK/ZhDdP9QWJHCciIiIiArFzUTenN6EO5XY6oKRUxcxFncaEOlLQSj3U+akmkKFq+BvqvWUO75G8fYdaRERERMQPOqfOSnNhskj14pE9JqXxr8Bkb5nmwmSRz1ZFyfJTxqrhR37PclgJXwm1iIiIiEgKJlaFe6jT3fsWqoORNTmrXpyUsgAUV6S9MFl9qJny4kKqhxen9bySPd7UWWlOqHM8BzUooRYRERERSUlpUSFjRpRE3/NNm3ybMgvAzEtuIu9/p0l9YwvBQDlmmoM6XwUD5emvht9UB4XFMGJ8es+bACXUIiIiIiIpClaXp384a46nA0paoDbtQ74bQs0qSJbnaqrLWBVqoaMjjXNRh+qgMggFuUtrlVCLiIiIiKQoGChL75DvtlbY/FH+9VCD9xAgVAcuPYmTc46GUEu0sJXkp2Cgsxp+2vhgFIcSahERERGRFAWry1mzoYW29o70nDBSvTiHxZaSFqiFti3Q/ElaTtfU3MbmrdtVkCzPdc5FncaRHD4YxaGEWkREREQkRTWBMjocrGlqTc8JfVBsKWmRhwBpKkxWH52DWj3U+SzyQCRthcm2boKWxpw/dFJCLSIiImlhZleY2UNm9oGZOTNbkcQ5FoWPjfc1NQNhi6RFZH7ktPW+Na3wlvk65Bs6f4YUaQ7qwSHt1fAjhe9yfI8My+nVRUREZDD5PtAIvA5UpXCe9cAlcdZ/kMI5RTIq0nuatkrfoTooLIGKcek5XzZFEpw0Vfru7KHWkO98VlpUyNiRJel76BQdxTE5PedLkhJqERERSZednXMfAJjZW0BFkufZ4py7P31hiWTe+MpSCgssvb1vVbmtXpy0khFQVp22Id8NoWaqyosYUZpH83FLXN7UWekaxRH+/VJRMhERERkMIsl0OphZgZmNNE06K3liWGEB4ytL0zjkO/fFllKSxqmzInNQS/4LVpen76FTqA6KhkP5Duk5X5KUUIuIiIjfTAQ2AxuAzWb2iJntnuOYRPoVDJSnr+BSqC7nxZZSEpk6Kw3qQ82q8D1I1ATK0lcNv2mld4/k+LmrEmoRERHxkw+Bm4E5wKnAz4BjgZfNbO/eDjKzc81siZktWbduXXYiFemmJlBGfSgNvW+R6sX5WJAsomqSN/VXR2qJU0eHNwe1KnwPDsFAefqq4ftgDmpQQi0iIiI+4pyb45y70jn3W+fcw865bwFH472PfWsfx811zk11zk0dPXp01uIViRWsLmfdpq20trWndqJ8njIrIlAL7dtg80cpnWbd5q1s295BUD3Ug0JNuLBcyq9GOOeLOahBCbWIiIj4nHPuBeAvwOFmpr+qxbciVagbUu2l9kmxpZREKi+nOOw7MoS+Rj3Ug0J0erlUX41oCcG2Tb64R5RQi4iISD5YARQCgRzHIdKrtM1FHZluKsfTAaUkOnVWagl15OGEipINDpFq+Ck/dAqt8JbqoRYREREZkF2B7XjzXIv4UnQu6lR736LVi6vTEFWOVAa9Zbp6qDXke1AYVljAhKo0VMP30SgOJdQiIiKSdWY23sx2N7PymHWVZlYYZ98vAAcDzzrn0lDJRiQzRleUUDysIPXCZJFiS/k8a1xRKVSMS7mHuj7UzOgRJZQW9finQfJUTVUaquFHR3HkvhL+sFwHICIiIoODmZ0NRLoLRgPFZnZV+Ps659yCmN1vBGYBhwOLwusOB241s8eBD/B6pKcBZwHrgYszGb9IqgoKjJqqstSTBZ8UW0pZIPWps7w5qNU7PZgEq8t4/r0UZ2MI1UFpFZRWpiWmVCihFhERkXQ5B/hct3XXh5eLgQX07T3gNeA/gbFAEdAA3AV83zm3Kn2himRGTXV5au+HOuf16u54aPqCypWqWlj595ROUR9qZv9alU4YTIKBzmr4SY888MmUWaCEWkRERNLEOTcjgX1nA7O7rXsHb+5pkbwVDJTxz4am5E/QEoJtmwdPD/VbD0N7GxQWJXz49vYO1mxoVUGyQSZaayDUwi5jKpI7SagOxkxJY1TJ0zvUIiIiIiJpEqwup6m5jU2tbcmdIFq9OPfvhqasqhZcB2xoSOrwNRtaae9wKkg2yARTnYu6o8N7h9onPdRKqEVERERE0qRznt0kh337qHpxylKcOiuScAU1B/WgUhNIsRr+lo+hfatvRnEooRYRERERSZNIb2rSvW+RIl4+SRZSEullT7IwWUOj5qAejFKuhu+ze0QJtYiIiIhImsS+H5qUpjooC0DpyDRGlSMja8AKO6c4SlB9qJkCg/FVpWkOTHKpoMCoCaRQDd9noziUUIuIiIiIpEmgvIjhxYXJJwuDZcosgMJhUDkx+SHfjc2MryyjqFApy2ATDJSnYRSHP+oM6LdTRERERCRNzIxgdTkNySYLPiq2lBZVyc9F3RBqiRawksElWF2WwiiOFVAxFor88buhhFpEREREJI1qAuXJFSWLVC/2Sc9bWgRqUypKVqP3pwelYCCFavg+G8WhhFpEREREJI1qAmXUh5pxziV24Oa1vqpenBZVtd7P1ZbYA4bWtnbWbtyqgmSDVE0q1fB99tBJCbWIiIiISBoFq8tp3tZO45ZtiR0YLbY0Oe0x5Uzk4UCChclWNYUrfGvI96CU9FzU7du9ec199FqEEmoRERERkTQKhqfOSvgdUZ9NB5QWgeQS6khRN81BPTh1zteeYEK9cRW4dl/dI0qoRURERETSKJIEJtz7Fkk6q4JpjiiHIolPaEVCh0UeRmjI9+BUVV5ERcmwxB86+WzKLFBCLSIiIiKSVtGEOtH3Q31WvTgtKsZCYUnChcnqQ80UFxYwZkRJhgKTXDLz5qJOuBq+D0dx+CqhNrMrzOwhM/vAzJyZrUjw+ICZ/beZPWNm9WbWYmbvmdlcM+vxqM/MZoSvE+/rj2n7wURERERkyKgoGUagvCjxHmqfVS9Oi4ICr4BUglNnNTS2MDFQRkGBZSgwybWkquE3rQQrgMqazASVhGG5DqCb7wONwOtAVRLHTwduAZ4DfgKsB/YC/h/wZTP7rHPu7TjHzQVe6LauIYnri4iIiIiEk4VEh3zXQXB6ZgLKpapJSfVQ1wQGUU+99BCsLuOlf6/HOYfZAB+cNNXByIlQWJTZ4BLgt4R6Z+fcBwBm9hZQkeDx7wK7Oef+HbvSzP4PeBa4DvhSnOP+5py7P4l4RURERER6CFaX8e6aTQM/oH07bFgFew+yHmrw3ndd/XpCh9Q3NrPX3uMzFJD4QTDQWQ1/h4oBDu334SgOXw35jiTTKRy/onsyHV7/J7ye7716O9bMhptZaSrXFxEREREBL1loCLXQ0THAuag3NnjVi31UbCltqmqhJQStGwe0++at2wk1t6kg2SDXWbwvgWHfTXW+u0d8lVBniplVAiOAtb3s8mNgM9BiZv8Kv4etFzZEREREJCk11eVsa+/g401bB3ZAtMK3v5KFtIhOnTWwYd+RQlWag3pwi/z/HXBhsrZW2LTGd/fIkEiogauAIuBX3da3AX8ALgNOAL4ONAG3A/f0djIzO9fMlpjZknXr1mUiXhERERHJY5G5qAdcmCxavXhShiLKoejUWQNLqCOFqmrUQz2o1QQSrIa/od5bqoc6u8zsS8ClwNPAvbHbnHN/dc6d6Jz7hXPucefcL4ADw/vONrND4p3TOTfXOTfVOTd19OjRmf4RRERERCTPdE6dNcCEuqnOd9WL0yYw2VsOsIc68pkFVZRsUEu4Gn6TPx86DeqE2syOAx4AXgO+7Jzr9yUW51wHcGP42+MyGJ6IiIiIDFITq8I91APtfQvVwcgaX1UvTpuyABRXDLyHOtRMeXEh1cOLMxyY5FqwOoFq+D6cgxpSrPJtZmXATsBIYCPwgXMuwcnEMsPMjgEeAZYBRzvnBlYFwbMivByV7rhERET8ws/tuEi+Ky0qZMyIkoG/H+rDYktpY+YlQZH3xPtR39hCMFA+8KmUJG8FA+W8vWaAaVpTHRQWwwh/VX9PKqE2s4OAa4HPdTtHm5ktAq52zr2SenjJMbP/AB7Fm0brSOdcKMFT7Bpe9lbETESkVxs3buTjjz+mra0t16GIDwwbNozS0lJGjx5Naak/JpPwezueLa2traxbt47W1la2b9+e63DEB4qKihgzZgwjR45My/mC1eUJDGddCTsfkZbr+lKgFkIrBrRrQ6hZBcmGiJrqMp59ey0dHY6Cgn4eoITqoDIIBf4aZJ1wQm1mpwHz8Yp81QH/xHuqPRLYBzgaONzMznDO/S6NsXaPYzxQCax0zjXHrD8a+D3wL+AI51xjH+fYwTn3Sbd1JcA14W8fT3PYIjLIbdy4kbVr1zJx4kTKysr0dH2Ic86xfft2Nm/ezMqVKxk7diyVlZU5jckv7XiubdiwgbVr1zJ69GjGjRvHsGHDdL8Occ45WlpaWLVqFUBakupgoIxXVwygXydavdhf74amVVUtfLAYnPN6rHvhnKMh1MKBO+2QxeAkV4KBzmr44yr7eejs01EcCSXUZjYWmIvXczvHOfdcnH2OxCv+Nc/MXnDOfZzA+c8GIp/SaKDYzK4Kf1/nnFsQs/uNwCzgcGBR+PipwGOAhWM4tnvj6Jy7P+bbp8xsNd471quBCcBZeD3Udw6Fp/Mikl4ff/wxEydOpLxclUkFzIyioiICgQAlJSV89NFHOU2oM92O55P169dTU1Oje1WizIzy8nImTpzI6tWr05NQV5fzh3+spq29g6LCPnrVfFq9OK0CtdC2BZo/geG9v1XZ1NzG5q3bqVFBsiGhJqYafv8J9UoYv2/mg0pQoj3UXwHKgM8655bF28E596dwMbDXgdnAzQmc/xy84Wexrg8vFwML6NteQOT/xG297BObUD8MnARcCFQBW4A3gO865349oIhFRGK0tbVRVqY/AqSnsrIytm4d4Hy0mZPpdjxvbNu2TfeqxFVWVpa2V3ZqAmV0OFjT1MqkHfp4eOPTYktpFel9D9X1mVDXR+eg1sOuoSC2Gv4Bk6t733HrZu9hjA9HcSQ6AP3zwFO9NcIRzrk3gSeBoxI5uXNuhnPOevma0W3f2eH1i2LW3dfH8eacs27nuMk5d5BzbrRzrsg5V+WcO1zJtIikQsNGJR6f/F5ktB3PNz75fyI+k87fi2B4nt1+C5M1rfCWg7mHOvKwoJ+psyJV0YOag3pIGHA1/MjvjQ/vkUQT6j2Avw5w37+G9xcRERF/UDsukkXR3rf+EupQHRSWQMW4LESVI4EBJtTRHmqNIBkKSosKGTuyZGD3CEDV5IzHlKhEE+oqBl75ei0QSPD8IiIikjlVqB0XyZrxlaUUFtgAet9WQpX/qhenVckIKKvudy7qhlAzVeVFjCgdhPNxS1zBQPkARnEMnh7qMmDbAPdtA0oSPL+IiIhkjtpxkSwaVljA+MrS/nvfmup8+W5o2gVqBzTkWwXJhpZgdXn/D51CdVA0HMr9V/09mcdgLu1RiIiISLaoHRfJomCgnPrGAQxnHcwFySKqavvtoa4PNev96SGmJlDGmg0ttLV39L5T00rvoZMPa18kPA813jQav8jQuUVERCSz1I6LZFFNoIzF/1rX+w5bN0FLoy+HsqZd1SR47wno6Ig7vL2jw5uD+sgpY3MQnORKMFDefzV8n85BDYk3ln9BT7ZFRETyldpxkSwLVpfz8aattLa1U1pU2HOHoTBlVkSgFtq3weaPYOSEHpvXbd7Ktu0dBDXke0ipqe6cizpuQu2cd5/UHpzlyAYmoYS6+9RVIiIytG3atIkRI0bkOgwZILXjQ5fu1dyJVKtuCLWwy5iKnjv4uNhS2kUqNIfq4ibUkaHxNZqDekiJDPHv9dWIlhBs2+Tbe2QQlxIUEZH+rFixglNOOYWRI0dSWVnJiSeeyIcffsjkyZOZMWNGl33NjNmzZ/Pcc89xyCGHUFFRwfHHHx/d/vvf/56DDz6YiooKKioqOPjgg3nsscd6XDNynu7uu+8+zIxFixZF111zzTWYGcuWLeOiiy5i3LhxlJWVMX36dJ577rl0fQwivqd7NX9Fk4XeCpM1rfSWQ6WHGnotTNYQisxBrR7qoSRSDT/y/7+H0Apv6dN7RO9HiYgMUZ988gmHHnooa9eu5etf/zpTpkzhhRde4PDDD2fLli1xj1myZAm/+93v+NrXvsasWbOi63/2s59x/vnns/vuu3PVVVdhZtx3332cdNJJ/OIXv+Dcc89NKdaZM2dSWFjI5ZdfzqZNm/jFL37BMcccw5NPPsmRRx6Z0rlF/E73an6LzEXd0Fvvm4+rF6ddZdBb9lKYLNpDraJkQ0q/1fAjD5182kOthFpEZIi66aabaGho4P777+fMM88E4LzzzuOyyy7jhz/8Ydxjli1bxrPPPtvlD+NQKMRll13GzjvvzMsvv8zIkSOj59pvv/249NJL+fKXv0xVVVXSsQ4bNowXXniB4uJiAL7yla+w++67c+GFF/LOO+8kfV6RfKB7Nb+NriiheFgB9b31vkWKLfmwenHaFZVCxbhee6jrQ82MHlES/11zGdT6rIYf+X3x6dRyGvItIjJEPf7444wfP57TTz+9y/r/+Z//6fWYT3/60z16mZ599lm2bNnCRRddFP0DHWDkyJFceOGFbN68mT/96U8pxXrJJZdE/0AHqKmp4cwzz+Tdd98dsn+ky9ChezW/FRQYNVVlNPTW+zZUpsyKCNR29jh2U9/YouHeQ1Swuqz3h06hOiitgtLKrMY0UEqoRUSGqA8//JBddtmFgm5Tl4wZM6bXHqpPfepTcc8DsOeee/bYttdeewHwwQcfpBTrlClTeqzbY4890nJuEb/TvZr/aqrLqW+Mkyw45+vpgDKij7mo60PN0SHyMrQEA+WsC1fD78Hn98iAE2ozm2RmemQkIjKElZf3/EPHufTMwrR9+/Zet1mcoZDpuu5QoXZ8aNG96i/BQFn890NbQrBt89Drod7YAO1tXVZvb+9gzYbWaBE3GVqitQbi9VL7fBRHIj3UHwJfjHxjZn82syPSH5KIiGTD5MmTef/99+no6Oiy/uOPP6apqWnA59l5550B753N7t5++20Adtppp+i66upqGhsbe+zbV+9V5DyxIsNHY88tfVI7nqd0r+a/YHU5Tc1tbGrtmkR2Vi/257uhGVFVC64DNjR0Wb1mQyvtHY4aDfkekoIxc1F30dHhvSIwGHqogTagKOb7GcDYtEYjIiJZc/zxx7NmzRp+/etfd1n/ox/9KKHzHHXUUQwfPpw777yTTZs2Rddv2rSJO++8k4qKCo466qjo+k996lP87W9/o7m5s9EMhULce++9vV7jtttuY9u2bdHvGxoaWLhwIbvttlvcIaYSl9rxPKV7Nf91zrPbrfdtKM1BHdHL1FmRREpDvoemSGX3HtXwt3wM7Vt93UOdSJXvD4ETzOz3zrkN4XUawyMikqcuv/xyFi5cyJw5c3jllVfYfffdefHFF/nrX//KqFGj4g7djKeqqoqbb76Z888/n+nTp0fnrb3vvvt4//33+cUvfkFlZWchkQsuuICzzjqLz3/+85x99tk0NTVx9913U1tby0cffRT3Gtu3b+fQQw/l9NNPZ9OmTdx11120tLRwxx13pPw5DCFqx/OU7tX8F+l1bQg1s8eEzoJw0XeJfZwspF2kN75bYbKGxsgc1Eqoh6Jeq+HnwT2SSEJ9J/AT4KTwP9wOuN/M7u/jGOec09RcIiI+NGrUKF588UUuvfRS7rnnHsyMww8/nOeff54DDjiAsrKBD7v7xje+wfjx4/nhD3/ItddeC3hVhh999FFOOumkLvueeeaZrF69mp/85Cd885vfZKedduLqq6+moKCAl19+Oe7558+fz1133cUPfvADmpqa2Geffbjvvvu69KZJv9SO5yndq/kv0uvaI1loqoOyAJSOjHPUIDWyBqywR2Gy+lAzBQbjq0pzFJjkUkGBURMo6zl1Vh6M4hhwI+mc+5mZvQ0cBYwHZgEvAkO3ZKOISJ7bcccdeeSRR7qs++STT/jkk0+YNKnrO339FRb64he/yBe/+MU+94n41re+xbe+9a0e6yM9Zt1FhqneeeedAzq/9KR2PL/pXs1vgfIihhcX9kwWfF5sKSMKh0HlxJ5DvhubGV9ZRlGhJiEaqoKB8p7vUEd7qP1bZyChp87OuUXAIgAzmw38wjm3MO1RiYhIVrS0tPTo3brpppsAhnyP0mCkdjx/6V7Nb2ZGsLq851zUTSthzBB8tzzO1FkNoRYVJBvigtVl/KOhqevKphVQMRaK/Pu7kcowrh2BdekKREREsu/YY4+ltraWqVOn0t7eznPPPccf//hHPvvZz/YY/imDjtrxPKJ7Nf/VBMq79lBHqhfvdkzugsqVQC0sf7bLqvpQM4fuOjpHAYkf1AQ6q+GPKA3X0Gxa6ftRHEkn1M65OgAzGwkcCUTmQvgAeNY5t6m3Y0VExB+OP/545s+fz+9//3taWlqoqanh0ksv5bvf/S6FhYW5Dk8ySO14ftG9mv9qAmW89O/1OOe8QnKb1/q+enHGVNV6P39bCxSV0drWztqNW1WQbIiLrYa/x4RwQh2qg5oDchhV/1IqNGJmXwVuASqASIlJB2w2s2865+alGJ+IiGTQpZdeyqWXXprrMHp1zTXXcM011+Q6jEFL7Xj+0L2a/4LV5TRvayfU3Eb18OKYYkuTcxpXTkQeIjTVw+hPsaopXOG72r/DeiXzYuei3mPCSGjf7s1XvveXchxZ35J+69/MTgDm4g0X+yZekZOjgEuAj4G5ZnZ8OoIUERGR9FI7LpJdwfD7wdFh33kwHVDGdJuLOvKZaA7qoa2zhzp8j2xcBa7d9/dIKj3UlwHvANOdc5tj1j9nZvcCfwcuBx5P4RoiIiKSGWrHRbKoc+qsZj4drOqch7kqmLugciWSIIVWAF5BMkBFyYa4qvIiKkqGRX8f8mHKLEihhxr4NHBft0YYgPB7V78K7yMiIiL+o3ZcJIuiCXVjJFlY4fvqxRlTMRYKSzp7qEPNFBcWMHaE5qAeysy8uaij1fDzZBRHqhO9WR/b+p4EUURERHJN7bhIllSUDCNQXtQ5z+5QnIM6oqDAm1c4nDA1NLYwMVBGQUFf/yTJUOBVw488dFoJVgCVNbkNqh+pJNT/AGaZ2fDuG8ysApgd3kdERET8R+24SJbVBMq7Dmf1+VDWjKqaFB32Xh9q1nBvAbzCZPWhZpxz3j0yciIUFuU6rD6l8g71j4BHgNfN7A7g7fD6PYELgV2Ak1MLT0RERDJE7bhIlgWry3h3zaZw9eJVsPcQTqgDtbD6dcArQrXX3uNzHJD4QTDgVcNv3LKNHfJkFEcq81D/3swuAG4C7qRzaJgBW4ALnHOPpR6iiIiIpJvacZHsCwbK+dPbH9PRVE+Bax/iPdS10BJi88ZGQs1tmoNagNjifS3s0FQHO38+xxH1L6V5qJ1zPzOzhXjTbOyI1wj/G3jWObchDfGJiIhIhqgdF8mumupytrV30LTm31SDN+x5qAo/TFi38l+AKnyLJzIX9er1IfbdtCYveqhTLUqGc67JOfeQc+5m59xNzrmH1QiLiEi6LFq0CDPjvvvuy3Uog5LacUkn3a99i8xFvWHN+96KPEgWMib8s0c+C81BLeDVGQBoWvOhtyIPRnGknFCLiIikaunSpVxzzTWsWLEi16GISD90vyYvkixsXfdBXlQvzqhwQr314w+AzocNMrRFquFvXef9XuTDKI6UhnyLiIikw9KlS7n22muZMWMGkydP7rLtsMMOo6WlhaIif1f5FBkqdL8mLzqsObQSRtb4vnpxRpVXQ3EFbFhJefE0qocX5zoi8YlgdXl0jvJ8GMXhqx5qM7vCzB4ysw/MzJnZiiTPc5yZvWRmW8ysMXzOHXvZt9LM7jSzVWbWambLzOw8M9NEeCIiPlBQUEBpaSmFhYW5DkX6kYt2XPxF92vfSosKGTOihNLN9XkxlDWjzKCqlpLNDQQD5ehPb4kIBsop3dwAhcUwwv/V332VUAPfBz6PVxAllMwJzOxk4I9AGfAt4IfAYcBfzWxCt32LgWeBrwO/xZsm5D3gZ8B3k/sRREQGv02bNnHVVVcxffp0Ro0aRUlJCbvssgv/+7//S3Nzc5d9nXPcfffdTJ8+nYqKCioqKth77725+uqrAbjmmmuYM2cOAIcffjhmhpkxe/ZsoOc7me+88w5mxje/+c24sZ1++ukUFxezbt266Lo1a9Zw3nnnMWnSJIqLi5kwYQLnnnsuH3/8cZo/mSEvq+24DIzuV38JVpczcuuavBjKmnGBWipbV6sgmXRRU11G5dbVuMogFPgtXe3Jb0O+d3bOfQBgZm8BFYkcbGZFeFN/1AOHOuc2h9c/CbwGXAOcG3PIV4EDgIucc3eG191tZr8Dvm1m9zrn6lL4eUREBqVVq1bxy1/+klNOOYUzzjiDYcOGsXjxYm6++WbeeOMNnn766ei+Z599Ng888ADTp0/nyiuvpKqqinfffZeHH36Y6667jpNPPpk1a9Ywd+5cvv3tbzNlyhQAdt5557jXnjJlCgcccAALFy7khz/8YZeesI0bN/LYY49x7LHHMnr0aABWrlzJQQcdxLZt2zjnnHPYeeedef/99/n5z3/O888/z5IlS6isrMzgpzWkZLsdlwHQ/eovO1YWUL32k7wYyppprmoSY9uf0/vT0kUwUM5EPmbbiEmU5DqYAfBVQh1phFPwOWACcHWkEQ6fd6mZLQJOM7PznXNt4U1nAM3A3d3OcztwMnAacHOKMYmIcO3jy3h79cZch9HFHhNG8t3j90zq2J122on6+vou70mef/75fOc73+F73/ser7zyCtOmTePBBx/kgQce4KyzzuJXv/oVBTFPmjs6OgDYZ599OOigg5g7dy5HHXUUM2bM6Pf6s2bN4oILLuDpp5/muOOOi65/6KGHaGlpYdasWdF1F154IW1tbbzxxhvU1HQWADr11FM58MADue2227jmmmuS+hykqxy042k32O5V0P3qN3sM936/tlcG/fWHeA60DK+h3LayS0VrrkMRH6kJlFFj69hQciBjch3MAKTUh25mhWY208zuN7NnzWy/8PpAeP3E9IQ5YAeEl3+Ls+3vwEjgUwBmVgB8BnjDOdf9Ln4F6Ig5n4iIxCguLo7+cb59+3ZCoRDr16/nyCOPBODll18G4IEHHgDgRz/6UZc/zoEe3yciMkx0/vz5XdbPnz+f6upq/vM//xOADRs28Mc//pETTjiB0tJS1q9fH/2aPHkyu+yyC88880zSceS7fG7HZeB0v/rLzsPWA/BJkf/fDc20jwvHArBzcWOOIxE/mVTh2ME28XFhPqTTKfRQm1k58AzwWWALUA4Ewps3Aj8A7gGuSjHGRETerVoVZ1tk3URgGV6sZfH2dc5tNbNPwvv2YGbnEh5yNmmS3n8Rkf6l0rvkVz/72c+46667WLZsWbT3KiIU8l6fXb58OePHj2fs2LFpvXZ1dTVf+MIXeOyxx9iwYQOVlZWsWLGCF154gW984xsUF3vVYt977z06OjqYN28e8+bNi3uunXbaKa2x5YtB0I53ka62eTDeq6D71U9qzHtfvL5jNOn9pPPPyo4xTAaCrOtvVxlCJuLVS1jZMYa9chzLQKQy0uQaYCrwReAlYG1kg3Ou3cweAf6D7DbEkRnht8bZ1tptn772jewfd4Z559xcYC7A1KlTXeJhiojkt1tvvZVLL72Uo48+mosuuogJEyZQXFzMqlWrmD17dvQPdudcxiq3zpo1i0cffZSHHnqIr371qyxYsADnHDNnzozu45z3T/RZZ53VZVhprLKyIfvu3jXkdzvehdrm3ul+9ZfR2z9iqxvGv1srmJrrYHJs+bZqDgNGtX+U61DER0o21QPe70c+SCWhPhWY65x7zMx2iLP9fbx3kLMpUqoy3vvrpd326WvfyP7NvWwTERnSFixYwOTJk3nyySe7DAV96qmnuuy322678dhjj7F27do+e72S+SP+uOOOY/To0cyfPz/6B/ruu+/OtGnTovvssssumBnbtm2LDm+VqHxvx2WAdL/6S0XLauoYRX2otz6doePDTUaIEQTCCZQIEJ2D+q3mqtzGMUCpvEM9AfhHH9ubgREpnD8Zq8PLeEO1I+siQ8ZCQEu8fc2sBNiB+EPORESGvMLCQsws2qME3ruZP/jBD7rsd+aZZwJw2WWX9RhmGntsRYVXDLqxceDv0RUVFXH66afz4osvsnDhQpYvX96jV2uHHXbguOOO45FHHuHvf/97j3M457pM1zPE5Hs7LgOk+9VfCjbU8XHhOOpDejZU39jCusJx0QRKBICmlWy1Ut5uKs51JAOSSg91r+8Yh+1JZ8OYLa+GlwcBf+q27UC8d8L+BeCc6zCz14H9zKzEORf7mHAa3sOGJRmOV0QkL33pS1/iiiuu4Nhjj+Xkk09m48aNLFy4sEsVYfAq85522mnMnz+f5cuXc8IJJxAIBPjXv/7F008/zVtvvQXAAQccQEFBATfccAOhUIjhw4ez4447Mn369D7jmDVrFnfccQfnnXceBQUFnHXWWT32+fnPf84hhxzCYYcdxsyZM9lvv/3o6Ojggw8+4LHHHmPmzJl5XzU4SXndjsvA6X71mVAdm0oPpL5RCXV9qJlNZRMgpIRaYoTq2FQ6gTVNrbS1d1BU6O+5qFNJqJ8D5pjZj7pvMLMdga8AC1I4f5/MbDxQCax0zkX+RVoMrAG+ama3xcxf+WlgBnBvt6k2fg0cjFfE5M6Y9RcD24EHMxW/iEg++9a3voVzjnnz5vHf//3fjBs3jtNOO405c+awxx57dNl34cKFHHroocybN4/rrruOwsJCdtxxR0499dToPpMmTeKee+7hpptu4rzzzqOtrY1Zs2b1+wf6Zz7zGfbaay/eeustjjzyyC7T7EQEg0Fee+01brrpJh577DHuv/9+SktLCQaDHH/88Xz5y19Oz4eSfwZDOy4DoPvVR7ZugpZGto4J0hBqyXU0OdXR4WgItbCtpgbW/Q06OiCFavIyiDTVsW1EkI4QrGlqZdIOcUtn+IbFDuFJ6ECzXfB6cFfhJabXArcA7cDXw8v9nHMDfinCzM4GIrPcXwgUh88JUOecWxCz733ALOBw59yimPWnAr/FG8Z2N94UG5cADtjfObcqZt9ivEIsnwbuAN4BjsMr0PI959x3+ot56tSpbskSdWSLiOedd95hypQpuQ5DfGogvx9m9ppzLuO1igZDO96bgbTNulelLxn7/fjoLbjrYJ7c/UbOW1rLu9cfQ2lRYfqvkwfWbmxl+vef47f7LWP6OzfAN9+BkRP6P1AGN+fgxiBrdvwiB/3jGB746nQO3mVUrqPqs21OuofaOfe+mR2BN6XGdeHV/xNevgWcnUgjHHYO8Llu664PLxczgCflzrmHzKwFryrpj/AqhT4HXN69EXbObTOzI4HvAafjvTf9b7w/An6aYOwiIiJ5YzC04yJ5p2klAGVjJgNeD+0uYypyGlKuNITfIS8ds5PXpRWqU0It0BKCbZu83wvIi1cjUhnyjXPuNeDTZrYXMAUwYLlz7o0kzzcjgX1nA7N72fZH4I8DPE8TcEH4S0REZMgYDO24SF4JF9+qmrAr8C/qQ81DNqGub/SGvFdN2MVb0VQHtQflMCLxhdAKAEaO24XCAsuLVyNSSqgjnHNv4T3NFhERkTyjdlwkS0J1UDSc8eNrgH/RkAe9b5kS6XkcO2lXb4UKkwlER3EU7jCZ8ZXr8qIavt78FxERERHJhqY6CNQyekQpxcMK8qL3LVPqQ82MHlFCadlwqBgXTaRkiItMoVY1iWCgfHAP+TazDrwCIX1xzrm09IKLiIhI+qgdF8mBUB1U1VJQYNRUleVF71um1De2EAyUed8EajUXtXhCdVBaBaWVBKvLeP49/889n0ojOZ+eDfEwYGdgOvBPYGkK5xcREZHMUTsukk3OeUnjjocCUFNdHn2PeCiqDzWzf23A+6aqFlb+PbcBiT+ER3EABAPlrNu0lda2dl9Xw0+lyvfs3raZ2WeBPwDnJXt+ERERyRy14yJZ1hKCbZuhahIAwUAZ/2xoym1MObK9vYM1G1qpie2hfuthaG+DwqLcBie5FaqDMd6UdcFqb/5pv1fDz8g71M65l4B7gZszcX4RERHJHLXjIhkQrl5MVbj3rbqcpuY2NrW25S6mHFmzoZX2Dkcw4CVMVNWC64ANDbkNTHLLOdhQH+2hjjxw8furEZksSrYc+EwGzy8iIiKZo3ZcJJ0i7wjHDGcFhmRhskiCFOmBjHwmKkw2xG1eC9tbuzx0AnxfDT+TCfUMYOj9CyEiIjI4zEDtuEj6RKaFqurW++bzZCETGsLvjnf2UHvD4FWYbIjrdo+MriiheFgB9T5/6JRKle+ZvWyqBo4EjgV+mez5RUREJHPUjotkWVMdlAWgdCTQ2fvm92QhE+pDzRQYjK8q9VaMrAEr1FzUQ123URwFBUZNoMz3D51SqfJ9H151UIuzbTswD/hmCucXERGRzLkPteMi2ROq6+yJBQLlRQwvLvR9spAJ9Y3NjK8so6gwPFi2cBhUTlQP9VAX6pyDOiIYKB/U71AfDnw+vIx8zQD2AQLOuXOdc1tSjlBERHxp0aJFmBn33XdfrkMZkBkzZjB58uRch+EnaseHCN2rPtG0MjqUFcDMCFaX0+DzZCETGkItnRW+I6pq1UM91DWtgIqxUNT5uxGsLvN9nYFUps1anM5AREREUnX77bdTVVXF7Nmzcx2K76kdl1wacvdqR4eXUO92TJfVNYHyodlDHWrm0F1Hd10ZqIXlz+YmIPGHbg+dwLtHItXwR5T6c0q1VIZ8i4jIEHbYYYfR0tJCUZF/Grjbb7+dyZMnx/0j/ZlnnsE5l/2gRHJM96oPbF4L7VvjJAtl/O3f63HOYRbv7YvBp7WtnbUbt3YWJIuoqvU+p7aWLj2UMoSE6qDmgC6rIr8n9Y0t7DHBP/+GxRpwQm1mVydxfuecuz6J40RExOcKCgooLS3NdRgDVlxcnOsQckrt+NCle9UHosWWJndZHawuZ8u2dkLNbVQPH4Q/dxyrmsIVvqvjDPkGaKqH0Z/KclSSc+3bvXnI9/5Sl9WR35P6UDN7TBiZi8j6lcg71Nck+SUiIoNQ9/cyY7+/99572XPPPSkpKaG2tpabb765x/HPPPMMp512GjvttBNlZWVUVVVx9NFHs3hx/JHI77//PnPmzKGmpobi4mImTJjAiSeeyGuvvQZ47yPW1dWxePFizCz6tWLFCqDne5mnnXYaxcXFrF+/vse13nvvPcyMiy++uMv63/72txxyyCGMGDGC8vJypk+fzsMPP5z4h5cb1yT5JXlO96oP7tVu0wFFBIfg1FmRnzU6B3VEdC5qvUc9JG1cBa49zj0S6aH27z2SyJDvHTMWhYiIDBp33XUXa9eu5ZxzzqGqqor777+fyy+/nJqaGs4444zofvfddx+NjY3MnDmTmpoaVq1axS9/+UuOOOIInn/+eQ499NDovkuWLOGII46gra2Nc845h7322ovGxkYWL17MSy+9xP7778+CBQu45JJLGDVqFFdeeWX02NGju72nFzZr1iwefPBBfvOb33DBBRd02TZ//vzoPhFXXXUVN9xwA8cccwzXX389BQUFPProo5x66qn85Cc/4fzzz0/L55dBaselC92rWdS00ltWBbus7pw6q5lPB6uyHFRuRApMxS1KBhBakd2AxB+6TZkVUVVeREXJMF8XJrNB945Klk2dOtUtWbIk12GIiE+88847TJkypeeGJ/8XPnoz+wH1ZdzecOwPkj580aJFHH744dx7773Mnj07+v348eN5++23qaqqAqC5uZna2lp22WUX/va3v0WP37JlC8OHD+9yzrVr17Lnnnsybdo0nnjiCQCcc+y99968//77vPLKK+yzzz5djuno6KCgwBtwNXnyZCZPnsyiRYt6xDtjxgxWrFgR7QVrb2+npqaGYDDIK6+8Et3POcfkyZOprKzkn//8JwCvv/46+++/P1dccQXf//73u5z3pJNO4s9//jOrVq1ixIgRfX5mvf5+xDCz15xzU/vcSfo0kLZZ96ru1b4M5F5NyGPnewW3/udfXVZv3rqdvb77NJcfszvnzdg5fdfzsRuffId7X1zBu9cfQ0FBzHvjHR1wwziYfi4c/b3cBSi58cb93n1y0VKo7vr895jb/0JNoIxfzjog/rFZ0FfbnMq0WSIiIj3MmTMn+gc6QHl5OQceeCDLly/vsl/sH+ibN2/mk08+obCwkOnTp/Pyyy9Hty1dupRly5YxZ86cHn+gA9E/0BNVWFjImWeeyauvvsq7774bXb9o0SJWrlzZpcfrgQcewMyYNWsW69ev7/J1wgknsGnTpi4JiEg+0L2aRaG6HkNZASpKhhEoLxpSU2c1NLYwMVDWNZkGKCjw5h+O9ObL0BKqAyuAypoem7xq+P7toU65yreZTQWmAwF6JugqZiIiAin1LuWbnXbaqce6HXbYgU8++aTLun//+99ceeWVPP300zQ1NXXZFlvtNvLH/X777Zf2WGfNmsUtt9zC/Pnzo71Z8+fPj/4BH/HOO+/gnGP33Xfv9Vxr165Ne3zZoHa8G92rulczoakOgtPjbqoJlFPv4+Gs6VYfau453DuiapLmoh6qmupg5EQo7FnJO1hdxks+roafdEJtZmXAI8DRgAEuvCTmvx0wtBpiEZEhrrCwsN99Nm/ezGGHHcaWLVu4+OKL2XvvvRkxYgQFBQXceOON/PnPf47uG3k1KRON6N57782+++7L/fffzw033EBLSwu/+93vOProoxk3blyXGMyMJ598stefb88990x7fJmkdlx0r2ZJ+3bYsAr27tlDDV6y8O6aTdmNKYfqG5vZa+/x8TcGamH169kNSPyhl1Ec4BUma97WTuOWbexQUZLlwPqXSg/11XiN8A3Ac8DzwCzgY+AKoAyYmWqAIiIy+Dz33HOsXr2ae+65hzlz5nTZdtVVV3X5frfddgPgjTfe6Pe8yfwhP2vWLC655BKef/551qxZw6ZNm7oMIQXYddddeeqpp5g0aVJ636vMLbXj0i/dq2mwsSFcvXhS3M3BQDl/evtjOjpcz2HQg8zmrdsJNbf10UNdCy0haN0Ipf6cIkkypKkOdv583E2dxftafJlQp/IO9ZeAh5xzVwNvhdetcs49DRwJFAOzUwtPREQGo0jPUffCmM8880yXdzIBPv3pT7Pnnntyzz33sGzZsh7nij1HRUUFjY2NCcVyxhlnMGzYMObPn8/8+fOprKzkxBNP7LLP2WefDcC3v/1t2tvbe5zj448/TuiaPqF2XPqlezUNIu8EB+L3vtVUl7OtvYOPN23NYlC5EXlXPDIVUg+aOmtoamuFTWt676EOz0Xt11oDqfRQB4Fbw/8d+RerGMA5t93Mfg2ch/eUW0REJOqQQw5h3LhxXHrppaxYsYKamhqWLl3KggUL2HvvvXnzzc4qy2bGvffeyxFHHMG0adOiU/E0NTWxePFijjnmGC688EIADjzwQObNm8d3vvMdpkyZQkFBAccff3yPCsWxxowZw7HHHsvDDz9Ma2sr55xzDqWlpV32OeCAA7j22mv57ne/y7777supp57KhAkTWLNmDa+99hpPPPEE27Zty8yHlTlqx6VfulfToJc5qCOic1GHmhlXWRp3n8EiUliqxxzUEdGps+q86vYyNGxo8Ja9PXSKzkXtz1oDqSTUm2KO3wR0ABNitm8AxnU/SEREpKqqiqeffprLLruMO++8k+3bt7P//vvzxBNPMG/evC5/pIP3R/Krr77K9ddfz4MPPshdd93FqFGjmDZtGgcffHB0vxtuuIHGxkZ++tOf0tTUhHOODz/8sM8/0sEbSvr4448DMHNm/FHOV199Nfvvvz933HEHt99+O1u2bGHMmDHstdde/PjHP07xE8kJtePSL92radDUe/Vi6EwWGkLNHDC5OpuRZV19Y6SHuo8h36BK30NN0wpv2ctrEZFq+PU+7aFOeh5qM/s78Kpz7sLw9//AGyp2nHkvxjwF7Oic+1TaovUhzUMtIrHSPnepDCp+mod6MLfjKc1DLUKafz9+9zVY+Xe4JP785q1t7ez+naf45lGf4qIjdk3PNX3q2seX8dtX61l27X/Ef4/eObixBvY7C469KfsBSm68Og/+75twydtQOTHuLif85EUqy4pYcE78avmZlql5qP8EnGJmkRKKvwCOMbN/A8vx3r+al8L5RUREJHPUjotkQ1Ndrz1vAKVFhYwZURLtvR3M6htbqAmU9V6UzszrpdbUWUNLUx0UFsOIXqq/47133+DT6eUSSqjNLLas2g+AwwlPseGc+xnwP3hDxELAt4Gb0xOmiIiIpErtuEgONK3s9d3QiGB1uW+Hs6ZTQ6i594JkEYFaFSUbakJ1UBmEgt5T05rqMlaFWujoSG50dSYl2kO9xsx+amb7O+c2O+fec85tj2x0zt3qnPuMc+4A59xNLtnx5CIiIpIJasdFsqmf6sURwUCZbwsupYtzjoZQS+8FySIiPdT652foGMBDp5qAf6vhJ5pQb8Cr+PmKmS01swvNbHBXTxARERk81I6LZNOGem85gB7qjza2sr29IwtB5UZTcxubt27vfQ7qiEAttG2B5sSmVZM81lQ3oIdOgC9HciSUUDvndsR7p2ohsAvwY2CVmf3GzI62Xl+IEBERkVxTOy6SZf1MmRVREyijvcOxZkNrFoLKjUgi1H8Pdfh980jlZxnctm6G5k/6rDMAnb83fqw1kHBRMufcn51zZwPjga8DS4EvA08CK8zsWjPbMa1RioiISFqoHRfJokhS2F8PdcC/yUK6ROeg7u8d6ti5qGXwi7wv3889MrEq3EPtw1cjkq7y7Zzb5Jyb65w7CJgC3AIUAd8BlpvZc2Z2RpriFBHJG3rtVOLx2++F2nH//T8Rf0jr70UoXL24ou8p3aO9bz4czpoukZ+tpnoAQ75BhcmGiugojsl97lZaVMjYkSW+vEdSmTYrKlzU5DKgBjgeeBavcuj8dJxfRCRfFBUV0dLiv6enknstLS2UlJT0v2MODMV2vLi4WPeqxNXS0kJRUVF6Tta0st/qxQDjK0spLDBf9r6lS0OomcqyIkaW9vPZloyAsmr1UA8VA+yhhsjUWYM0oY4xDTgBOCj8/bZEDjazAjO7xMzeNbNWM6s3s1vMbPgAjp1hZq6fr4MHuP8fE/qpRUTCxowZw6pVq2hublbvl+Cco62tjcbGRhoaGthhhx1yHVJ/UmrH88moUaNoaGigsbGRtrY23a+Cc47m5mZWrVrFmDFj0nPSproBJQrDCgsYX1nqy963dKlvbCHYX+90hKbOGjqaVkLRcCjvv32s8Wk1/GGpnsDMxgFnA3OA3fDms1wKzAMeSPB0twEXAY/iDT2bEv5+PzM70jnXV+nDd8JxdFcCzAXWA6/E2T4XeKHbuoYE4xYRAWDkyJEArF69mra2thxHI34wbNgwSktLmTRpEqWlpbkOp4c0t+N5o7KykpKSEtatW8cnn3zC9u3b+z9IBr2ioiLGjh0b/bc8ZaE6GL/vgHatCZTREPJfspAu9aFmdhs7YmA7V02CtcsyG5D4Q6jO+/89gJqYwepy/vCP1bS1d1BUmO5+4eQllVCb2TC8J9hzgP8In6cJ+Dkwzzn3RhLn3BO4EHjEOXdKzPoPgTuA/8KrShqXc24tcH+c856O1xM/3zkX76/bvznnehwnIpKskSNHpu+PMZEMyEQ7no9KS0sJBoO5DkMGq62boKVxQD3U4A1nXfyvdRkOKjc6Orw5qI+cMnZgB1TVwntPQkdHv8PlJc8NcBQHePdIh4M1Ta1M2qGf4nZZlNBvqJntY2a3AauBh4DjgL8AZwLjnXMXpNAIn473VPz2buvvBpqBs5I871fDy1/2toOZDTcz/3UbiIiIpFGG23ERiRUtttT3dEARwepyPt60lda29gwGlRvrNm9l2/aO/uegjgjUQvs22PxRZgOT3HIu3EM9sIQ6UtDOb69GJNpDvTS8rAe+B9zrnFuRplgOADroNizbOddqZkvD2xMSnvbjcOBF59x7vez2Y+De8P7LgZ8Cdzi9TCUiIoPP0vAyE+24iMRqWukt+6leHBF5v7gh1MIuYyoyFFRuRApJ9TtlVkTkMwvVwcgJmQlKcq8lBNs2JdRDDf6bXi7RhPphvHeqnslAwjkBWO+c2xpn2yrgs2ZW7JxLpEDKV/B6veP1TrcBfwCewHtSPwE4B6+HfF+8YXBxmdm5wLkAkyYN7KmjiIiID2SyHReRWAlUL4aYZCHUPOgS6ugc1IkUJQPvM6w9qO99JX9F7pEB9lBHquH7rdZAQgm1c+7LmQoEKAfiJdMArTH7DCihNrNCYDawEW9YWxfOub8CJ3Y75m68BHu2mc1zzr0Y79zOubl4xcyYOnWq/iAREZG8kOF2XERiheoGXL0YOuei9luykA6RHsWagfZQV4ZrG0R6+WVwCiX20Mmv1fD99JZ/M15F7nhKY/YZqP/Am0/z1865AR0XriJ+Y/jb4xK4loiIiIhIp0ixpQFULwYYXVFC8bACGnw2nDUd6kPNjB5RQmlR4cAOKCqFinGai3qwa0qszgB4Izn8NuTbTwn1amCUmcVLqifiDQdPZLj3OeFlr8XIerEivByV4HEiIiIiIp4Eii0BFBQYNVVlvut9S4f6xhaCAy1IFqG5qAe/UB2UVkFp5YAPCVaXUe+zURx+SqhfxYtnWuzKcPXtfYElAz2RmY0Bjgf+6Zwb8HFhu4aXaxM8TkRERETEq17cVJdQzxtATXV59H3jwaQ+1Dzw4d4RVbXqoR7sEpgyKyIYKGedz6rh+ymh/i3ggIu7rf8a3rvTD0RWmNl4M9vdzHq7M2cCRfQ9VVaPF1rCvePXhL99fKCBi4iIiIhEtYRg2+YkkoXB10O9vb2DNRtaB16QLCJQCxsboL0tM4FJ7iU4igP8WWsg0SrfGeOce9PMfgpcYGaP4BUHmwJcBCwGFsbsfiMwC29KrEVxTvcVvEJm9/dxyafMbDXwGp1Vvs/C66G+0zn3Sh/HioiIiIjEF1rhLZNIFpqa29jU2saI0qL0x5UDaza00t7hBj5lVkRVLbgO2LgKApMzEpvkkHOwoR52OyahwyJzmfupGr5vEuqwi/HeYT4X+AKwHrgTuDpcMKxfZvZZvER8oXMu1MeuDwMnARcCVcAW4A3gu865XycVvYiIiIhIglNmRUSSzoZQC1PGD46EOtLjHulZHLDIZxeqU0I9GG1eC9tbk++h9lFhMl8l1M65duCW8Fdf+83GmxIr3raX8Oae7u9aNwE3JRykiIiIiEhfQolXL4aY3rfGZqaMH5nuqHKiITIHdcI91OHPToXJBqdQYnNQR0Sq4fupMJmf3qEWEREREcl/TYlXL4bO3jc/JQupqg81U2Awvqq0/51jjawBK1RhssEqyVEcBQVGTaDMV1NnKaEWEREREUmnppUJJwoAgfIihhcX+ipZSFVDqIXxlWUUFSaYdhQOg8qJ6qEerJIcxQHhuah9VLxPCbWIiIiISDolUb0YwMwIVpfT4KNkIVX1jc3RoewJ09RZg1dTHVSMhaLEfzdqAmW+qvKthFpEREREJF06OpLuoQaoCZT7KllIVX2oOfGCZBGBWu+zlMGnKbmHTtC1Gr4fKKEWEREREUmXzWuhfWvSyULk/VDnXJoDy77WtnbWbtyaeEGyiKpa2PwRtA2eBwwSFqpLarg3dBa4q2/0x++FEmoRERERkXSJFluanNThwepytmxrJ9Tsj963VKxqClf4rk5hyDdAU32aIhJfaN8OGxqSHsUR+X3yy3vUSqhFRERERNIlhWJLAMGYqbPyXeRnqEm2hzqScKkw2eCycRW49uSHfEd7qP1xjyihFhERERFJl8g7v8km1NGps/yRLKQi8i54yj3UoRXpCUj8IckpsyKqyouoKBnmm1oDSqhFRERERNKlaUXS1YuhM6H2S7KQivpQM8WFBYwdkeAc1BEVY6GwRIXJBpvoQ6fkEmozC1f69sdDJyXUIiIiIiLpkuSUWREVJcMIlBf5ZjhrKhoaW5gYKKOgwJI7QUGB19OvId+DS6gOrAAqa5I+RU2gXEXJREREREQGnaa6pIeyRtQEyqkfJD3USc9BHVE1SXNRDzZNdTByIhQWJX2KYHUZ9SF/VMNXQi0iIiJpYWYFZnaJmb1rZq1mVm9mt5jZ8AEev8jMXC9fUzMdv0jK2rfDhlVJvz8dEawuo2EQ9FDXNzYnX5AsIlCrHurBJsVRHOAVJmve1k7jlm1pCip5w3IdgIiIiAwatwEXAY8CtwBTwt/vZ2ZHOuc6BnCO9cAlcdZ/kLYoRTJlY0NK1YsjgoFy/vT2x3R0uOSHS+fY5q3bCTW3JV+QLKKqFlpC0LoRSkemJzjJraY62PnzKZ2is3hfCztUlKQjqqQpoRYREZGUmdmewIXAI865U2LWfwjcAfwXsHAAp9rinLs/M1GKZFik2FKqQ76ry9nW3sHHm7YyrjLJgl45FikYFUxHDzV4Sdi4vVOMSnJu+1bYtCblh06RVwkaQs3sG6xKQ2DJ05BvERERSYfTAQNu77b+bqAZOGugJwoPHR9pZvnZNSdDV3QO6lR7qDuThXwVKRgV6UlMWuSzVKXvwaGp3lum+NAp2kPtg8JkSqhFREQkHQ4AOoBXYlc651qBpeHtAzER2AxsADab2SNmtnsa4xTJnKbUqxcD0feO83ku6kiV8mDKRckic1HrPepBoWmFt0yxzkC0Gr4P7hEN+RYREZF0mACsd85tjbNtFfBZMyt2zvVVQeZD4K/AP4F2YDpwAXCEmR3inHsz3UGLpFUo9erF0Dmc1Q+9b8mqDzVTVlRI9fDi1E5UXg3FFSpMNlikaRQHeL3UfpheTgm1iIiIpEM5EC+ZBmiN2afXhNo5N6fbqofN7A/AIuBW4KjejjWzc4FzASZNSq3nQyRpTalXLwYoLSpkzIgSXyQLyapvbCFYXUbKb26YeZ+peqgHh6Y6KCyGEeNTPlUwUM7bazamIajUaMi3iIiIpEMz0Fup1dKYfRLinHsB+AtwuJn1OnbUOTfXOTfVOTd19OjRiV5GJD2aVqb8bmhEsLrcF8NZk9UQak69IFmEps4aPEJ1UBmEgtTT0JrqMlaFWujoyO1c1EqoRUREJB1WA6PMLF5SPRFvOHiyE4auAAqBQJLHi2ReW2taqhdHBANlNITyc8i3c46GUEvqBckiqmq9hxUut4mTpEEaHzrVBDqr4eeSEmoRERFJh1fx/q6YFrvSzEqBfYElKZx7V2A70JjCOUQya0N6qhdHBKvLWbOhle3tA5m+3V+amtvYvHV79F3wlAVqYdtmaNY/AXkvTa9FQGfBu1yP5FBCLSIiIunwW8ABF3db/zW8d6cfiKwws/FmtruZlcesqzSzwu4nNbMvAAcDz4Yrhov4UxqLLYFXmKy9w7FmQ/792kcSnPT1UIfrIkQqREt+2roZmj9JucJ3ROfUWUqoRf5/e/ceJtdd13H8/d3NZi+57M7SNqTZ7YZbL0iV1rSA4qVykbY8oNwEnypRaa1PL7TyCIpaKiJVHkMrpaiNCNgLUrRgUQSLT1sqLZYUqhV7QdpsdtO0JGQmzXb2lt2vf5xzdibT2c3sZs75ndn9vJ5nn8meOXPOLyc7+813fr/z/YqISIuLK3BfB7wpbnX1LjPbRlRM7C7g5qrdrwIe4vDZ7LOA75nZX5jZu83sIjP7DHAbsI9nJ+oi+dKkdkCJ5P7j0MnCUiTVyZs2Q63WWctDch98k1ZxbOrLRzV8VfkWERGRZrmM6H7nC4BziRLha4Er3P1I61YfAe4HXg9sADqAUeCvgA+7++50hizSJMXmVS+Gqtm3FixM1vQZ6iQBU2Gy1ja3imNzUw7X1dHOhvWdwd8jSqhFRESkKdx9BtgWfy2031Zga822h4C3pjU2kdSVdjWtejHAxt4u2tss+OzbUowWy/R2d7C+6+j6cc/pXAfd/ZqhbnWlXdFjk2aoISpMNqp7qEVEREREWlxpuKmJwqr2Njb2dgVPFpYi6UHdVIWhSkImrak0DB1roOc5TTvkYKE7+IdOSqhFRERERI5WsXnVixMDhW5GWrB11kgze1An+k7Qku9WVxyO/h3NmnbIqBr+ONMBq+EroRYRERERORqTB2F8f9MKkiUGCz0tV5RsdjbqQd20gmSJpBf1bOu1EZNYk1dxQPQemXXYUwpXDV8JtYiIiIjI0Sg2t3pxYrC/hx8cnGRieqapx03T3rFJpg7NNq8gWaIwBDNTMPZkc48r2XBPZxVHf/he1EqoRURERESORnJvb5OqFyeS+5BHW2jZd3LPd/OXfG+OHlWYrDWNF2HqYCoz1BC2vZwSahERERGRo9Hk/rqJJFlopcJkSYGoVIqSgQqTtarkPdLkGeqkGn7ID52UUIuIiIiIHI1i86sXQ3Uv6taZoU5mCgeaPUPdOxg9qjBZa0rptoikGr6WfMfMrM3MLjezh81swsxGzGybma1p8PV3mpnP87Wlzv69Znatme2Oz/ddM/stsyaWnhMRERGR5S0pttTk/0Ieu7aT1avaGG2hwmQjxTLHruukq6O9uQfu6IK1z9WS71Y1N0Pd3MJ9EL5436pgZ67vauBS4AvANuCU+PvTzOzV7t5IWb99wOV1tj9W/Y2ZrQZuB04DrgUeAs4GPgFsAK5c2l9BRERERFaUpB1Qk7W1GQN93UFn3xZrZH8KFb4ThSHNULeq4jB09UFXb9MPPdjfzR2P7G36cRuVm4TazH4EuAS41d3fXLX9ceBjwNuBmxs41DPufmMD+70LOAO41N2vjbdtN7N/BN5vZp9yd71jRURERGR+7lGSt/mVqRx+oL9n7r7kVjBSLHP6CYV0Dt43BLu+mc6xJV0ptMxKDBZ62BtXw2/6yogG5GnJ9zsAA66p2b4dKAPnNXqgeOn4+iMs3f7l+Ljba7ZfA3QAv9To+URERERkhRovwtRYislC68xQH5qZZc+BieYXJEsUhuDpUZiZTuf4kp7SrqYXJEsMBK6Gn6eE+gxgFrivXSaivwAAFa9JREFUeqO7TwAPxM83YhMwBhwAxszsVjM7uXoHM2sDTge+Ex+/2n3xOBo9n4iIiIisVMWd0WNKycJgfw+l8jQHJ/KfRO45MMHMrDe/ZVaibwh8Fp7enc7xJR3uUUKd4gw1hOtFnaeE+nhgn7tP1nluN3BMfN/zQh4HPgL8GvBWovuhzwb+08xOrdqvAHTHxz1MfP4fEiXmdZnZBWa2w8x27N0bbr2+iIiIiASWUsusRHI/civ0ok4SmqQ6edMl96mrMFlrGXsKDk2k+qETEKx4X27uoQZ6gHrJNMBE1T5T8x3A3X+tZtM/mNltwJ3AR4HXVB2HI5xv3t8E7n49cD3Ali1bfL79RERERGSZK6ZXvRiqZt/2lzll4/pUztEso/G93qkWJQMVJms1xXR6UCeSavih2svlaYa6DHTO81xX1T6L4u53A18HzjKz5N2dHGeh87XGzSoiIiIiEk4pverF0Fq9qEeKZdoMju9LKaFePwDWrhnqVpPyKo62NmOg0B2sdVaeEuoniJZ110tyNxEtB593dvoIdgLtREu9AYrAOHWWdcfnfw51loOLiIiIiBwmxXtDAQo9HaxZ3R60z26jRovjbOztpqM9pRSjfRX0btIMdatJeRUHxL2odQ813yIaz5nVG82sC3gpsOMojv0i4BCwHyDuZ/1tov7WtQn8mfE4juZ8IiIiIrISFIdTW8oKYGYM9ve0xj3U+8vpLfdO9A1FH2JI6ygNw9oN0JHez8ZAoVtVvoHPAQ5cVrP9fKL7mW9KNpjZRjM72cx6qrb1mtmzGo+Z2bnATwK311T0/mx83AtqXnIZUfJ9y5L/JiIiIiKy/M3Opj5DDTBQ6GG0BVpnjRTL6RUkSxSGtOS71ZTS/dAJwlbDz01RMnd/0MyuAy42s1uBLwOnAJcCdwE3V+1+FfBO4CyigmPEf/6omX0JeIwoKT6TqH/1Pp6dqG8nqgb+UTPbDDwEnAP8IvAhd3+8uX9DEREREVlWxp6CmcnUk4WBQjf3fn8f7o6ZpXqupZqYnuGppyfTa5mV6BuCsSdhejzVGU9pouIwDKTbkbhSvG+cFx/fkeq5auUmoY5dRnS/8wXAuUSJ8LXAFfEy7YU8AtwPvB7YAHQAo8BfAR9298PuiXb3KTN7NfAh4B1E901/H7gEuK45fx0RERERWbZK6VYvTgz29/DM1AzF8jT9a47URTaM3aWUK3wnkmtdGoFjT0z3XHL0Zg7BgVE49S2pnmawP/q5GymWefHx2VbDz1VC7e4zwLb4a6H9tgJba7Y9RNR7ejHnKwEXx18iIiIiIo0rplu9ODEYJ6kj+8u5TaiTommZLPmG6MMMJdT59/Ru8Jn0P3Sqai+XtTzdQy0iIiIi0jqS4lgpVi+GSpKa58JkydiSmcLU9KkXdUtJ3iMpf+jUF1fDD/EeUUItIiIiIrIUpZ2pVy+G6l7U+S1MNlIss7q9jQ3rutI90doN0N6pwmStIqPbIirV8DVDLSIiIiLSGlJumZVY27mKQk9HrntRj+4fZ1Ohm7a2lIumtbVFKwI0Q90aisNgbdA7kPqpBgo9jOzXDLWIiIiISGsoDae+3DsxUOhhJMdLvkeKGfSgTvSdoBnqVlEahvWboD39ytuD/d2MFMu4e+rnqqaEWkRERERksWYOwYHdqd8bmhjs72Y0xzPUI/vLDKTdMitRGNIMdavIaBUHRIXJylMz7H9mKpPzJZRQi4iIiIgsVkbVixODhR5Gi+PMzmY7+9aIsclDFMvT6RckS/QNwXgRJp7O5nyydKXhDD90SmoNZLuSQwm1iIiIiMhilbJpmZUY6O9hamaWvWOTmZxvMZJCUINZzlBDpYK05NOhSTi4J7MPnZJbDrIuTKaEWkRERERksYrZVC9OVPeizpukEFTqPagTap3VGkoj0WPWM9QZFyZTQi0iIiIislil7KoXA3P3J+exdVaS5A9mVpQsTtBUmCzfSjujx4wK981Vw9cMtYiIiIhIzhWzq14MleWsIdoCHclIsUx3Rzv9a1Znc8Kefli9VjPUeZfxKg6IZqmzXsWhhFpEREREZLFK2VUvBujqaOe4dZ25XfI92N+NWco9qBNm0bXXDHW+lYahfTWs25jZKZPifVlSQi0iIiIislilXZndG5oY7M8+WWjEaLGcXUGyRGFIRcnyrrQLegehLbuUc6DQze6Mq+EroRYRERERWYzpiUyrFycGC925u4fa3RktjmdXkCzRF/ei9vy1EZNYMbuWWYmkGv4PDmZXDV8JtYiIiIjIYhzItnpxYrC/hz0HJjg0M5vpeRdSKk8zNnlo7h7vzBSGYGoMyvuzPa80LuPbIqCqGn6GHzwpoRYRERERWYy5YkvZVC9ODBS6mZl19hyYyPS8C0kSl4Gsl3wn1z6pJC35MjkG5R9m/h6ptM5SQi0iIiIikk9z7YCynn3LPlk4kkoP6oxnqNU6K9+SCuwZr+LY1Jd9NXwl1CIiIiIii1HMvnoxVM2+5eg+6mQsmd9DnSRqap2VT3OrODZnetqujnY2rO/Ukm8RERERkdwKUL0YYGNvF+1tlqtK36PFMr3dHazvyqYf95zOddDdr0rfeZX8u2Q8Qw3R7QejSqhFRERERHKqlH31YoBV7W1s7O3K3ZLvzJd7JwrqRZ1bpWHoWAM9z8n81IOFbi35FhERERHJreJw5sWWEgOFbkZyNEM9Uiwz0Jfxcu9E3wla8p1XyXvELPNTR9Xwx5nOqBq+EmoRERERkUZNHoTx/ZkXJEsMFnpyM0M9O5v0oA40Q903FC0tns1PGzGJBVrFAdF7ZNZhTymbavhKqEVEREREGlUMU704Mdjfww8OTjIxPRPk/NX2jk0ydWg2+4JkicIQzEzB2JNhzi/1uccz1GHeIwP92faiVkItIiIiItKopNhSxtWLE8ls8O5S+GXfSeGnwax7UCeSfwMVJsuX8SJMHQw6Qw3ZtZdTQi0iIiIi0qhA/XUTeepFHawHdaKgXtS5lLxHAs1QZ10NXwm1iIiIiEijiuGqF0N1L+rwM9RJUj8Qaoa6dzB6VGGyfAl8W8RcNXwt+RYRERERyZlSuOrFAMeu7WT1qjZG8zBDXSxzzNpOujrawwygowvWPlcz1HkzN0MdphI+ZFu8Twm1iIiIiEijiuGqFwO0tRkDfd2Zzb4tJGgP6kRhSDPUeVMchq4+6OoNNoTB/uzay63K5CwiIiIirWR2NqoeLHIYjwpgbX5l0FEM9Pewa385eKXvkWKZ008oBB0DfUOw616YzqZFkjSguDPoh04QzVDvjavhp72CQgl1Xvzr78KTD4YehYiILMVzT4Wz/zT0KKSZdt0Dnz439Cgkrwqbg55+qL+Hrz+6l5P/8CtBxwHwCy/dFHYA/c+DB2+BP9kQdhxyuBe/Mejpk9ZZo8VxXnjc2lTPpYRaREREpFbfELzqA6FHIXnU3gE/9vagQ7jgp5/P8X3dOB50HO1m/OJpgRPqLb8Bq9fAbPi+3FLl5LAfSJ42WOB9rzuZ9V3pp7vmHvaN2Oq2bNniO3bsCD0MERFZJszsfnffEnocrUyxWUREmmmh2KyiZCIiIiIiIiJLoIRaREREREREZAlylVCbWZuZXW5mD5vZhJmNmNk2M1vTwGsLZvZuM/u3+HXjZvaImV1vZoN19v9ZM/N5vv45nb+hiIiIiIiILBd5K0p2NXAp8AVgG3BK/P1pZvZqd59d4LUvi1/z78DHgX3AS4DfBN5mZj/h7v9b53XXA3fXbBs9qr+FiIiIiIiILHu5SajN7EeAS4Bb3f3NVdsfBz4GvB24eYFDPAyc5O7frznuvwC3Ax8E3lLndfe6+41HOXwRERERERFZYfK05PsdgAHX1GzfDpSB8xZ6sbvvrE2m4+1fA/YTzVbXZWZrzKxrsQMWERERERGRlStPCfUZwCxwX/VGd58AHoifXzQz6wXWAU/Ns8tfAGPAuJk9Gt+HbUs5l4iIiIiIiKwceUqojwf2uftkned2A8eY2eolHPcPgA7gMzXbp4HbgPcCbwAuBEpEM+R/u9ABzewCM9thZjv27t27hCGJiIiIiIhIq8vNPdRAD1AvmQaYqNpnqtEDmtlbgPcAXwU+Vf2cu38DeGPN/tuBLwNbzeyT7v4f9Y7r7tcTFTNjy5Yt3uh4REREREREZPnI0wx1Geic57muqn0aYmbnADcB9wNvc/cjJr5xFfGr4m/PafRcIiIiIiIisvLkKaF+gmhZd72kehPRcvCGZqfN7HXArcB3gde6+9OLGMfO+PGYRbxGREREREREVpg8Lfn+FvBa4Eyq+kLH1bdfCny9kYOY2c8T9bF+GHi1uxcXOY4XxY/zFTE7zP3337/PzIYXeY48O4aoh7foWlTTtajQtajQtaho5rUYatJxVizF5mVN16JC16JC16JC16Iik9icp4T6c8D7gcuoSqiB84nunb4p2WBmG4FeYJe7l6u2vxb4IvAo8Cp33z/fyczsOe7+w5ptncCV8bdfamTQ7n5sI/u1CjPb4e5bQo8jD3QtKnQtKnQtKnQtKnQt8kWxefnStajQtajQtajQtajI6lrkJqF29wfN7DrgYjO7lag42CnApcBdwM1Vu18FvBM4C7gTwMy2AP9E1Mv6U8DZtd2v3P3Gqm+/YmZPEN1j/QRRlfHziGaor3X3w9p3iYiIiIiIiFTLTUIdu4zoHuYLgHOJpuivBa6IC4Yt5CVUipddPc8+1Qn1PwC/AFwC9AHPAN8BPuDun130yEVERERERGRFyVVC7e4zwLb4a6H9tgJba7Z9Gvj0Is71Z8CfLXKIK8H1oQeQI7oWFboWFboWFboWFboWkib9fFXoWlToWlToWlToWlRkci2sgW5SIiIiIiIiIlIjT22zRERERERERFqGEmoRERERERGRJVBCLSIiIiIiIrIESqhXODM70cw+aGbfNLO9ZnbQzB4ws983szWhxxeSmfWY2eNm5mb28dDjCcHM+s3sz83s/8xsIv4ZucPMfir02LJkZmvN7P1m9mD8HtlnZveY2Var7c+3TJjZ75nZ583ssfg9sPMI+59kZl80s6KZPWNmd5vZz2U03FQ1ei0scp6Z/X38nimb2S4zu83MXpbxsKWFKTbPT7FZsTmh2KzYnJfYnKsq3xLErwMXAbcBNwHTRP29PwS8zcxe7u7jAccX0geBY0IPIhQzGyLq874W+CTwKNAL/CiwKdzIsmVmbcC/Aj8BfIaolV8P8A6invenAO8LNsD0fBjYD3ybqLXgvMzsBcA9wCHgI8AB4Hzgq2Z2trt/Ld2hpq7Ra9EJ3AA8APw98DiwEbgQuNfMftXdb5z/5SJzFJvnp9is2KzYrNgMOYrNqvK9wpnZFuB77n6gZvuHgN8HLnH3FfcJsJmdDtwHvJeojdt17n5x2FFly8zuBjYDZ7r7nsDDCcbMXkEUkK5x98urtq8GHgb63b0v0PBSY2bPd/fH4j//D7DW3TfPs+8twJuBH3f3B+Jta4HvAhPAyd7CwabRa2Fmq4CfdPe7arZvILoWM8BGd59Nf9TSyhSb61NsVmxOKDYrNucpNmvJ9wrn7jtqA3bsc/HjS7IcTx6YWTuwHfgKcGvg4QRhZj8NvBL4iLvvMbMOM+sJPa5A1sePT1RvdPcpYB/wTOYjykASpI4kXn76BuDOJGDHrx8D/gY4ETgjjTFmpdFr4e6HagN2vP0p4C7guPhLZEGKzc+m2KzYXEOxeQGKzYftl3psVkIt8xmIH58KOoowLgdOBlbUp941zokfd5nZl4Bx4Bkze9TMzgs4rhDuA0rAe83srWZ2QnxP0lXAjwNXhhxcDvwo0XKqe+s89834saWDdpMMAFNEP0siS6XYrNgMis2g2Hwkis2NaUps1j3U8izxp8BXEN1zcXPg4WTKzJ4H/BHwQXffaWabAw8plJPix+3A94B3Ev1i/m3gBjPrcPdPhRpclty9aGZvIPpE95aqpw4Cb3b3LwYZWH4cHz/urvNcsm3F3NdXj5mdA5wJ3ODuE6HHI61JsVmxGcXmOYrNR6TYfATNjM1KqKWea4CXA+9390cCjyVrf0lUrOCjoQcS2Lr48SBwVryECjP7AvAY8GEz+8wKuhd0DPgfogJB9wD9RAWDbjazN7r77SEHF1iy3HCyznMTNfusOGb2IqJiKLuB9wQejrS2a1BsVmyOKDZHFJvnp9i8gGbHZi35lsOY2R8TLae63t2vCj2eLMXLpV4LXOju06HHE1hSPfazScCG6BNhosD1XCqflC9rZnYqUaC+3d1/x92/4O6fJLqP7UlgezxztFKV48fOOs911eyzosSzav8OOHC2u+8NPCRpUYrNis0xxeaYYvMRKTbPI43YrIRa5pjZlcAfELUbuDDsaLJlZp1En3x/GXjSzF5oZi8EhuJdeuNtfaHGmLHR+PHJOs8lVUULGY0ltMuJgs/nqze6exn4F6Kfkc3ZDys3koIw9ZaOJdvqLTlb1uIlqXcQtbZ5jbs/GHZE0qoUmxWbqyg2Vyg2L0yxuY60YrMSagHAzD4AfAD4O+BdrVxGf4m6gWOBc4nuS0q+7oyfPy/+/l0hBhfAffHjQJ3nkm0/yGgsoSWBp94n3atqHleiB4mWlL2iznMvjx93ZDec8OI+sXcQ9YZ9jbt/J/CQpEUpNis211BsrlBsXphic400Y7P6UAtmdgVRsY8bgK0r6N6bOWbWAbyxzlPHAp8gatPxSeC/3f3RLMcWgpkVgGHgaaI+hWPx9o1E/3l5wt1PDDjEzJjZ1cBlwPvc/SNV2/uA/yX6hPw4dz8UZIAZaKDX5eeBNwGnu/t/xduSXpeTwEnLJRFo4FoMEf1nv0AUsL+V3ehkOVFsVmyupdhcodis2FwtdGxWQr3CmdlFwMeBXcAfArUB+6mVXNQhXhryOHCdu6+oVh1mdgHw10S/eP8WWA38FrAReL27/1vA4WUm/iX8baJfwjcB3yAqfHI+0XKyi9z9E8EGmBIz+xUqyyovIfr33xZ/P+zuN1Tt+0KimZNp4Gqi/+ydD5wKnOvuX81q3Glo9FqY2Trgv4DnAddSmU2qdnvc+1JkXorNC1NsVmxWbAYUm3MTm5VQr3Bm9mmitgvzucvdfzab0eTPSg7aAGb2JuC9RL98Z4n6Gf6Ru38j6MAyZmYvIGpX8ypgA1FhmAeAa9z91oBDS42Z3Qn8zDxPP+v3gpmdAvxp/JrVRP/RudLdv5biMDPR6LWo+n2xkLPc/c5mjU2WJ8XmhSk2KzaDYnMdis0VmcZmJdQiIiIiIiIiS6CiZCIiIiIiIiJLoIRaREREREREZAmUUIuIiIiIiIgsgRJqERERERERkSVQQi0iIiIiIiKyBEqoRURERERERJZACbWIiIiIiIjIEiihFhEREREREVkCJdQiIiIiIiIiS/D/xHB2i0jhRaQAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9AAAALJCAYAAABcAMsPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdeZwcdZ3/8ddnzmRmcpDMcIaQTIKAgIoG8AJBgRVclPViUSBhUVwUWJRd/amIeCCioijqcsix4XAFFFgVBQ+CKCoGQZFDk0zCEa6ZyTkzmfv7+6OqZ3pm+qjuru6qmn4/H49+dKa6uvrbler+9ud7fcw5h4iIiIiIiIjkVhN1AURERERERESSQAG0iIiIiIiISAAKoEVEREREREQCUAAtIiIiIiIiEoACaBEREREREZEAFECLiIiIiIiIBKAAWqRMzMyZWWzzxJnZ9X4ZV4R83Ni+bzM7wcxWmdkWM+sxsz+a2WlFHutwMzvfzO40s+dS79vMWsIut4iIhCPOdRSobi6lbjazWjP7rJn9n5mtNbOtZjZoZs+a2S1m9sZylF+qT13UBRARqQQzuwD4HDAI/AoYAI4GrjWz1znnzijwkN8CXhluKUVERKpHyHVzPXAh0Ac8CvwVGAX2A94DvNvMPuqc+2Z470CqkQJoEZn2zOy1eBX0NuAw59xf/e0Lgd8CHzSze5xztxVw2F8APwRWAw8BL4ZbahERkemrDHXzIHA48Efn3OCk13oX8APga2Z2u3Pu6bDeh1QfDeEWkWrwCf/+4lQFDeBXoKnH/l8hB3TO/Zdz7gvOuZ85514KqZwiIiLVItS62Tk36py7f3Lw7D/2Q+A+vM7DI4ousQgKoEUqzsyOMrPvmtlfzWyTmfWbWYeZXWFme2V5zip//tIRZvYmM/ulP7dnk5ndYWZ7+/vVmNl5ZvaYme0ws41mdomZNeQp0zIz+6l/vF4z+62Z/XOO/ZeY2ffNrNPM+szsL2Z2ZtjvOwxm1gj8k//n9zPscjvekLHXmNmCcpVDRETiS3VzVdTNw/79QEjHkyqlAFqk8q4AVgA7gF8D9+C1iH4I+LOZ7ZPjue/AmyPUBNwNbPa3/cbMWoFb8IZDveAfew7wcf81s3kt3lCpJf4xHwbeAPzYzD40eWczOwD4E/CveMOu7gQ2Ad82s8vK9L5LsQ8wE+h2zj01+UHnXD/wmP/nq8pUBhERiTfVzdO4bjazY4EjgV68nmiR4jnndNNNtzLcAOd9xKZsfwcwe9K2OuCL/nN+nuE5q/zHRoAT0rY34lV4Dvgb8DiwKO3xA/HmBI2mb/cfuz5VRuASwNIe+xf/tfqB9knPe9h/zn8DtWnbD8OrmMJ83xemlTHwbdIxjve3P5zj/+pOf5+zSv3/BlqivvZ000033XTLfFPdHMr7jn3dDHzGP5c/SDs324B3RH0N6pb8mxYRE6kw59ydGbYNA+ebl7bhaDOb5ZzbnuHp33fO3ZH2vAEz+yZeq+r+wFHOuQ1pjz9qZj8FTgDeBGxgqmeA851zLu15t5vZj4B347VCfwK81E14LcFdwHnOuZG059xvZlcAHwvxfT8C/E+m4xVgln/fm2Ofnkn7iohIFVHdXND7foT4181vAw5N+7sb+ECm9ytSKAXQIhHw5xW9DXgZXsVQ6z9Uhze1Yilei+lk92TYtta/H8JrDc/2+O5ZinObc24ow/Yb8Srpw9O2vcm/v8M515fhOTeQpZKGwt+3/4PkjmzHC8hShyvxOCIiMo2pbp4+dbNz7rUAZjYHeDnwKeB2M7se+Lf0hgmRQimAFqkwM/si3qqStTl2m51l+7MZtqVab19Ib3XO8HhjlmNOmXvk2+Dfpy/escekx7I9Z4oS33cpUq3mLTn2aZ60r4iIVBHVzdOzbnbObQV+b2bvwJtLvgKvQaPUHnSpYgqgRSrIzN4NfBpvHs65wL14lWu///gDwOsYb5mdbDTH4XM9lku2VthcrcPZnpNxe7Hv28xOwBviVhDn3Iq0P1M/QvbM8ZTUD5FsP1hERGSaUt08/etm59yomd0AHIU371sBtBRNAbRIZb3bv/+0c+66DI8vrWRhfHvl2b4xbVvq34uyPGdxlu3Fvu9XAcuzPJbLirR/P4m34Mp8M1vovPySY/xUGgf4fz5SxGuJiEiyqW6ujrq5079vC+l4UqWUxkqksub5989MfsDM3kI0X+rvNrNMjWnv8+9/k7YtlfrhBDObmeE578/yGkW9b+fchc45K/Q26RgDeMO2wEvvMdkJeEPo/uycm1I+ERGZ9lQ3TzJN6+Yj/fu1OfcSyUMBtEhlPenff9DMGlIbzWwRXuqJKCwEPm9mY5Wbmb0dr2V6ALgybd/78VqC24Cvmllt2nPeAJyZ5TWift9f8e8/5efKTL3+grTHLpn8JDNbaWZPmtlZFSijiIhEI+o6KhPVzZ7AdbOZvd3M/tnMaiZtrzWzFcA5/qZrwnoDUp0UQItU1rfw5hq9DVhjZreY2c+AJ4DngQciKNOVwHnA42Z2s5ndj7e6Zg1wrnOuI7Wjv2rlqcBm4CPA383s+2b2K7wW8GyVUqTv2zn3APB5YA7wkJn91Mxu919/IXCtc+6WDE9dCOwDtE5+wMw+YGZ/SN3SHvp12vbPhP9uREQkZKqbp0fd/Grgx8BGM7vLzG4ys7vx5lBfhzd19Tzn3G/L846kWiiAFqkg59xa4DXAbXhf5MfjzU26BDgGL91Fpf0BOAyvgjnOL9/vgeOdc1dM3tk59yhwMPC/wFy8YVY74y1Acm6mF4jD+3bOfRZ4F/BHvPd7NF7r+wecc6cXccgFeDkmU7eUg9O2LSmlzCIiUn5xqKMyUN1ceN38I+BreKuOHwS8B3gDXiPBlcBrnHNfD6fkUs1MadBERERERERE8lMPtIiIiIiIiEgACqBFREREREREAlAALSIiIiIiIhKAAmgRERERERGRADIlaJccWltb3aJFi6IuhoiITBMPPfRQl3OuLepyJJnqZhERCVOuulkBdIEWLVrE6tWroy6GiIhME2b2VNRlSDrVzSIiEqZcdbOGcIuIiIiIiIgEoABaREREREREJAAF0CIiIiIiIiIBKIAWERERERERCUABtIiIiIiIiEgACqBFREREREREAlAALSIiIiIiIhJApAG0mX3SzG41sw4zc2a2oYhjvNfMrjOzv5jZkH+cRTn2n2Nml5vZRjPrN7PHzOxMM7NS3ouIiEg1KrUuN7N6M7vCzB4ysy4zGzCz9Wb2AzM7qEzFFhERKUpdxK//JWAT8GdgbpHH+DBwKPAXYB2wT7YdzawB+AVwEHA58ARwLPBdYBfgwiLLICIiUq1KrcsbgGXA74AbgO3AQuA04I9m9lbn3K/DKaqIiEhpog6glzjnOgDM7G9ASxHHOBV4zjk3bGbfJkcADXwAOBg4xzl3ub/tajP7IfApM7vOOfdUEWUQERGpViXV5c65XrwAegIzuwJ4GvhPQAG0iIjEQqRDuFMVbonHeNo5Nxxw9/cBfcDVk7ZfBtQDJ5ZaHhERkWoSRl2exUtAP7BTmY4vIiJSsKh7oCvGzGqAVwN/ds71T3r4QWAUr3e6Ij7348d4/LltlXo5EREJ2ct3n81nj98/6mJMG2ZWixcs1wF74vU8twB3VaoMqptFRJKtEnVz1QTQeJXyTGDj5AeccwNm1g3skemJZnYGcAbAwoULy1lGERGRarUf8Gja31uBi/3bFKqbRUQkCtUUQDf59wNZHu9P22cC59xVwFUAy5Ytc2EURr0WIiIiE6wHjsZbVGwpcDIwB2gEpkzVUt0sIiJRqKYAus+/b8zy+Iy0fURERKSC/MXEfpn628yuxVvZ+0fAP0VVLhERkXSRLiJWYZuBHWQYpm1mjcB8MgzvFhERkcpzzvXgBc/HmNmSqMsjIiICVRRAO+dG8VqyD/ID5nSH4J2L1RUvmIiIiGQz07+fF2kpREREfIkJoM1sNzPb18wyzlMO6Pt485zPmLT9XLz5VbeUcGwRERHJIVNdbmZtfqaMyfvuCrwH6AEeq2AxRUREsop0DrSZnQLs5f/ZBjSY2fn+3085525I2/1iYDlwJLAq7RiHA4f7fy7z788ysy0Azrkvph3jauA04Otmtgh4AjgO+Bfgi8659aG8MRERkSoRQl3+fuBcM7sdbyGxQeBl/n47AR9wzmmNEhERiYWoFxE7HXjTpG1f8O/vA24gvzcDn5207by0f48F0M65QTM7yt92Et6853XA2cB3ghdbREREfKXW5fcDBwPHA7vircL9It6CYt90zj0QXlFFRERKY86FkvmhaixbtsytXq2p0iIiEg4ze8g5tyz/npKN6mYREQlTrro5MXOgRURERERERKKkAFpEREREREQkAAXQIiIiIiIiIgEogBYREREREREJQAG0iIiIiIiISAAKoEVEREREREQCUAAtIiIiIiIiEoACaBEREREREZEAFECLiIiIiIiIBKAAWkRERERERCQABdAiIiIiIiIiASiAFhEREREREQlAAbSIiIiIiIhIAAqgRURERERERAJQAC0iIiIiIiISgAJoERERERERkQAUQIuIiIiIiIgEoABaREREREREJAAF0CIiIiIiIiIBKIAWERERERERCUABtIiIiIiIiEgACqBFREREREREAlAALSIiIiIiIhKAAmgRERERERGRABRAi4iIiIiIiASgAFpEREREREQkAAXQIiIiIiIiIgEogBYREREREREJQAG0iIiIiIiISAAKoEVEREREREQCUAAtIiIiIiIiEoACaBERESmamX3SzG41sw4zc2a2ocDn72Rm/2Fm95jZM2a2w8z+bmZXmdmeZSq2iIhIURRAi4iISCm+BLwZWAdsLuL5hwKXAg74NnAWcBdwMvComb08pHKKiIiUrC7qAoiIiEiiLXHOdQCY2d+AlgKf/ySwj3NuXfpGM/sp8Avg88C7wyioiIhIqRRAi4iISNFSwXMJz9+QZfsvzWwTcEApxxcREQmThnCLiIhI7JjZHGAW8GLUZREREUlRAC0iIiJxdD5QD/xPpgfN7AwzW21mqzs7OytbMhERqVoKoEVERCRWzOzdwHnA3cB1mfZxzl3lnFvmnFvW1tZW0fKJiEj1UgAtIiIisWFmxwE3AQ8B73XOuYiLJCIiMkYBtIiIiMSCmb0V+BHwGHCMc25bxEUSERGZQAG0iIiIRM7M/gm4HS+t1VHOuWJySouIiJSVAmgRERGpCDPbzcz2NbOmSduPAe4A/gG8xTm3KYryiYiI5KM80CIiIlI0MzsF2Mv/sw1oMLPz/b+fcs7dkLb7xcBy4Ehglf/8ZcCdgOEtGHasmU14DefcjeUqv4iISCEUQIuIiEgpTgfeNGnbF/z7+4AbyO0AYIb/729k2UcBtIiIxIICaBERESmac+6IAvZdAayYtO164PoQiyQiIlI2mgMtIiIiIiIiEoACaBEREREREZEAFECLiIiIiIiIBKAAWkRERERERCQABdAiIiIiIiIiASiAFhEREREREQlAAbSIiIiIiIhIAAqgRURERERERAKINIA2s0+a2a1m1mFmzsw2FHmc48zsATPrNbNN/jEXZ9jvCP91Mt1+UvIbEhERERERkWmrLuLX/xKwCfgzMLeYA5jZO4HbgL8A/wXMAc4Ffmdmy5xzz2V42lXA/ZO2PVvM64uIiIiIiEh1iDqAXuKc6wAws78BLYU82czqgcuBZ4DDnHM9/vafAQ8BFwJnZHjq751zN5ZQbhEREREREakykQ7hTgXPJXgTsDvwvVTw7B/3EWAVcKIfZE9hZs1mNqPE1xcREREREZEqkfRFxA7273+f4bE/ALOBl2V47JtAD7DDzP5hZv9hZlamMoqIiIiIiMg0kPQAenf/fmOGx1Lb9kjbNgT8H/Bx4O3AvwNbgMuAa7O9iJmdYWarzWx1Z2dniUUWERERERGRJIp6DnSpmvz7gQyP9U/aB+fc74B3pO9kZlcDdwErzOwa59xvJx/IOXcV3sJjLFu2zIVQbhEREREREUmYpPdA9/n3jRkemzFpn4ycc6PAxf6fx4VULhEREREREZlmkh5Ap1JU7ZHhsdS2TMO7J9vg37eWWiARERERERGZnpIeQP/Jv39dhsdeC2wD/hHgOHv79y+GUSgRERERERGZfhITQJvZbma2r5k1pW2+D3ge+ICZtaTt+0rgCOBW59xQ2vb5GY7biJcvGuDHZSi6iIiIiIiITAORLiJmZqcAe/l/tgENZna+//dTzrkb0na/GFgOHImX4xnn3JCZ/QfwA+B+f0Gw2cBHgU7gs5Ne8udm9hzwEN7w792Bk/F6oC93zj0Y7jsUERERERGR6SLqVbhPB940adsX/Pv7gBvIwzl3q5ntAM4Hvoa3IvevgE845ybPf74NOAE4G5gL9AIPA591zn2/uLcgIiIiIiIi1SDSANo5d0QB+64AVmR57CfATwIc4xLgkqCvKSIiIiIiIpKSmDnQIiIiIiIiIlFSAC0iIiIiIiISgAJoERERERERkQAUQIuIiIiIiIgEoABaREREREREJAAF0CIiIiIiIiIBKIAWERERERERCUABtIiIiIiIiEgACqBFREREREREAlAALSIiIkUzs0+a2a1m1mFmzsw2FHGM95rZdWb2FzMb8o+zKPzSioiIlEYBtIiIiJTiS8CbgXXA5iKP8WHgX4Ed/nFERERiSQG0iIiIlGKJc26+c+5o4Lkij3EqMMs591rgl+EVTUREJFx1URdAREREkss51xHCMZ4OoywiIiLlph5oERERERERkQAUQIuIiEjimNkZZrbazFZ3dnZGXRwREakSBQ3hNrOZQDswG9gGdDjndpSjYCIiIhK+6VKXO+euAq4CWLZsmYu4OCIiUiUCBdBm9jrgc8CbJj1nyMxWARc45x4Mv3giIvHX399PZ2cn/f39DA8PR10ciYH6+np23nlnZs+eHXVRxqguF5FqorpZJgurbs4bQJvZicBKoB54CvgrXov1bOAVwDHAkWb2PufcD0sqjYhIwmzdupUXX3yRtrY2dt11V+rq6jCzqIslEXLOsWPHDjZu3AgQiyBadbmIVBPVzTJZmHVzzgDazHbBGx71InCac+5XGfY5CrgOuMbM7nfOvVR0aUREEqarq4sFCxbQ1NQUdVEkJsyMpqYm9thjD5577rnIA2jV5SJSbVQ3y2Rh1s35FhH7N2AmcGymChfAOfdL4DigGVhRdElERBJocHCQmTNnRl0MiaGZM2cyNDQUdTEgRnW5me1mZvuamX7VikjZqG6WbMKom/MN4X4z8HPn3GO5dnLOPWpmPwOOBr5SUolERBJGw8IkkxhdF2Wty83sFGAv/882oMHMzvf/fso5d0Pa7hcDy4EjgVVpxzgcONz/c5l/f5aZbfHL9sWg5RERgVh9B0uMhHFd5AugXw58K+CxfgecU1pxREREJGTlrstPx1uYLN0X/Pv7gBvI783AZydtOy/t3wqgRUQkFvIN4Z6LN2cqiBeBnUoqjYiIiIRtLmWsy51zRzjnLMvtiEn7rvC3r5q0/cIcx1A3koiIxEa+AHomMBjwWENAY2nFERERkZCpLhcREQlJvgAawJW9FCIiIlJOqstFRERCkDcPNF5KiytDOpaIiIhUnupyERGREOSrKH+DWq1FRMS3fft2Zs2aFXUxpDCqy0VEpjHVzZWVcwi3vzDIkYXcKlVwEREp3IYNG3jXu97F7NmzmTNnDu94xztYv349ixYt4ogjjpiwr5mxYsUKfvWrX/HGN76RlpYWjj/++LHH77jjDt7whjfQ0tJCS0sLb3jDG7jzzjunvGbqOJNdf/31mBmrVq0a23bhhRdiZjz22GOcc8457LrrrsycOZNDDz2UX/0qYwpjyUN1uYhIvKluThYN1RIRqRLd3d0cdthhvPjii/z7v/87++23H/fffz9HHnkkvb29GZ+zevVqfvjDH/LBD36Q5cuXj23/7ne/y0c+8hH23Xdfzj//fMyM66+/nhNOOIErr7ySM844o6SynnrqqdTW1vKJT3yC7du3c+WVV/LWt76Vn/3sZxx11FElHVtERCQuVDcnjwJoEZEqcckll/Dss89y44038v73vx+AM888k49//ON89atfzficxx57jF/84hcTKsbNmzfz8Y9/nCVLlvDHP/6R2bNnjx3roIMO4rzzzuO9730vc+fOLbqsdXV13H///TQ0NADwb//2b+y7776cffbZPPHEE0UfV0REJE5UNydPkFW4RURkGvjxj3/MbrvtxkknnTRh+3/+539mfc4rX/nKKa3Kv/jFL+jt7eWcc84Zq6ABZs+ezdlnn01PTw+//OUvSyrrRz/60bEKGmDBggW8//3v58knn6yqSlpERKY31c3JowBaRKRKrF+/nqVLl1JTM/Grf+edd87aIv2yl70s43EA9t9//ymPHXDAAQB0dHSUVNb99ttvyraXv/zloRxbREQkLlQ3J48CaBERyaqpqWnKNufCWdB5eHg462NmVrbXFRERSTLVzdHKGkCb2UIzm1nJwoiISPksWrSItWvXMjo6OmH7Sy+9xJYtWwIfZ8mSJYA3B2uyxx9/HID29vaxbfPmzWPTpk1T9s3VWp06TrrU8LD0Y0tuqstFROJNdXPy5OqBXg/8S+oPM/u1mb2l/EUSEZFyOP7443n++ef5/ve/P2H71772tYKOc/TRR9Pc3Mzll1/O9u3bx7Zv376dyy+/nJaWFo4++uix7S972cv4/e9/T19f39i2zZs3c91112V9jW984xsMDg6O/f3ss89y8803s88++2QcQiZZqS4XEYkx1c3Jk2sV7iGgPu3vI4DvlbU0IiJSNp/4xCe4+eabOe2003jwwQfZd999+e1vf8vvfvc7WltbMw7NymTu3Ll85Stf4SMf+QiHHnroWB7J66+/nrVr13LllVcyZ86csf3POussTj75ZN785jdzyimnsGXLFq6++mr22msvXnjhhYyvMTw8zGGHHcZJJ53E9u3bueKKK9ixYwff+ta3Sj4PVUZ1uYhIjKluTp5cAfR64O1mdodzbqu/rfoGuYuITBOtra389re/5bzzzuPaa6/FzDjyyCO59957Ofjgg5k5M/hI3w9/+MPstttufPWrX+Vzn/sc4K0Kevvtt3PCCSdM2Pf9738/zz33HN/+9rf52Mc+Rnt7OxdccAE1NTX88Y9/zHj8lStXcsUVV/DlL3+ZLVu28IpXvILrr79+Quu5BKK6XEQkxlQ3J49lm/htZh8Gvk1hFa1zzk3r3NLLli1zq1evjroYIhITTzzxROKHLXV3d9Pa2sqHPvQhrrjiikjLcuGFF/K5z32O9evXs2jRokjLEoYg14eZPeScW1aO16+Wulx1s4ikU90cLtXNE2WtIJ1z3zWzx4Gjgd2A5cBvgepZo1xEZJrZsWPHlNbsSy65BKDqWpCrgepyEZH4U92cLDlbmJ1zq4BVAGa2ArjSOXdz2UslIiJlceyxx7LXXnuxbNkyRkZG+NWvfsVPfvITXv/6108Z3iXTg+pyEZF4U92cLIUM0VoMdJarICIiUn7HH388K1eu5I477mDHjh0sWLCA8847j89+9rPU1tZGXTwpP9XlIiIxo7o5WbLOgc76BLPZwFFAKtlXB/AL59z27M+aPjTPSkTSTYd5VlI+Uc+BzvGa06ouV90sIulUN0suZZsDneVAHwAuBVqA1JrqDugxs485564p5HgiIiJSWarLRUREihc4gDaztwNX4bVSXwD8zX9of+Bs4Coze8k59+PQSykiIiIlU10uIiJSmkJ6oD8OPAEc6pzrSdv+KzO7DvgD8AlAla6IiEg8qS4XEREpQU0B+74SuH5ShQuAP2fqf/x9REREJJ5Ul4uIiJSgkAAaxudKZVLYamQiIiISBdXlIiIiRSokgP4LsNzMmic/YGYtwAp/HxEREYkn1eUiIiIlKGQO9NeAHwF/NrNvAY/721MLjywF3hlu8URERCREqstFRERKEDiAds7dYWZnAZcAlzM+zMuAXuAs59yd4RdRREREwqC6XEREpDQFzYF2zn0X2BM4Efgk8CngvcAC59x/h188ERGpRqtWrcLMuP7666MuyrSjulxERIqhutlTyBBuAJxzW4Bbwy+KiIhUk0ceeYQ77riDFStWsGjRoqiLU1VUl4uISCaqm/MrOIAWEREJwyOPPMLnPvc5jjjiiCmV9OGHH86OHTuor6+PpnAiIiJVSHVzfoWmsQqVmX3SzG41sw4zc2a2ocjjHGdmD5hZr5lt8o+5OMu+c8zscjPbaGb9ZvaYmZ1pZrnSeoiISAXV1NQwY8YMamtroy6K5BFFXS4iIpWnutkTaQANfAl4M7AO2FzMAczsncBPgJnAfwFfBQ4Hfmdmu0/atwH4BfDvwA/wVhz9O/Bd4LPFvQURkeqwfft2zj//fA499FBaW1tpbGxk6dKl/L//9//o6+ubsK9zjquvvppDDz2UlpYWWlpaOPDAA7ngggsAuPDCCznttNMAOPLIIzEzzIwVK1YAU+dZPfHEE5gZH/vYxzKW7aSTTqKhoYHOzs6xbc8//zxnnnkmCxcupKGhgd13350zzjiDl156KeQzU/UqWpeLiMg41c2VF/UQ7iXOuQ4AM/sb0FLIk82sHm8V0WeAw5xzPf72nwEPARcCZ6Q95QPAwcA5zrnL/W1Xm9kPgU+Z2XXOuadKeD8iItPWxo0b+d73vse73vUu3ve+91FXV8d9993HV77yFR5++GHuvvvusX1POeUUbrrpJg499FA+/elPM3fuXJ588kluu+02Pv/5z/POd76T559/nquuuopPfepT7LfffgAsWbIk42vvt99+HHzwwdx888189atfndD6vW3bNu68806OPfZY2traAHj66ad53etex+DgIKeffjpLlixh7dq1/Pd//zf33nsvq1evZs6cOWU8W1Wl0nW5iIj4VDdXXqQBdKrCLcGbgN2BC1IVrn/cR8xsFXCimX3EOTfkP/Q+oA+4etJxLsPLe3ki8JUSyyQiwud+/BiPP7ct6mJM8PLdZ/PZ4/cv+vnt7e0888wzE+Y+feQjH+Ezn/kMX/ziF3nwwQc55JBDuOWWW7jppps4+eST+Z//+R9qasYHO42OjgLwile8gte97nVcddVVHH300RxxxBF5X3/58uWcddZZ3H333Rx33HFj22+99VZ27NjB8uXLx7adffbZDA0N8fDDD7NgwYKx7e95z3t47Wtfyze+8Q0uvPDCos+FjIugLhcRKYrqZtXNYYh6CHepDvbvf5/hsT8As4GXAZhZDfBq4GHnXP+kfR8ERtOOJyIikzQ0NIxV0MPDw2zevJmuri6OOuooAP74xz8CcNNNNwHwta99bUIFDUz5uxCpoWArV66csH3lypXMmzePf/7nfwZg69at/OQnP+Htb387M2bMoKura+y2aNEili5dyj333FN0OSR0getyERGZSHVz5RXUA21mtcD7gWOAXYCPO+ceNrOdgOOBXznnNoZfzKxS86IyvWZq2x7AY8BOeHOrpuzrnBsws25/XxGRkpXSmhxn3/3ud7niiit47LHHxlqsUzZv9qa/rlmzht12241ddtkl1NeeN28eb3vb27jzzjvZunUrc+bMYcOGDdx///18+MMfpqGhAYC///3vjI6Ocs0113DNNddkPFZ7e3uoZUuShNflIiJFU92sujkMgQNoM2sC7gFeD/QCTXhBKcA24MvAtcD5IZcxlyb/fiDDY/2T9sm1b2r/pkwPmNkZ+POvFi5cWHgpRUSmga9//eucd955HHPMMZxzzjnsvvvuNDQ0sHHjRlasWDFWaTvnKFdig+XLl3P77bdz66238oEPfIAbbrgB5xynnnrq2D7OOQBOPvnkCUPH0s2cObMs5Yu7aVCXj1HdLCKiujkKhfRAXwgsA/4FeAB4MfWAc27EzH4E/BOVrXRTS8s1ZnhsxqR9cu2b2r8v0wPOuauAqwCWLVvmCi+miEjy3XDDDSxatIif/exnE4Z7/fznP5+w3z777MOdd97Jiy++mLOlu5iK/LjjjqOtrY2VK1eOVdL77rsvhxxyyNg+S5cuxcwYHBwcG8ImYy4k2XX5GNXNIiKqm6NQyID39wBXOefuxJsvPNlaYFEYhSrAc/59pqHXqW2p4V+bgR2Z9jWzRmA+mYePiYgIUFtbi5mNtSKDN9/qy1/+8oT93v/+9wPw8Y9/fMpQsvTntrR4izVv2rQpcBnq6+s56aST+O1vf8vNN9/MmjVrprRkz58/n+OOO44f/ehH/OEPf5hyDOfchJQaVSbpdbmIiKRR3Vx5hfRA7w78JcfjfcCs0opTsD/5968DfjnpsdfiDUf7B4BzbtTM/gwcZGaNzrn0oWKH4DUmrC5zeUVEEuvd7343n/zkJzn22GN55zvfybZt27j55psnrPwJ3mqaJ554IitXrmTNmjW8/e1vZ6edduIf//gHd999N3/7298AOPjgg6mpqeGiiy5i8+bNNDc3s3jxYg499NCc5Vi+fDnf+ta3OPPMM6mpqeHkk0+ess9///d/88Y3vpHDDz+cU089lYMOOojR0VE6Ojq48847OfXUUxOx0mcZJLouFxGRiVQ3V14hAXS+Rbb2Z7wVOXRmthswB3jaOZcaynUf8DzwATP7RlruyFcCRwDXTUp78X3gDXhzpi5P234uMAzcUq7yi4gk3X/913/hnOOaa67hP/7jP9h111058cQTOe2003j5y18+Yd+bb76Zww47jGuuuYbPf/7z1NbWsnjxYt7znveM7bNw4UKuvfZaLrnkEs4880yGhoZYvnx53kr61a9+NQcccAB/+9vfOOqooyakwkjZc889eeihh7jkkku48847ufHGG5kxYwZ77rknxx9/PO9973vDOSnJMx3qchER8alurjxL77LPuaPZDcAb8SrXmUAncJRz7tdmthj4K3CDc+7DgV/c7BRgL//Ps4EG4FL/76ecczek7Xs9sBw40jm3Km37e4Af4LWoX42X7uKjgANek76SqJk14M35eiXwLeAJ4Di8uWBfdM59Jl+Zly1b5lavVke1iHieeOIJ9ttvv6iLITEV5Pows4ecc8sqUZ7pUJdnorpZRNKpbpZcSq2bC+mB/hzeEOc/4fXkOuCtZnY08O94q2deXMDxAE4H3jRp2xf8+/uAG8jDOXerme3AW/Dka345fgV8YnKF65wbNLOjgC8CJ+HNe16HV+F/p8Cyi4iIJE3i63IREZEoBQ6gnXNrzewteOktPu9v/k///m/AKc65Zwp5cefcEQXsuwJYkeWxnwA/CXicLcBZ/k1ERKRqTJe6XEREJCqF9EDjnHsIeKWZHQDsBxiwxjn3cDkKJyIiIuFSXS4iIlK8ggLoFOfc3/BaqkVERCSBVJeLiIgUrpA80CIiIiIiIiJVK3APtJmN4i02kotzzhXVqy0iIiLlpbpcRESkNIVUkCuZWunWAUuAQ/FSXzwSTrFERESkDFSXi4iIlKCQVbhXZHvMzF4P/B9wZghlEhERkTJQXS4iIlKaUOZAO+ceAK4DvhLG8URERKSyVJeLiIjkF+YiYmuAV4d4PBEREaks1eUiIiI5hBlAHwHsCPF4IiIiUllHoLpcREQkq0JW4T41y0PzgKOAY4HvhVEoERERCZ/qchERkdIUsgr39Xgrd1qGx4aBa4CPhVAmERGJoVWrVnHkkUdy3XXXsWLFiqiLk9cRRxzBhg0b2LBhQ9RFiZPrUV0uIjJtqG6uvEIC6CMzbHPAJmC9c643nCKJiIgEc9lllzF37txE/GiICdXlIiJSVtO9bi4kjdV95SyIiIjE2+GHH86OHTuor6+PuihjLrvsMhYtWpSxkr7nnntwbnLK4+qmulxEZHpR3Vx5hfRAi4hIFaupqWHGjBlRFyOwhoaGqIsgIiJSVqqbKy/rKtxmdkERt89UsvAiIlI5q1atwsy4/vrrp/x93XXXsf/++9PY2Mhee+3FV74yNZXwPffcw4knnkh7ezszZ85k7ty5HHPMMdx3X+ZO0bVr13LaaaexYMECGhoa2H333XnHO97BQw89BICZ8dRTT3HfffdhZmO31LyqI444gkWLFo0d78QTT6ShoYGurq4pr/X3v/8dM+Pcc8+dsP0HP/gBb3zjG5k1axZNTU0ceuih3HbbbYWfvIioLhcRmd5UN1e+bs7VA31hEcdzwBeKK4qIiCTRFVdcwYsvvsjpp5/O3LlzufHGG/nEJz7BggULeN/73je23/XXX8+mTZs49dRTWbBgARs3buR73/seb3nLW7j33ns57LDDxvZdvXo1b3nLWxgaGuL000/ngAMOYNOmTdx333088MADvOY1r+GGG27gox/9KK2trXz6058ee25bW1vGci5fvpxbbrmF//3f/+Wss86a8NjKlSvH9kk5//zzueiii3jrW9/KF77wBWpqarj99tt5z3vew7e//W0+8pGPhHL+yuzCIp6julxEJOFUN5ePZRuDbmZ7FXNA59xTJZUo5pYtW+ZWr14ddTFEJCaeeOIJ9ttvv6kP/Oz/wQuPVr5Auex6IBz75aKfPnmlz9Tfu+22G48//jhz584FoK+vj7322oulS5fy+9//fuz5vb29NDc3Tzjmiy++yP77788hhxzCXXfdBYBzjgMPPJC1a9fy4IMP8opXvGLCc0ZHR6mp8QZQLVq0iEWLFrFq1aop5Z280ufIyAgLFixgzz335MEHHxzbzznHokWLmDNnDn/9618B+POf/8xrXvMaPvnJT/KlL31pwnFPOOEEfv3rX7Nx40ZmzZqV85xlvT7SmNlDzrllOXcqUrXU5aqbRSSd6mbVzbmUWjdnHcLtnHuqmFvOkoiIyLRz2mmnjVXQAE1NTbz2ta9lzZo1E/ZLr6B7enro7u6mtraWQw89lD/+8Y9jjz3yyCM89thjnHbaaVMqaGCsgi5UbW0t73//+/nTn/7Ek08+ObZ91apVPP300xNauG+66SbMjOXLl9PV1TXh9va3v53t27dP+AESV6rLRUSqk+rm8tEiYiIi5VBCa3LStLe3T9k2f/58uru7J2xbt24dn/70p7n77rvZsmXLhMfMxtMSpyr3gw46KPSyLl++nEsvvZSVK1eOtV6vXLlyrAJPeeKJJ3DOse+++2Y91osvvhh6+UREpIxUN6tuDkHBAbSZLQMOBXZiag+2c85p3pSISBWpra3Nu09PTw+HH344vb29nHvuuRx44IHMmjWLmpoaLr74Yn7961+P7ZuaWpRecYflwAMP5FWvehU33ngjF110ETt27OCHP/whxxxzDLvuuuuEMpgZP/vZz7K+v/333z/08lWK6nIRkelNdXP5BA6gzWwm8CPgGMDwFhlJnUGXtk2VroiITPCrX/2K5557jmuvvZbTTjttwmPnn3/+hL/32WcfAB5++OG8xy2mIl++fDkf/ehHuffee3n++efZvn37hCFiAHvvvTc///nPWbhwYd55UkmiulxERFJUNxenkMHqF+BVuBcBR+JVssuBY4H7gT8BLw+7gCIiknypluLJC1fec889E+ZYAbzyla9k//3359prr+Wxxx6bcqz0Y7S0tLBp06aCyvK+972Puro6Vq5cycqVK5kzZw7veMc7JuxzyimnAPCpT32KkZGRKcd46aWXCnrNGFFdLiIigOrmYhUyhPvdwK3OuQvMbL6/baNz7tdm9iu8SncF8MmQyygiIgn3xje+kV133ZXzzjuPDRs2sGDBAh555BFuuOEGDjzwQB59dHxVVDPjuuuu4y1veQuHHHLIWKqMLVu2cN999/HWt76Vs88+G4DXvva1XHPNNXzmM59hv/32o6amhuOPP37KiqLpdt55Z4499lhuu+02+vv7Of3005kxY8aEfQ4++GA+97nP8dnPfpZXvepVvOc972H33Xfn+eef56GHHuKuu+5icHCwPCervFSXi4gIoLq5WIUE0HsCX/f/nQr5GwCcc8Nm9n3gTFTpiojIJHPnzuXuu+/m4x//OJdffjnDw8O85jWv4a677uKaa66ZUEmDV0n+6U9/4gtf+AK33HILV1xxBa2trRxyyCG84Q1vGNvvoosuYtOmTXznO99hy5YtOOdYv359zkoavKFiP/7xjwE49dRTM+5zwQUX8JrXvIZvfetbXHbZZfT29rLzzjtzwAEH8M1vfrPEMxIZ1eUiIgKobi5W1jzQU3Y06wQ+75y73MxqgQHgDOfctf7jHwIuc87NLFtpY0C5JkUkXZBcglK9os4DneG1pmVdrrpZRNKpbpZcypYHOoN1wMsAnHMjwGN4Q8Ewb6b4O4FnCjieiIiIVJbqchERkRIUEkD/EniX32INcCXwVjNbB6wBjgKuCbl8IiIiEh7V5SIiIiXIOQfazBqdcwP+n18GbsBPd+Gc+66ZzQBOxptHdTXwlTKWVURERAqkulxERCQ8+RYRe95fUORa59xDwN/TH3TOfZ3xxUhEREQkflSXi4iIhCTfEO6teKtxPmhmj5jZ2WY2rwLlEhERkXCoLhcREQlJzgDaObcYbz7UzcBS4JvARjP7XzM7xl9wRERERGJKdbmIiEh48i4i5pz7tXPuFGA34N+BR4D3Aj8DNpjZ58xscVlLKSISY0HTAUp1idN1Uc663MxqzOyjZvakmfWb2TNmdqmZ5U74Of78ejP7lJk9YWYDZtZtZj80s32LKY+ICMTrO1jiI4zrIvAq3M657c65q5xzrwP2Ay4F6oHPAGvM7Fdm9r6SSyQikiC1tbUMDQ1FXQyJoeHhYerq8i01Ulllqsu/gTeH+nHgbOBW4Bzgx2aW83eG3/t9J3AR3tzsjwLfAt4I/MHMXl5gWUREVDdLVmHUzYWksRrjnPu7c+7jwALgeOAXwJHAypJKIyKSMLNmzWLbtm1RF0NiaPv27cyYMSPqYmQVRl1uZvvjBc0/cs690zl3tXPuY8DH/GP9a55DvAM4FrjKOXeCc+67zrnPAa8DGvCCaRGRgqhulmzCqJuLCqDTHAK8Ha+iAxgs8XgiIokyb948Nm/eTFdXF4ODgxoyJjjn6Ovro6uri7a2tqiLE0QpdflJeCmxLpu0/WqgDy89Vi5H+vfXpW90znUA9wNvMbOFBZRHRER1s0wRZt1ccP+1me0KnAKcBuyDV3E+AlwD3FRSaUREEqaxsZGFCxeyadMmNmzYwMjISNRFkhhobGxkl112iW0PdIh1+cHAKPBg+kbnXL+ZPeI/nkujf9+X4bHUtkOBpwsok4hUOdXNkklYdXOgANrM6vBap08D/sl/3hbgv4FrnHMPl1QKEZEEa2xsZLfddmO33XaLuigiWZWpLt8d6HLODWR4bCPwejNrcM5l69V+zL9/M/DXtLI24QXOAHsWUS4RqXKqm6VccgbQZvYKvIr2/cB8f/O9eC3UP8pSYYqIiEhMlLkubwKyPb8/bZ9sAfSNwPnA582sF/gl0Ap8zr9PPX8KMzsDOANg4UKN8hYRkcrI1wP9iH//DPBF4Drn3IZyFkhERERC9Yh/X466vA/YOctjM9L2ycg5t9nMjsJbuOyqtId+A1yCF1xnXAnIOXdV6jnLli3TBEcREamIfAH0bXgt1Pc4zb4XERFJonLW5c8BLzezxgw92XvgDe/OuSiZc+5R4CAzW4o3JPw559xaM/uKv8uTIZdZRESkaDkDaOfceytVEBEREQlfmevyPwHH4K3kfX9qo5nNAF6F15MciHNuLbA2bdOxeL3PvwujoCIiImEoNY2ViIiIVK8fAA44d9L2D+LNXR5b0dvMdjOzff0FwnIys7OBA4BvOOd6wyuuiIhIaQpOYyUiIiIC3vBrM/sOcJaZ/Qi4C9gPOAe4D7g5bfeLgeV4uZ9XpTaa2V1AB/A4XjB+DHAC8FPgorK/CRERkQIogBYREZFSnAtswFsR+21AF3A5cIFzbjTA838PnAis8P9+AvgIcKVzTslbRUQkVhRAi4iISNH8IPdS/5ZrvxWMB8np278AfKEcZRMREQmb5kCLiIiIiIiIBKAAWkRERERERCQABdAiIiIiIiIiASiAFhEREREREQlAAbSIiIiIiIhIAAqgRURERERERAJQAC0iIiIiIiISgAJoERERERERkQAUQIuIiIiIiIgEEGkAbWY1ZvZRM3vSzPrN7Bkzu9TMmgM+v97MPmVmT5jZgJl1m9kPzWzfDPseYWYuy+0n4b87ERERERERmU7qIn79bwDnALcDlwL7+X8fZGZHOedGsz3RzAy4EzjWv78caAM+DPzBzF7vnHs8w1OvAu6ftO3ZUt+IiIiIiIiITG+RBdBmtj9wNvAj59y70ravB74F/Ctwc45DvAMveL7KOfehtOffAPzNP8ZRGZ73e+fcjaW/AxEREREREakmUQ7hPgkw4LJJ268G+oCT8zz/SP/+uvSNzrkOvB7mt5jZwkxPNLNmM5tRaIFFRERERESkekUZQB8MjAIPpm90zvUDj/iP59Lo3/dleCy17dAMj30T6AF2mNk/zOw//OHgIiIiIiIiIllFGUDvDnQ55wYyPLYRaDWzhhzPf8y/f3P6RjNrYjxw3jPtoSHg/4CPA28H/h3YgtcDfm2ugprZGWa22sxWd3Z25tpVREREREREpqkoA+gmIFPwDNCftk82NwIvAZ83sw+a2WIzOxi4DWid/Hzn3O+cc+9wzl3pnPuxc+5K4LXA3cAKM3tjthdyzl3lnFvmnFvW1tYW7N2JiIiIiIjItBJlAN3H+DDsyWak7ZORc24z3iJh6/BW1u7AGw7eDFzi77YtVwH8Vb4v9v88LlCpRUREREREpCpFGUA/hzdMO1MQvQfe8O7BXAdwzj3qnDsI2Bt4E7C3c+5NjAfmTwYoxwb/vjXXTiIiIiIiIlLdogyg/+S//iHpG/3VsV8FrA56IOfcWufcb5xza/1Nx+L1Pv8uwNP39u9fDPp6IiIiIiIiUn2iDKB/ADjg3EnbP4g3d/mm1AYz283M9vUXCMvJzM4GDgC+4ZzrTds+P8O+jcCF/p8/LrD8IiIiIiIiUkXqonph59yjZvYd4Cwz+xFwF7AfcA5wH3Bz2u4XA8vxcj+vSm00s7vw5j4/jheMHwOcAPwUuGjSS/7czJ4DHsIbPr47Xq7pvYHLnXMPIiIiIiIiIpJFZAG071y8OchnAG8DuoDLgQv8Bb7y+T1wIrDC//sJ4CPAlc65kUn73oYXXJ8NzAV6gYeBzzrnvl/8WxAREREREZFqYM65qMuQKMuWLXOrVweeni0iIpKTmT3knFsWdTmSTHWziIiEKVfdHOUcaBEREREREZHEUAAtIiIiIiIiEoACaBEREREREZEAFECLiIiIiIiIBKAAWkRERERERCQABdAiIiIiIiIiASiAFhEREREREQlAAbSIiIiIiIhIAAqgRUREpGhmVmNmHzWzJ82s38yeMbNLzaw54PPNzN5nZg+YWZeZbTezx8zsAjObXe7yi4iIFEIBtIiIiJTiG8DXgceBs4FbgXOAH5tZkN8ZXwRuAnYAnwP+C3jU//c9ZmblKLSIiEgx6qIugIiIiCSTme2PFzT/yDn3rrTt64FvAf8K3Jzj+XXAucCfgaOdc6P+Q1eY2TDwfuCVwCPlKL+IiEih1AMtIiIixToJMOCySduvBvqAk/M8vx6YCbyQFjynPOff95ZYRhERkdCoB1pERESKdTAwCjyYvtE5129mj/iPZ+Wc22FmvwHeamafAH4IDANHAB8GbnTOrSlDuUVERIqiHmgREREp1u5Al3NuIMNjG4FWM2vIc4z3A/cCXwbWAOuBa/HmVp8aYllFRERKph5oERERKVYTkCl4BuhP22cwxzEGgA68gPvngAPeBZzvH+OiTE8yszOAMwAWLlxYaLlFRESKoh5oERERKVYf0JjlsRlp+2RkZk3AA8Bs59xy59z3nXP/65x7D/AD4PNmtk+m5zrnrnLOLXPOLWtrayvhLYiIiASnAFpERESK9RzeMO1MQfQeeMO7c/U+vxvYGy/11WS34v1OeWPJpRQREQmJAmgREREp1p/wfksckr7RzGYArwJW53n+Hv59bYbH6ibdi4iIRE4BtIiIiBTrB3hzls+dtP2DeHOfb0ptMLPdzGxff9h2yuP+/fIMx05t+1M4RRURESmdWnVFRESkKM65R83sO8BZZvYj4C5gP+Ac4D7g5rTdL8YLio8EVvnbfoKXAus4P53VD/HySr8TOAy41Tn35wq8FRERkUAUQIuIiEgpzgU24K2I/TagC7gcuMA5N5rric65ETM7CvgkXtD8Fbwe7TXAJ4Cvl63UIiIiRVAALSIiIkVzzo0Al/q3XPutAFZk2L4d+JR/ExERiTXNgRYREREREREJQAG0iIiIiIiISAAKoEVEREREREQCUAAtIiIiIiIiEoACaBEREREREZEAFECLiIiIiIiIBKAAWkRERERERCQABdAiIiIiIiIiASiAFhEREREREQlAAbSIiIiIiIhIAAqgRURERERERAJQAC0iIiIiIiISgAJoERERERERkQAUQIuIiIiIiIgEoABaREREREREJAAF0CIiIiIiIiIBKIAWERERERERCUABtIiIiIiIiEgACqBFREREREREAlAALSIiIiIiIhKAAmgRERERERGRABRAi4iIiIiIiASgAFpEREREREQkAAXQIiIiIiIiIgEogBYREREREREJQAG0iIiIiIiISAAKoEVEREREREQCUAAtIiIiIiIiEoACaBEREREREZEAFECLiIiIiIiIBKAAWkRERERERCSASANoM6sxs4+a2ZNm1m9mz5jZpWbWHPD59Wb2KTN7wswGzKzbzH5oZvtm2X+OmV1uZhv913vMzM40Mwv3nYmIiFSHUupyMzvCzFye2xsq8T5ERESCqIv49b8BnAPcDlwK7Of/fZCZHeWcG832RD/ovRM41r+/HGgDPgz8wcxe75x7PG3/BuAXwEH+vk/4z/0usAtwYdhvTkREpAoUXZfj1cWnZNjeCFwFdAEPhltcERGR4kUWQJvZ/sDZwI+cc+9K274e+Bbwr8DNOQ7xDrwA+Crn3IfSnn8D8Df/GEel7f8B4GDgHOfc5f62q83sh8CnzOw659xTpb8zERGR6lBqXe6cexG4McNxT8IbJbfSOTcUdrlFRESKFeUQ7pMAAy6btP1qoA84Oc/zj/Tvr0vf6JzrAO4H3mJmC9Meep9/3KsnHecyoB44MWC5RURExFNqXZ7NB/z77xX5fBERkbKIMoA+GBhl0tAs51w/8Ij/eC6N/n1fhsdS2w4Fb34W8GrgYf/46R70y5Hv9URERGSiUuvyKcxsMV4j+W+dc38PoYwiIiKhiXIO9O5Al3NuIMNjG4HXm1mDc24wy/Mf8+/fDPw1tdHMmvADZ2BP/34nYKZ/3AmccwNm1g3sUfhbKMHP/h+88GhFX1JEREK064Fw7JejLkXUSq3LM/k3vF7tyvc+q24WEUm2CtTNUfZANwGZKlyA/rR9srkReAn4vJl90MwWm9nBwG1A66Tnp+5zvV7W1zKzM8xstZmt7uzszFEkERGRqlJqXT6BmdUCK4BtwK159lXdLCIiFRdlD3QfsHOWx2ak7ZORc26zmR0FrMRbqTPlN8AlwPl4FXD6cRrJbEae17oq9RrLli1z2fYriHotREQk+UqqyzP4J2ABcKVzLufzVDeLiEgUouyBfg5oNbNMQe0eeEPCcg75cs496pw7CNgbeBOwt3PuTYwHyk/695uBHWQYpu2//nwyDO8WERGRnEquyyc53b/X4mEiIhJLUQbQf/Jf/5D0jWY2A3gVsDrogZxza51zv3HOrfU3HYvX+/w7//FR4M94OSknV/KH+OUI/HoiIiIChFiXm9nOwPHAX51zqpNFRCSWogygfwA44NxJ2z+IN1/qptQGM9vNzPb1FwjLyczOBg4AvuGc60176Pv+cc+Y9JRzgWHglgLLLyIiUu3CrMtPxUsrqd5nERGJrcjmQDvnHjWz7wBnmdmPgLuA/YBzgPuAm9N2vxhYjpfWYlVqo5ndBXQAj+NV4McAJwA/BS6a9JJXA6cBXzezRcATwHHAvwBfdM6tD/UNioiITHNh1OVp/g1v4bEby1lmERGRUkS5iBh4LdYb8HqF3wZ0AZcDF/jDrvP5PXAi3oqd4AXFH8FbfGQkfUfn3KC/6NgXgZPw5j2vA84GvlPi+xAREalW51JaXY6ZvR4v8L7ZObe5PMUUEREpnTkXzsKV1WLZsmVu9WpNzRIRkXCY2UPOuWVRlyPJVDeLiEiYctXNUc6BFhEREREREUkMBdAiIiIiIiIiASiAFhEREREREQlAAbSIiIiIiIhIAAqgRURERERERALQKtwFMrNO4KkMD7Xipe6odjoPOgcpOg8enQePzoMn03nYyznXFkVhpossdbOuual0TibS+ZhI52MinY+pqumcZK2bFUCHxMxWKw2JzgPoHKToPHh0Hjw6Dx6dh8rRuZ5K52QinY+JdD4m0vmYSufEoyHcIiIiIiIiIgEogBYREREREREJQAF0eK6KugAxofOgc5Ci8+DRefDoPHh0HipH53oqnZOJdD4m0vmYSOdjKp0TNAdaREREREREJBD1QIuIiIiIiIgEoABaREREREREJAAF0CIiIiIiIiIBKIAukpnVmNlHzexJM+s3s2fM7FIza466bJVkZi7LrSfqspWDmX3SzG41sw7/fW7Is/8+ZnaHmW02s14zu9/M3lyh4pZNIefBzC7McZ38ZwWLHSoze5mZfd7M/mBmnWa23cweMbNPZ/oemMbXQuDzMF2vBRj7/73JzJ4ws61m1ufXD183s92y7D/troeoqW6eqNrq6BTV1VOp3h6n+nsq1eWFqYu6AAn2DeAc4HbgUmA//++DzOwo59xolIWrsPuZuirfUBQFqYAvAZuAPwNzc+1oZkuAB4Bh4CvAVuCDwN1mdqxz7pflLWpZBT4PaT4KdE3a9lCIZaq0fwM+AvwfcBPeNX8k8EXgvWb2WufcDpj210Lg85Bmul0LAAuA3fDqhGfx/q8PBM4A/tXMXuWcewmm/fUQNdXNU1VTHZ2iunoq1dvjVH9Ppbq8EM453Qq8AfsDo8APJ20/G3DA+6IuYwXPhQOuj7ocFXy/7Wn//huwIce+twAjwKvStrUATwF/x18FP4m3As/Dhf51sijqcod8DpYBczJs/6L/fs+qkmuhkPMwLa+FPOfnPf57/ng1XA8Rn2vVzVPPSVXV0WnvW3V1aedkWn9Xq/4u+ZxM6+sjyE1DuItzEmDAZZO2Xw30ASdXukBRM7MGM2uJuhzl5pzrCLKfP9zl7cAq59wjac/vAb4HvAw4uBxlrISg52EyM5ttZtNi5ItzbrVzbmuGh37g3x8AVXEtBDoPk02nayGPp/z7nWD6Xw8RU92cRbXU0Smqq6dSvT1O9fdUqssLowC6OAfjtXI/mL7ROdcPPMI0+TAV4N14P062m9lLZna5mc2JulARewXQCPw+w2N/8O+r7Tr5K97Qp34ze8DMjo26QGWywL9/0b+v1mth8nlIN22vBTObYWatZrbAzI4BrvQfusu/r9broRJUN2emOjo7fR5zm7bf1Vmo/p6qKuvyfKquxSAkuwNdzrmBDI9tBF5vZg3OucEKlysKDwK3AmuB2cBxwFnAm8zs9X4rXTXa3b/fmOGx1LY9KlSWqG3Bm3/3ALAZ2Ac4F/ipmf2bc+76yEoWMjOrBS7Amyt1s7+56q6FLOcBquNa+ABwedrfG4CTnXP3+39X3fVQQaqbp1IdnZs+j5ltYfp/V0+g+nuqKq/Lc1IAXZwmIFMFDdCfts+0r6Sdc4dO2rTSzP4KXAT8h39fjZr8+0zXSf+kfaY159xlk7eZ2bV4c7C+YWa3TaMfcZcBrwU+5Zz7u7+tGq+Fy5h6HqrlWrgDeBJvjtxBeMP/2tIer8broVJUN0+iOjovfR4zqJLv6skuQ/X3ZJdRvXV5ThrCXZw+vCEdmcxI26dafRXvB8rboi5IhFL//5muk6q/Rpxz3cAVeCuBvj7a0oTDzL6A17NzlXPu4rSHqupayHEeMppu14Jz7lnn3C+dc3c45z4LLAcuMbNP+rtU1fVQYaqbg1EdPU6fx4Cm23d1OtXfU1V7XZ6PAujiPAe0mlmmD9QeeEPIqqaFezLn3BD+OYq6LBF6zr/PNLQntS3TkKBqssG/T/x1YmYXAucD1wH/PunhqrkW8pyHXDb494m/FiZzzv0VeBj4sL+paq6HCKhuDkB19AT6PBZmg38/ba4d1d9TqS7PTwF0cf6Ed+4OSd9oZjOAVwGrIyhTbPjnYQGZFxyoFo/iDfl5XYbHXuvfV/V1Auzt3yf6OjGzzwKfBVYCH3DOy/GQpiquhQDnIZdpcS3kMBOY5/+7Kq6HiKhuDkB19AT6PBZmWn1Xq/6eSnV5MAqgi/MDvPxn507a/kG8uRA3VbpAUTCz+Vke+gLe/PofV7A4seLP/fgxcISZvTK13U8j8gFgDZNWip2OzKwu02qvZrYncCbQjbcIRSKZ2QV4+RBvAE5zzo1O3qcaroUg56EKroVds2w/Ei/9xx+gOq6HCKluTqM6Oj99Hqea7t/VKaq/p1JdHpwV1rAgKWZ2Od7cgNvx0pPsB5wD/A54c6aLbroxs2/gtcDdCzyNt2jOccCRwB+BI51zO6IrYfjM7BRgL//Ps4EG4FL/76ecczek7bsU74t1CPgGsA3vh9yBwNucc3dXqtxhC3oezGwusB5vYaUnGF+t8QN418tJzrlbK1bwEJnZR4Bv4137n8FLn5PuRefcL/x9p/O1EOg8TOdrAcDMbgd2A36Nl/t5BvAa4F/x5sgdkcojOp2vh6ipbh5XjXV0iurqqVRvj1P9PZXq8gI553Qr4gbUAucBf8cb3rER+DrQEnXZKngO3gHc7b/3fqAXL9fmp4AZUZevTO95FV4PR6bbqgz77wfcibfkfx/wW+CoqN9Hpc4D3sIb38MbBrUZrwJ6HrgNOCTq91HiObg+xzmYcj1M42sh0HmYzteC//7eC/wUeMb/PtyBtxr35cDCDPtPy+sh6pvq5gnnourq6LT3rrq6yHMy3b+r/feo+rvIc1IN10eQm3qgRURERERERALQHGgRERERERGRABRAi4iIiIiIiASgAFpEREREREQkAAXQIiIiIiIiIgEogBYREREREREJQAG0iIiIiIiISAAKoEVEREREREQCUAAtIiIiIiIiEoACaBEREREREZEAFECLiIiIiIiIBKAAWkRERERERCQABdAiIiIiIiIiASiAFhEREREREQlAAbSIiIiIiIhIAAqgRURERERERAJQAC1SJmbmzMxFXY5szOx6v4wrQj5ubN+3mZ1gZqvMbIuZ9ZjZH83stCKPtSr1XrPcrgi7/CIiUpo411GgurmUutnMVuSpl1O3X5fjfUj1qIu6ACIilWBmFwCfAwaBXwEDwNHAtWb2OufcGUUe+m7ghQzbf1/k8URERKpCyHXzWuB/cjz+bqAZWFVcaUU8CqBFZNozs9fiVdDbgMOcc3/1ty8Efgt80Mzucc7dVsThv+ycWxVaYUVERKpA2HWzc+63/vMyvdZSYDngyB1ki+SlIdwiUg0+4d9fnKqgAZxzT6c99v8qXioREZHqVcm6eYV/f69z7qmQjilVSgG0SIWZ2VFm9l0z+6uZbTKzfjPrMLMrzGyvLM9Jzbc9wszeZGa/NLOt/vPvMLO9/f1qzOw8M3vMzHaY2UYzu8TMGvKUaZmZ/dQ/Xq+Z/dbM/jnH/kvM7Ptm1mlmfWb2FzM7M+z3HQYzawT+yf/z+xl2uR1vyNhrzGxBucohIiLxpbp5+tbNZmbAKf6f15dyLBFQAC0ShSvwWkJ3AL8G7sGbTvEh4M9mtk+O574Db45QE97c283+tt+YWStwC95wqBf8Y88BPu6/ZjavxRvytMQ/5sPAG4Afm9mHJu9sZgcAfwL+FW/Y1Z3AJuDbZnZZmd53KfYBZgLdmVqdnXP9wGP+n68q4vjvNLNv+T82Pm1mhxRfVBERiYjq5ulVN6d7M7AQ2A78sMRjiYBzTjfddCvDDW+ejcuw/R3A7Enb6oAv+s/5eYbnrPIfGwFOSNveiFfhOeBvwOPAorTHD8RbmGM0fbv/2PWpMgKXAJb22L/4r9UPtE963sP+c/4bqE3bfhjQG/L7vjCtjIFvk45xvL/94Rz/V3f6+5xVwP/vqhxl+CkwL+prUDfddNNNt4k31c2hvO/Y1s1ZjnODf5zvRX396TY9blpETKTCnHN3Ztg2DJxvXtqGo81slnNue4anf985d0fa8wbM7JvAkcD+wFHOuQ1pjz9qZj8FTgDeBGxgqmeA851zLu15t5vZj/BWrPwQ/lwkMzscryW4CzjPOTeS9pz7zUvd9LEQ3/cjlL7Yxyz/vjfHPj2T9g3iN8B1wO+AjcAueK3cFwHH4fUSHOacGy2suCIiUmmqmwt6348Q37p5AjObBbzT//O6Yo8jkk4BtEgE/HlFbwNehlcx1PoP1eFNrViK15o82T0Ztq3174fInJoh9fjuWYpzm3NuKMP2G/Eq6cPTtr3Jv7/DOdeX4Tk3kKWShsLft/+D5I5sxwvIUocr8TgTOOcumLRpA17ajXuAvwKvB94F3Brm64qISHmobk5+3ZzBe/CG1q9xzv2uzK8lVUIBtEiFmdkX8VaVrM2x2+ws25/NsC3VevtCeqtzhscbsxwz22qUG/z79MU79pj0WLbnTFHi+y5FqtW8Jcc+zZP2LZpz7lkzuw7vx8pxKIAWEYk91c3Ttm5e4d9fX8IxRCZQAC1SQWb2buDTeAt8nAvci1e59vuPPwC8jvGW2clyDQcudqhwttbfXK3D2Z6TcXux79vMTsAb4lYQ59yKtD9TP0L2zPGU1A+RsFJb/N2/z9azICIiMaG6eXrWzWbWDrwR7/9gZTHHEMlEAbRIZb3bv/+0cy7TXJyllSyMb6882zembUv9e1GW5yzOsr3Y9/0qYHmWx3JZkfbvJ/EWXJlvZgudl19yjJ9K4wD/z0eKeK1M5vn3PTn3EhGROFDdPD3r5hV4wf8vnHOZRgmIFEVprEQqKxVYPTP5ATN7C9BW2eIA8G4zy9SY9j7//jdp2+7z708ws5kZnvP+LK9R1Pt2zl3onLNCb5OOMYCXAgS89B6TnYA3hO7Pzrkp5SuUn2/yXf6fq0s9noiIlJ3q5kmSXjcr97OUkwJokcp60r//oJk1pDaa2SK81BNRWAh83q9sUuV5O17L9ABwZdq+9+O1BLcBXzWz2rTnvAE4M8trRP2+v+Lff8rPlZl6/QVpj10y+UlmttLMnjSzsyZtf7OZHZ/+/v3tc4FrgWV4c7auDe8tiIhImURdR2WiutkTuG6e5Ai8HvmtwO2hlFbEpwBapLK+hTfX6G3AGjO7xcx+BjwBPA88EEGZrgTOAx43s5vN7H681TVrgHOdcx2pHf10GqcCm4GPAH83s++b2a/wWsCvyfIakb5v59wDwOeBOcBDZvZTM7vdf/2FwLXOuVsyPHUhsA/QOmn7K4D/Azaa2c/M7CYzuxdvoZYVeMHze51zL5bj/YiISKhUN0+PujndCv/+f1NzukXCogBapIKcc2uB1wC34a1BcDze3KRLgGPw0l1U2h+Aw/AW6TjOL9/vgeOdc1dM3tk59yhwMPC/wFy8YVY74y1Acm6mF4jD+3bOfRZvaPUf8d7v0Xit7x9wzp1e4OHuA67AW3n11XhpMg7GO4eXAgc4534eUtFFRKSM4lBHZaC6ufC6GQAza2F8KtX1IRRTZAJLy88uIiIiIiIiIlmoB1pEREREREQkAAXQIiIiIiIiIgEogBYREREREREJQAG0iIiIiIiISACZErRLDq2trW7RokVRF0NERKaJhx56qMs51xZ1OZJMdbOIiIQpV92sALpAixYtYvXq1VEXQ0REpgkzeyrqMiSd6mYREQlTrrpZQ7hFREREREREAlAALSIiIiIiIhKAAmgRERERERGRABRAi4iIiIiIiASgAFpEREREREQkAAXQIiIiIiIiIgEogBYREREREREJQAG0iIiIiIiISAAKoEVEREREREQCUAAtIiIiIiIiEoACaBEREREREUm0geGRirxOXUVeRaZ4y6WreKq7r6DnNNTV8D//dggHL5oX7Akbfgs/+wR84JdQPzPQU75695NceV9HQeUqRlNDLf931htZ1Noc7AmP3garr4PTfhr4NT52yyP83yPPFVnC8jpy3525+tRlwZ9w/T/D078v7EXqm+C0u2DXAwPt/rNHn+c/fvAIo6OusNepgNkz6/n5uYex86wZwZ7wxyvh7k8DBb6XIz8Nh30s0K5b+4Y46hv3sbl3sLDXqIAaM778rgN556sXBHtC9zq4+kgY7C3shXZ9BZxxb+Ddz/3fh/nJX58v7DVi7JTX7cVnj98/6mJIiI746r08u3lH1MXI67xj9uHMI5ZEXYzsVp4AG+6PuhT5HXUhvP7sqEuR1UlX/YE/bdgUdTESzww+ddx+nPaGxVEXJbtrjoGND0VdijwM3noxHPLBqAuS1esv/jXves0CPnXcfmV9HQXQETnpkIVs7gv+w7tvcITrfreBf7y4PXgA/dzD8OLfoOcl2GmvQE/567NbaW1p5F2v2SNw2Qr10rYBbn3oWdZ39QYPoJ9dDU/9FkaGoTbYZfuXZ7awqLWZf9p/lxJKG75Vf+/kr89uKexJG/8Mu70K2t8UbP++TfDQddD1j8AB9OPPb2NoZJQPx+xH2TObdvB/f3mOZzb1BQ+gn3vEa0A45APBX+ih6+H5RwLvvnHLDjq3D3DcgbuyOOh1XCFX/2Y9jz23jXe+OuATutZA/1Z41ckwK+Dn5anfw9MPwOgo1AQbzPSXZ7fS3tbM0S+P12eyWK9euFPURZCQve/QhWzdMRR1MXK64+HnuH9NZ3wD6OEBWH8f7PUG2POQqEuT3V/+F9b9OrYBdP/QCH9Y383r2udz0MK5URcn0W5d/Sy/XdMV3wC6fxs880doPxL2CFpxR+DPN0DHqtgG0Fv6BunuHaStpbHsr6UAOiIfOKy9oP239w9x3e820DdQwNCEVG9SAb1KvQPDLN25hf/6p30LKl8h/vHidm596Fl6B4eDP2mwx7sf6oXaOYGe0jc4whuXtpb1vRRjx+Aot65+JvgTRke99730LXDkp4I9Z8szXgBd0P/9CM0NdbE7X6s3bOL//vIcvQVd+z0wezd4ywXBn7Pu3oLOV59//f7rwQs5/GVtwV+nAm5Z/exY+QJJfb7ecA607RPsOb/7phdAD/VBY0ugp/QODPPmfXeO3TUmknLG4TENStM8v7WfB9Z2R12M7DatBzcKB50Crzwx6tJkt/kpeObBqEuR1fquXpzzOlyOf+XuURcn0To6e3nyhe1RFyO77jXe/cGnw37HR1uWXF560mtwj6l1nd5vuPa28ndqaA50QjQ1eG0dRQWdBQUFIzQ11BZStIKljl+JxoDmxvi1ETU31tI7OIxzAYcXD/lD/RsK+EJI7VtgQFju//tipK79wgLC3sLOF3j7F3J9DXrXb3Nj/M5Zc0NtgQ0O/vsu+zU2Mvb/KSLFWdLWwgvb+ukdKOA7sZJSwUDr0mjLkU/r3rD1GRiK55D9jgoGA9Nde1szT2/qY3B4NOqiZNa11rufv3e05cindSls6vBGg8ZQR6cX97S3BWvUL4UC6ISorTFm1NfQN1hM0NkT+Cm9g+UPOpuLagwoLIB2zlWkMaAYTQ11jDoYCPpFXlRw4395FPR/PxLbBgeg8ICw4AC6paDz1ef/eI1jQNjUUFd4gwOU9RpzzvnfL/H7TIokSbs/ZWR9V4FrFlRKqocq7sHA/KWA89aAiKFUMBC3KUJJ1N7awsio4+lNha09VDHda8BqYF5Mh5inzN8bRodgy1NRlySjjq5e6muNPXcKtu5TKRRAJ0hLY11hLc5F9Nr2DYyU/QduKkgrZ2PA4Mgow6MulgFhy1hAGPD/MvWeG2YFf5G6BqhtKPD/Pp7Bzfj1UmgPdAHnC7xhyEX0QLfE8hqrK7IHuoBW27EAOtg56x8axTli+ZkUSZJU78q6zuANfhXVvRZadoEZs6MuSW6tfoDfHc8hqR1dvew+Z0YsG2mTJtWL3xHXz0zXGpi7F9SVf+5uScY+M2ujLUcW6zt7WTivibra8oe3CqATxOtVKvOw58HhsR7icmmoq6G+1gpsDChsOHpqeHhzTHugoYAGhGJ6B1P7F/h/H8eKenzEQoFzoMt8vlIBfSxHOTTWFj4HurYRauuDP6fAIdypESdx/EyKJMle85swi3EPdPfa+Pc+g98DTWyDgY6u3ooMRa0GqfMY38/MuvHgNM7mxzuA7ujqqdhnRgF0gjQ11BYZdAZrcRsZdfQPjVYkiCp3Y0Dqx3pTDHu7xoYkBw1wig6gC+tR7RsciWVwM6O+BrPxIdOBFD2Eu7BF1yCeParNDXUFNjgUeb5Szw0g1agVx0YakSSZUV/Lgp1mjs2RjZ2uNfGf/wzed97sPcbnn8aIc46Ozh7Nfw7JnJn1tLY0xPMzMzqanEan5vkwc6dYLiQ2MurY0N1Xsc+MAugEaW4sb9CZ6rGqxDDe5oIbAwobwp06T+XuTS/G2IJwQYfYFjO8Fvwe1QLmQA8Mx7LBwcwqFBD6PdCjweam9w0OU2PQWBe/r9GmhtoiGhyKuL4g8DXWW8HvF5Hprr21hY6uGA5H7dsEOzYlIxgArxc6hkO4u3oG2d4/PDbfXUoX28/Mto0wvCMZjU7gfbZj2AO9cfMOBodHK/aZid8vP8mqqaG2rAtvpYLOivRAl7kxIBWcN8Xwx3oqgAg8xHZsDnS5hyTHswca/IAw6PlKpf0qKiB0XkUWQCrtl5kV9joV0NxYaINDkUPeoeAGOvVAi5Suva2Z9Z29wbM5VEqqZyoJw1HBK2fXWojZeazkasLVor2tOZ490KkGnKQ0OrXuHcse6HVdlf3MKIBOkOaGAhcRGyhsCHfPQGV7oHuCvhfnYNDP3zcQsLdrIAk90BUIoAOeL/D+/+Ma3DQ31tETtMd+qIQ541DANTYcywYaGJ/uEfjHdVEBdGGrcPcMxDftl0jStLe10Ds4wovbBqIuykRjwUCCetMGtkJvZ9QlmaCjSymswtbe1kx37yBb+4aiLspEqSkESWl0mr8Uel6A/m1Rl2SCsbRv6oGWyZoaC83tWlgAXck5igWl2RnuB+cPqy10DnQMe1SbKzaEO/ic3lTar7gGNwUNSS5lzjgUNCQ5jg004DU4DI86BkcKSJVWdA900O8X9UCLhGVJa0xXFe5aAzX13orCSZAaNhuzHrWOzh5m1New+5zyp+OpFu2t/ur1cRvG3b3GyxrSskvUJQkmpitxd3T2MGdmPfOaGyryegqgE6S52NyuMVwlt7mQxoD08geeA53qTY/fj/Wmig7hDna+BoZHGRl1sQ1uvDnQhQbQxc7pDT7lIc490DDeKJZXMXOg6xrBagv4fonvqBCRpBlLZRW3VYW718K8dqhNyOd8bFXhuAXQvSya30xNTfymCCXVeCqrmH1mUovuxXA6WEYxXYm7o7OX9rbmik2rUwCdIE2NtcHnNY4MwYg/tKvQOYoVCDoL6oFODwIDz4GObxqrgtMyDfZ6gUqh+QELmAM9vuha/M4XpNIyBT1fJTQ4QEHz7OPc4ACFrPRexBBus4JGOYx/v8TzGhNJkl1mN9LUUBvPHuikDN8GmLPAS+EXtx7orl4N3w7ZnvOaqKux+H1mutcm6zMzbzFYTQw/Mz1jowwqQQF0gjQ31DE4PMpQkGGZRfTaVjLobC6kMWDCe4lfY0ChCk7LlOodLLRVrYDgZnzRtfidLyhw/n/JQ7iDNzrEucEBCsw1Xuj5goJGOcR5XQKRpDEzFrfGbFGkkWHY1JGc1YQBamph/pJY9aYNDo/y9Ka+igYD1aC+toaF85ri9ZkZ7IOtzyRnATHwOnPmLozVqI2egWFe3DZQ0UYnBdAJMjYsM8iP4pgHnU0NdYXPaYWCf6zPrI9fgFNwWqZiegfBe85QsLRMcU77BalVuCuQ9gsKmgMd5wYHKGShulIC6ODfL2ZeA5JML2b2STO71cw6zMyZ2YYij1NnZueY2Z/NrNfMtvr//lDIRZ4W2ttilpZny1MwOpSsYAC83r8Y9aY9vamPkVGnHugyaG9rjtdnZtM67z5JjU7gfcZjlD99vd8oskQBtGSSms8baOhzEQF0RXugG2rpGxphdDTAKsFFDOHuGxxmZn0ttTGdP1RQWqbBXmgsoiU6FRAN9eXdtTfmw2ubGwvpga7MEO6+gRj3QBfS2DY64l0jhTY4QEEBdJzTfknJvgS8GVgHbC7mAGbWAPwE+CrwCPBR4JPAfUBCVqSqrPbWZp7dvIP+oQIWFy2nVC9uUlYTTmndGzZvgOHBqEsCKIVVObW3tbCh22ugiIVUw03SGp1a/VzQATpoKqGjwimsAOLZfSIZpQLoQItvpYKImTvFMk9rc2MdzkH/8Ej+10uVv4D30js4EssFxFJaGusKW0StqN7BtCHJeQLw1GJTLTE9Z83+HGjnXP4ALHWNFNro0DBr4vPz6B0cju01Nv5dEaDRIdXAUkwjTeOsgr5f4rrKu5RsiXOuA8DM/gYU8yvmM8BRwNHOuXvDLNx01d7WjHPwVHcf++w6K+riJDcYmL83uBEviG57WdSlUQqrMmpvbWZweJSNm3ewcH5T1MUZb3SavyTachRq/lIY3gHbNsLcPaMuDes6e6kx2KuC/6fqgU6Q5oYCVm9O/aht2bWAIakjNNTW0FBX/suiqaDGgPT3ErR3MN4/1r1FsQqcA12oAtIyxTntF3iNOoHTMlVgCPdY2q+YDnkfH61SwOer3HOgY3y+pDSp4LlYZtYM/Adwp3PuXvPEICKMtyV+b0tsFkXqXuM1dDfPj7okhRlLyxOPYdwdnT20tjQye0Z91EWZdsZXr4/JZ6ZrDcxeUFz9G6UYfmYW7NREY13lfsMqgE6QpkLyB6d+FM/apaCgs1JDeAtrDPC/6GbtUtCP9biukAze/2XwHugS5kBDoP//sbRfMT1nzYWkZSp2CHcBaZnG0n7FtJEmdb4CrcJdbIMDFDYHuoLfL5I4hwGzgIfM7JvANmCbmXWa2ZfMLJ5fTBFbnMoFHZdUVl1rk9f7DOMrIMdkHnQqHY+EL3aprLrXJG/+M4x/zmMyD3p9BKvWK4BOkOZC8gengoiWXWBkMNDcnkr2EBXVGNBSQGPA4HBs56eCPwe8oB7o8gbQqf+HuAY4YyMWggaENXVQ21DYixSQlin2i66leqDL2eCQek4BQ97j3KglkdrHvz8XeBfwceBE4AG8edDXZHqSmZ1hZqvNbHVnZ2clyhkrzY117Dp7Buti0wO9NnnznwFmzoXmttisxN3R1VvRxZCqyfzmBmbPqGN9HHqgnYPudclsdJq1q/d7KQafGeecF0BXeNV6BdAJ0lRI/uCxoHNn734oWC9kpYbwFtYY0AsYNLUWtGBRXFdIBi/A6Sn7CsnB0zLFvwe6wCHJDc2Fp/2CwEOSx9J+xbSRJrX6fGE90EVeY9Mg7ZdELjVcex5wlHPuv51ztzjn3gGsAk41s5dPfpJz7irn3DLn3LK2trYKFjc+2ttiksqqfxv0vJCsfLbp5u8di2BgS98gm3oHlcKqTMzMW70+Dp+ZnpdgYFsyG53MvM96DIZwv7Ctn77BEfVA5xJWqoxJx7zFP9bfQihiWaWCzkALA6X3QAMM5A8KeioYdKYaAwIFkQP+EObGWYHTMvUOJKEHOuAQ7oGe4ofXAgxuz7trT4zTfsF4z3jw66XIHx9BA+hUg0NMG2lqa4yZ9bXBvitS3w1FD+Hu8VrS8+gZiG/aL4ncDv/+D865Jyc9ttK/f1MFy5MYXgDdgwvwGSyrpK7AndIaj1RWWkCs/GLT6JQKPpPa6NQaj1RWqf/L9lYF0LmUnCojnZn9M95wsR359o2DpkJyu6Z6hZp3nvh3Dn0VDDrHe6ADDjFtaE5LyxRsiG2ch4t6c6AD/D86V5k50APe6IOamKb9GuuBDjokudgFOQIOSR4b8h7nRprG2oCjVUocwu1GYSj/V2ic035J5J7171/I8Njz/v1OFSpLorS3trCtf5hNvRGnYBpbTTihAfT8vaGvC3aU/NOyJGPBgFJYlc2SthZe2NYfPDVmuaQabJLa6DR/b9j6TKD6v5yiSvuWtAB6iXNuvnPuaOC5Ug5kZi3Ad4HvAC+FUbhyKyi362AP1DZ6c3sgWFBQwaCzudDGgPQAOtB7ifcq3OlpmXIa2gG4sg/hjv+iawUOSS46gA46BzrePdDgNdL0FdLYVvZrTHOgJasH/fsFGR5LbUtEPV1pY4siRb2QWNcasBqYtzjachQrFcRE3KPW0dlDfa2x504zIy3HdJbqqVwf9Wemey3UzfRW4U6i1qWAP487Qus6e2luqGWX2Y0Vfd1EBdClpsqY5CK8PNjnh3jMsqr3U0wVFEQUkJqnknlaC2sMSL2XAub0DsQ9IAyYlqnUFZIhdv/3xRhPyxT02i/zEO4E9EA3NQTtgS7/NTaW9ivG15hUhpntZmb7mtlYwk7n3Hrgd8AhZvbqtH1rgQ8Cw8A9FS9sAsQmlVX3Gpi7l5fNIIlSPecRz+ns6Oxl4bwm6moT9fM8UcZSWUX9mela4+V/rkno/3VcPjNdvSxua8aKWfemBPGNMMrIzA4BzgJOcs5tq/RJL0VzQ23AYax+EFHgSswV64EuaFXlnknvJfeX3uDwKIMjo7EeLpqeliln3rpShtcWkJapkv/3xRhLyxR0CPfs3Yt7oYBDuOO+6Bp4n7GCVuwv4zSBsbRfMT5fUjwzOwXYy/+zDWgws1Tj9FPOuRvSdr8YWA4cibdAWMrZwP3AL83sW0A33krchwCfd849Xb53kFy7z51JQ11N9HM6uxK6AnfKTnt52Rsingfd0dWj4dtlttf8JsxikMqqew3s+opoy1CK+Uu8+xiM2nj1wsrP8Km6XzN+PsmrgXucc7dEXZ5CNTXUFRB0FthrW8HUT411NdRY0DmtvdA0L/CP9R2DqZRM8b2809My7dScI91SKcNrC0rLFO9F15oK7oEu8xzowXin/QKvB3p7fxnTfkHgz+R42q/4ni8pyelMXeTrC/79fcAN5OGce9jMXg98ES+d1QzgCeA059z1oZV0mqmtMRbNb2JdlMHA6Kg3HHXx4dGVoVS19bDT4kh700ZGHRu6+zhyn50jK0M1mFFfyx5zZ0Y77WF4EDY/Bfu/M7oylKqhGWbvEelnpn9ohI1bdvDu11R+GHx8I4zy+S9gb+Bfgj7BzM4AzgBYuHBhmYoVTHNjIT3QwYdwj456QywrFXSaGc2BGwN6Ye6egRsDxlZIjvGP9cBpmUoZXgsFrCo9wpyZ9cW9RgU01RfSA12BOdADCeiBbqjjxW39+XcsKe1X6jOZ+xobS/sV40YtKZ5z7ogC9l0BrMjy2F+Bt4dSqCrS3trCP17Kn22hbLZthOEd/pzIBIt4VeGNm3cwODyqFbgrwEtlFeEQ7s3rwY0ke9QGeCuIRzhqY0N3L85Fs+heQgfeF8fMlgIXABcVMp86TrkmmxsLCDoLWHhrx5AXmLRUsEetubGuyOHoub/0krDAU+CUZGPDa4v8cmgMHhBW8v++UDU1RlNDbQE90LPy75dJY0ugtEy9gyOYxTftF/jfFYE/X0Wer4CNWqmGopYYfyZFkqq9rZmnu/sYyremRrkkPR1PyvwlsKkDRgOmmAzZuq5oVhOuRu2tzazv6o0u/Vsq6EzqqvUprX7+9IjOY1QprKDKAmjgUmATcLuZLU3d8HriG/y/d4u2iLk1N9QVsPBWC9QHC6BTQXkl5yg2NdYWOBw94Hvxg4Y4L1g0vihW0B7o8g5JjnvaL0hNX8hzvkpJ+wXjaZmGc/fc9g0M01Qf37RfkFrpvYDPVzGCfibHvl/i+5kUSar2thaGRx3PbOqLpgCpXtukBwPz94aRAdgSzXT7KIOBarOkrZm+wRFeCDJKqxxSjU5JH7Uxf28Y2AY90SRJGE9hpQC63PYCdgceA9ak3fbAG9a9Bm9+dGw1NdQGTP3U4/Wm1dZ5y+Tn67WNIOgsuDGgcdb43zlE0RhQqLG0THl7oEsNoIP1QPfGfA40pKYv5DlfpaT9ggKmCVRuukOxAjU4QOlD3qGA75d4nzORJBpLZRXVPOjuNd53waxdo3n9sKSG03ZHM4y7o7OHOTPrmZdrXRQJRfvY6vURfWa61kLzzjBjTjSvH5ZUA0BE86A7OnvZbc6MSH7vT9tfM35P8hzgaedcqln2P4G5GXb/LtAPfAx4viIFLJK3sm6BP4oD9EJG0gMdpDFgeBBGhwqazz32Yz3GAXTwOdAlDuFuaIbt+S/pvoFpEhCG0WMP3nlvbs26W9wXXQNvDYDB4VGGRkapz5USpdRF11LHyEE90CLls6TVDwa6eoBdKl+ArjXe8O0EZTTJKNWD3rUG9j664i/f0dlLewTpeKrReKNTD29Ymr2uL5vuNcmf/wwTPzOL3ljxl1/X1RvZmgHx/sU8SampMpxzv8xy3K8BPc6528pR7jAVNg80eAA9vkpu5S6J5sY6OrcP5N4pPYCsbfBWCw76Yz3GQ7hTZespew90/v/7JKT9Aj+FW75rP4wGBwg0TSDOIxwgfeXyEebMzBVA93graRajfiZgAb5f4r/omkhSzWmqZ35zQ4Q90Gth4Wujee0wNbd6PYJR9aZ19fDGpdGus1Mtdp09g6aG2uhWr+9aA/sdH81rh2nOnlA3I5JRG845Ojp7OOFVRf5+KVHSfs2UnCoj6Zob6/IHXaMjMNQ3HkQ0tOTtte0ZqHzQGagHOj2ANAvWm56oHugg79/8QKUIAc7XWNqvGJ8v8ALCbTuGcu8UWg90/oAwznPsIS3X+OBw7hXWS+mBDpgqLfWZjHOjlkiStbc1RxNAD/bB1mdg/imVf+2wmXk9ahGsKtwzMMyL2wa0AneFmBmLW5ujSWXVtwl2bJoePdA1NTBvSSQBdHfvINv7hyP7zCRqDrRz7gjnnGW5HTFp3xX+9lUBjrvIOXdAucodpqaGWvqHRhkZzbHi3eQgIkAqoyiGPQdKYzXWo5h6Ly0wEGwV7jj/WJ8ZNC3TYI/3nosd0hXgfPWMrVoe3/MFXkAYfNXyEuf0DuROCdM7MJyIBgcIuNJ7secL/O+X/OcL4t2oJZJk7a0t/hDuCtvkJzRJ+mJIKa17Q/e6ir/ser/xY4kC6Ippb2thfRSfmVSwmfRF91Jao0llNbboXkSr1icqgJaAPZcZA+j4zVFsCpLTenIe5ACNAWO9XTFOMRQ4LVMowU3utEyphbliHxAGWXSuUkO4B0cS0eAAQRppeos/XxDw+8UrQ5zTfokkWXtbM109g2zNN0onbGMprKZJMDB/KWx/Lm/Dc9g6lMKq4tpbm3l28w76hyqctiwVbE6HHmjwPvubN3hrFlXQ2ArcEa1arwA6YVK9qjkDiYxBZ54hqakeogouJJXqgc6Zh29KD3SQ+dzDNNbVUJdr4aQYCLwoVqkBNM5fnTqzVBliHxAGSXtWqSHcSeiB9suX85yNjoZzjQU6X/FO+yWSZKnAa32lh6SOpbBaUtnXLZeIVuLu6OylxmCv+U0Vfd1q1t7WjHPwVHeF0791r4Gaepi7V/59k6B1b3AjXhBdQR1dvTTU1bD73CKnOJYo3hGGTJHqgc45LDPTsOd8vbZj82Ar2wM96mBgeDT7TlN60wPMtxwcTkS6nEBpmUoObvKnZUpUD3TgEQvlTcvUOzgS/0XXUo1tuc7ZcIlpvyDgZzL+i66JJFn6qsIV1b0GZi8o7TskTuZHFEB39bJgpyYa6+Jdr0wnS8ZSWVX4M9O1BuYt9tLMTgdjn5nKDuPu6Oxh8fxmaiNqmFcAnTBNDYX0QBfWa1tbYzTWVe6SCNYYUPgQ7r6BkUSkywneA13i8FrIec56I1iBvRjNDbUMjowyGKjBpbxDuPsGhxOR9gvy9ECX2uCQem6+z2QCFl0TSbKF85qoq7HKLyTWtWb6zH8GmNcOWMXndHZ09mgBsQpb7A/9rfhCYt1rp8+UBxj//Ff8MxNdCitQAJ04zUEWBipiCHevH3RWMv9gsMaAwodw9w4Oxz4YhALSMjWGEUDn6IFOwKJrML4o1o5CrpdC1eVPy+TlVnbJ6YEOdL7KPAc6AWm/RJKsvraGhfOaKruQmHPTLxionwFzF1a0N805x/quXtpbNf+5kpob69h19gzWVbIHenTEW3hvOjU6zZgDzTtX9DMzNDLK05v6FEBLcMUFnS0w3A8j2YO1vgiCzrHGgJAXROsbHIl9MAheQBhsgadS50CT85wlIe0XpC2Kle96sZri037V1OS9xsYaHGJ+vpoKGuFR3iHc3vdL/D+TIklW8VRWPS/BwLbpsxhSSmtlU1m9sK2fvsER9UBHoOKfmS1Pwcjg9Gp0Av8zU7lpD09v6mN41EXa6KQAOmFaig06AYZyBFERrCo83pteyHD0IDlnh8fOU5y1NAbpgS41gJ7lHyd7C2tfUtJYNQZcgb6UtF+Qd82A1JD3uF9jzYVM9yhllENjsDUWkrAugUiSLW5tZn1XL6O50lyGaWwF7mnUmwZecNO9Lmf2ijCNpeOJaDXhara4tZmOzp7ci9mGaWzRven2mVlS0R7o8RRW6oGWgFLDWHMuDDR5CHfqx3GehaQq/QN3/Ad+ngXR6pugxg/uUsFNrrRMgwmaAx00D3SxCuiBjnuPairAz93gUmLaL8jfAz2QjCHvdbU1NNbV5GlsC3EId55UaXFvoBFJuva2FgaGR9m4JXvWhVBNt3Q8Ka1LvQ6Hbc9V5OXG0vEohVXFtbe1sK1/mO7eCqVg6p6mn5n5e0NfN/RtqsjLxeEzowA6YYINY530ozjASsy9EQSd40NM8zQGpAdEgdIyTZM50M5VZAh33+AwM+prIlvJMKjAi2KVOYBOyqJr4PXaB2tsK/EaGx32hqVl0adVuEXKrr3SiyJ1r4W6Gd4q3NNJqnewQj1q6zp7aW6oZZfZjRV5PRk3vnp9hT4zXWtgxlxoml+Z16uUCqd/6+jspbWlgTkz6yvyepkogE6Y1I/QvMMya+qhrsH7O8BKzNHMgQ7SA50pgCZPD+E0mQM9MugFJqGksco1JDkpDQ4BR1+UHEDnHpI8nvYrAddYQ57c2WHNgU4/Vga9mgMtUnbtlU7L07UG5i3x1o6YTlLzUys0D7qjq5fFbc0VXcRVPEtaK/yZ6V7rBZvT7f+64p+ZnsgX3Ztm33rTX0NdDfW1ln9hoKKCzsoGUeM9ivkCorQPybQKCPOkZSo1JRNMswaHgIuIlXK+IHgPdALm9Dbny50d6jWWq9Gh8t8vItWmtaWBWTPqKteb1j3NUlilzN4d6psr2JsWfTBQrfbYaSYNdTWVG7XRtWb6LSAGsNNeUFNXsVEbUaewAgXQieTNnc0zhHtC0OlfZAPZf+D2DFS+h2h8TmuO9zKwPUtjQOb3MjwySv/QaCKGi6bKmDUt08B2776U3sH6VFqmfP/38T9fzUGG/E++XoqRJ69xb5J6oBvz9ECHcY3l+X4ZHB5lcGRUPdAiZWZmtLe1VCaV1fAgbH5qegYDZt6iSBXoTesfGmHjlh2RBwPVqrbGWDS/qTI90P3boOeF6dnoVFsPOy2uyGdma98Q3b2DkX9mFEAnUHNDbZ5e20kLKQXotY1ijuKMulrMxofEZlRgb3rfUKp3MP4/1pvz9aiGMbzWLO/K5YlZdK2YIf/FyHO+esdWLU9Go0Pe0SpW481jLFaeIdxJSfslMh0saa1QWp7N68GNTL/FkFJa965Ib9qG7l6c0wJiUWpvbanMZyY1omE6NjqB/5lZV/aXSTUQRj1qQwF0AjU11oU6b9g55w17rnDQWVNjNNXnawyY/F5yNwb0JWRFaUifz54vgA5jSHKeIe8JCAab6oOswh3WImK5hyNDQnqgG2rzr5dQctqv3KNCxoe8x/98iSRde1szz2/tz58isVTTPRiYvzdseQaG+sv6MkphFb32tmae3tTH0EiW6XRhSQWX07XRaf5S2NQBo3myy5QoDimsQAF0IjU31BaxcjVZA+j+oVGciyboDNYYkGE4epb30puQnMYQIC3T2Grq5U7LlIwe6FRapoKul2LkScvUm6Ae1ebGuvwr9odxfUH2HuiB5JwvkaQbX0iszD1qYymspuFwVPCDHOcFBGU0no5HAXRU2ttaGB51PLOpr7wv1L3GG/E1r728rxOV1r1hZAC2PF3Wl+no6qGuxthzXlNZXycfBdAJ1NSQL+icNAe6Pr5BZ/7GgMnD0fP9WE9eD3RZh3Cnnp93heT4ny/IExA6F15AmCMtU9/gSCLSfoHfA12JVctTx8pAPdAilTOWlqfciyJ1r4HmnWHGnPK+TlQqlMqqo7OX3ebMSMRvlumqYqmsutbA3IVQN03TlaVGo5R58b2Ozl4WzmuivjbaEFYBdAI1NxbYA13XALUNsRz2nL8xINsQ7jyNAQnoUc2blim0IdwB5kAnJLjJGRAOD3hz8sodECZk0TUI0gMd0pB3yPH9oh5okUpZNL8ZM1hf9mBg7fQdigrjAXSZF0Xq6Ip+NeFqN5bKqtyL73VP0xW4U1LfB+X+zMRgBW5QAJ1IBQedkLMXMsqgM2djwMiQNxwk4xDuLD/WU8NrkzCnN+8iYqkh3GWeA52kgLAhR0AY5pxxyHGNJavBoX9olJHRzMPRQxvynjpWBmM90Am5xqRwZvZJM7vVzDrMzJnZhhCOeYt/rL+FUMSqMaO+lj3mzqxQMDBNh28DNLbArN3L2pvmnFMKqxiY01TP/OaG8vZAj456c6Cnc6NT03yYMbesozZGRh3ru3tjseieAugE8nqVCsidDDl7IfsiXFW4Odcc6ExDmMfSMmXrHfTOS0sCApyWxtQiYvl6oEtsaWvM/n8/PDLKwPBoIhYRA6/BJfv5CqnBoXH69ECPX2M5GmlKPV95poj0JWhdAinal4A3A+uAzaUezMz+GXgXsKPUY1Wj9rYyryrctwn6uqd3MADe/O4y9qZ19w6yrX84Fr1p1a69rcyr129/Dob6pnejk5n3nVDGz8xzW3YwODwai0X3FEAnUHNDbfbUT6OjOXqgs6ySOxDdHEWvR7GAADJPWqYkpcxJLdyVNc1Q6j3Wl7hQQo7RB6m0X0lYRAz8xqN856vMQ7j7BkcS0+AwvtJ7js9YqeerpsYLovN+vyTjnElRljjn5jvnjgaeK+VAZtYCfBf4DvBSGIWrNu2tzXR09uCyLIRYsum+AnfKfD+VVZnO4/hqwtH3plW79tYy508fW3SvGj4z5Ru1sW5s0b3oPzMKoBOoqbGOvqERRjMNyxzeAbjxXrSUmAadTbkaA7INyW1syf9jPREBdL7gpscLTGpK/Jg2ZD9ffQkLbnKmZarQEO7eweEENTgEaKQpNYCG3I00Y98vyThnUjjnXJhLFV8E1AHnh3jMqtLe1kzv4AgvbR8ozwtUSzDQujf0b4XerrIcfmwF7hj0plW7xW3NdPUMsnXHUHleYKzRaRr3QAPMXwLbn4eB7WU5fFxSWIEC6ERqbqjFOegfzhBIZOuFyzUHOsKgM+dw9GxDcgP8WJ+ZgB/rtTXGjPqaygU3GVrRexMW3OSeAx1i2i/IudJ7EhpoIGgPdAgtuQG+X5IwKkSiZWaHAGcB5zrntkVdnqRKzalN9daErnsN1NTD3L3Kc/y4GFtVuDxDUju6emmoq2H3uTPLcnwJLtWI0VGuz0zXGq+unbVbeY4fF6lGtTL1Qnd09TB7Rh3zmxvKcvxCKIBOoNQCWRkX38oadAbogY5gCLfXo1jgkNycC6KN0FBbQ0NdMi7tvItihRVAZ0nL1JegHnvwrtH8q5aXOy3TcGIWEWvONU0grLRfkPf7JSlpvyQ6ZlYHXA3c45y7JeryJFnZ0/J0rYF5i6E2GfVG0VI5rss0p7Ojs4fF85v13RgDZc+f3r3G6521af5/nWp06ipTAN3pLSBmMTiPyYgyZIKcP4oHsvTCNTTDYOYhFT0R90APjTgGMvamZ3svLePvc5LegeQEN5AvIAxhgScYP0aGc9YzEF3jSTGaG+rGyjxF2D3QWYYgJWkRsbHGtkyNNMP94aT9gjzfL8k5XxKp/wL2Bj4S9AlmdoaZrTaz1Z2dneUrWcLsOnsGM+tryxgMrJ3+Q1EB5uwJtY3l64GOSToegYXzmqitsfLNg+5aO/3XDACY1w5YVXxmFEAnUGooZMYfxUX02vYNDmMGM+orfzmkhg5nDCKzzWnNsyBakn6s5x2SHFZwkzreJGMrJCfknDU11DEwPMrwyOjUB8NM+wU5Rzkkp8Eh1dhWwOerGDm/X5JzviQaZrYUuAC4qJD51M65q5xzy5xzy9ra2spXwISpqTEWtzaXJxgYHYFNHdURQNfUegFBGXrThkZGeXpTX2yCgWrXUFfDwnlN5Wl0GtoBW5+Z/msGANTPgLkLyzJqo3dgmBe29bMkBguIgQLoREotDJRxXmPOoDP7HMXmhrpIhkQ052wMyNWbnr0xICnzeSHAolihBtBTz9lYjt6EBDhj1/5QAfP/C5Va9TzD+RoaGWVweDQ5DQ650liF1WOfOsY0SPslkbkU2ATcbmZLUze8xcQa/L+n+eTBcJUtLc+Wp7zpQNUQDIA3jLsMvWlPb+pjeNQpB3SMeKvXl+Ez070OcNXR6ATed0MZ5kCv7/IXEIvJonsKoBNorAc601DWXMOeh/q81uNJogw6mwI1BhQ2B7opIStKQ4C0TGHNT00db5LUCuhJWeBpbFGsXD2qpab9qqn1jpGxxz5hab8C9UCXew70SGLOl0RmL2B34DFgTdptD7xh3Wvw5kdLQO1tLTy7uS/z9KhSpHpjq2E4Knjvc/MGGAl3deY4rSYsnva2ZtZ39zKSKcNNKVINMNXS6DR/b6/RIOT0b3FKYQVe664kTLAe6AxBJ3hBdOOsCQ/1RpjXtjlnY0C295Ljx/rA8FjQkARNDbV0Zks1Mtg75f+qKDmGcI/1QCckgB5Ly5Rt+kIYab8gayPN2JD3hDTSjK/CnevzFdYQ7uxpv1oScr6k/Pye5DnA0865Pn/zfwJzM+z+XaAf+BjwfEUKOE0saWtm1MFT3X28bJcQ6pGUagsGWvf2FuHcvCHU99wRs2BAvP+LweFRntuygz3nldgQn26s0alaeqCXwlAvbHsO5uwR2mHXd/ViBnvND/H/pgT6VZNAwYLODEO4U49PCsr6BiLsgW7I1RjQ4y3gUVs/cXvqx7pzU1Y07B0cYW5T9MvbB1XZOdDZe6CTkPYL8vVAh3S+IGsAPZ6SKRnnq6Guhvpay5wqrkJDuPsGRth5VmPpryGxZWan4PUiA7ThDbtO5XF+yjl3Q9ruFwPLgSOBVQDOuV9mOe7XgB7n3G3lKPd0lhoa3NHZE3IAvRZmzIWm+eEdM87GUlmtDTmA7qW1pYE5M+vz7ywVMZbKqqs33AC6ey3M3iO83ydxl57+LcQAuqOzlz3mzmRGfTx+f2kIdwLlDTohc68tZJkHG90cxebGPI0Bmb5wGpq91YOHp/bc9g0OJ2Y+LwRIy1TmIdzJS/uVpwc6tAA68yiHpC26Bl6jQ18hIzyK0dDizYscnpoqLcrvF6mY04Ev+Led8XqTU3+fHl2xqtdif2jwurDndHat8QLJGKSRqYgypbLq6OrR/OeYGU9lFfLie91rqqf3GcYbmsrxmYnRiI1k/GqWCZpzpaYZ7AWrgboZE7fnXIl5JLKgs3lskaMsw9EzDS/NFRAORDccvRjNjVl6oIcHvYAk1AA68yrcSWpwaM65KFYvNIb05drQknnIeyrlW4KusZbGuiw90P7nJ4xzljrGUKZGh2R9JqVwzrkjnHOW5XbEpH1X+NtXBTjuIufcAeUq93TW0ljHLrMbw18UqbtK0vGkzNwJmlpDX0gsTul4xNPa0sCsGXXhfmac84ZwV8uUB4BZu3m/oUJcSMw5x/rO3tgsIAYKoBOpsa6G2hrLvpBSQ8vU1uFcKzEPDEe28FbuHsUsQ3LzpGVK0hzo5oY6+odGpy5akQpEwpqfClkbHJKygBikzYHOOoQ7rAA63xzo5Fxj3krvuRYcLPc1lqzc7CLTRXtrC+vDTGU1sB22Pz/eK1stWvcONZXV1r4hunsHFUDHjJnR3tYSbvq33k4Y2FpdjU5mMH9JqD3QL24boHdwhCUx+swogE4gM6OpoTZH0JnhB3Fq3nPGoGAksqBzLM1OtsaATL1jWXqgR0edv+JvcgLCpmwNCGEOr82RlilpPdB5F8Uq9xzosVW4E3SNNdZVYBXuzAH08MgoAwlK+yUynbS3NdPRFWJvWqpHqZqCAfCG34bYA50K0DSEO36WhJ3KKhVEVluj0/y9w/3MxHDRPQXQCdXcUJejB7qwXtvegeHIAoKZ9UXMac0SQO8YSlZOY0gbkjz5/zLM4KamxludOssq3EkKBscX0Cvg2i9GtjnQA8nrgW7O2gPdCxjUzSz9RbJME0jl607Komsi00l7Wwtb+obY1Dt1bYKipHphq2k4Knjvt7cTdmwJ5XBKYRVf7W3NPL+1P3OdWYxUEFltjU6te8OWZ2BoRyiHW9cVv8+MAuiEamrM1gOdL4CeGBQ45yKdA11bY8ysry1wDnTmxoDU+UhSQJi9BzrE4bWQfUjyQLJ6oGeOLaCX7doP83xlT/uVrGssRw90Q4hpv1LHTNOXwDnjItPF2KrCYS2K1L3GW2NlXns4x0uK9JW4Q9DR1UNdjYW70rOEYvHY6vUh9UJ3rfGyycxZEM7xkmL+UsDBpo5QDtfR2UNTQy27zp6Rf+cKUQCdUM0NdVlWrs4yhDu1bWBiRTowPMrwqIs0IGhurKUn03sZ2F5Qb/r4Ak/JCQibs6VlSv0/hTokeeqPqJ4IRx8Uo6GuhobaGnoyBYTZrpeiXihLAD2QaqRJ0DWWrbEt7PMFU75fehJ4vkSmi1RvTajBwNyFUFdlaelCXlW4o7OXhfOaqK/VT/C4GfvMhDX1oXutNx+4psrqwNSq4yF+Zha3NmMxWv1fn96E8uZAF5ALN0vQmer5jXLhrZxpdgroTR8PbpITEKYWVyrrHGjIkZYpuvnvxWpqzDEkOczzlSEtU+/gsJ9bOTlfnXl7oMOQZVpFEtN+iUwXC3ZqoqG2hnVhLYrUvab6hqIC7LQIaupCm9OpFbjjywvSQhy10VVlKaxSUu85rM9MzFJYgQLoxGpurCssiKht8CqAbEFnhEMsszcG5JsDna0xIDk/1puzLYo1FkCXd0hy32B0K7AXqzlTQDg8CKND4feoDk0dkpy0Boecc6DDPl9ZRoVoFW6RyqutMfaa3xROD/ToKHSvq775zwC19V4QHUJv2sioY313b+yCAfHMqK9l9zkzw/nMDA/C5g3V+ZlpbIFZu4eyen3/0AjPbt4RqxRWoAA6sZoaagtbRMws4zzYOASdGRsDRkdgeEeeOdCTGgNSc6AT9GM9a1qmwXIM4c6SNzthAWHGtEzlmDMOGa+xJI1wAK9xrG9whNHJqdLCTvsF6oEWiZn2tuZwetO2PwdDfd5w1Go0f2koc6Cf27KDweHR2AUDMs5bvT6Ez8zmDeBGqnPUBngrj4fQA/1Udx/OxWsBMVAAnVjNDXU5FhHL8qM4wzDeOASdTQ21GQLIHEOYs6RlGluwKEE/1rOmZSpLD/TE8zUy6tgxlKxVuMFPyzR5xELoQ96zL4qVpDn2MD49I7VK/Zgwe6DrszU4JG9dApHppL2thac39TE8MlragVK9r9UaDMxf6vXAj2bouCjAuhim45GJlrS1sL6zF+dc/p1zSQWP1dgDDX4qq7VQ4nlMNQAuidlnJlEBtJl90sxuNbMOM3NmtqHA5+9kZv9hZveY2TNmtsPM/m5mV5nZnmUqdlk0NWbogXYu+xxoyDiMNw5BZ3NDhh7oXAHRWFqmLI0BCepRzZqWqQJzoJOY9gv8IcmT58yX43xBxpXek9jgAFnm2Yd1vmrroG5Ghu+X5K1LIDKdtLc2MzTieGZzielkUr2v1RoMtO4NIwOw9ZmSDqMUVvHX3tZM7+AIL24bKO1AY41OVTgHGrzPTP9W6O0q6TCpBd0Wx2zURqICaOBLwJuBdcDmIp5/KHAp4IBvA2cBdwEnA4+a2ctDKmfZpXqgJ7SQDfeDG80TQMcv6GxqzNUDna03PVNjQCpHb3J+rKd6/jMOSa6bGd7KjTnOV9KCm6aGXD3Q5R6SnNwe6Iy5xsM6X5Dl+yX6BjqRapbq6Sx5GHfXGu/7YtZuIZQqgVI97yXO6ezo6mH2jDrmNzeEUCgph/bWkD4z3WuguQ1mzi29UEk0lv6ttGHcHZ297DK7MXa/7ZMWQC9xzs13zh0NPFfE858E9nHO/ZNz7hLn3DXOuY8CbwfmAJ8Ps7Dl1NxYx6jz0lCNyRt0Tu2FTAVuLRFemC2Z5kDnmwOc68d6ggKc+toaGupqMgeEYfUOgregQ5bzFeX/fTFaMq3CHfYc6MbMq0r3DgwnLhhsztoDHeIcaMj8/TK2SGFyPpMi08mSsFJZpdLxxCiNTEWlet5LnAftrcDdEqt0PDJRaKmsutdV75QH8OZAQ8mL73V09Yw1asRJogJo51xJGbmdcxucc+sybP8lsAk4oJTjV9L44lNpP4oDBZ3xWyU3d49itveSuTGgrsZoSFCKIcgxJDnMALqheUpapiTmNAZ/DnQlhrynH9fn9UAnLIAem2df5kaahpYMQ95HEpf2S2Q6mdvUwLzmhtIXRarWFFYpzW3QOCeU3jQN3463XWfPYGZ9bemNTl1rxoPIajRnT6htLOkz45yL7WdGv2oAM5sDzAJejLosQTVl+lGc+rHfWHgPdLRzoGsZHB5laCRTb/qszE9qzPBjfWCEpobaxLXsNjXU0ZNpFe6wewdhQlqmsRXYExcQZuqBLtcQ7smp0oYT2OCQobEt7LRfkGWV/+HErfIuMt20tzazrpRgYGgHbHmmeuc/g9fz3rq0pN603oFhXtjWH7vFkGSimhpjcWuJK3Hv2Ax9XdXd6FRT641aKWHaw6beQbbuGIrlonsKoD3nA/XA/0RdkKBSP0onDMvM22ubYdizH7jNrI9yDnSmxoDCh3D3DQ4nLhgEbzRBxoAw7OAmdVxfHOa/F6OpIUNapnKk/YKMn5ekXWMZe6DDHvIOWb9fkjbHXmS68VJZlRBAb+oAXPUuhpSSWlW4SOv9IcFKYRV/JX9mUkFjNTc6gb96ffGNTqlh9OqBjiEzezdwHnA3cF2Wfc4ws9Vmtrqzs7Oi5ctmbGXdgQJ+FGfpgW5qqKWmJrpe27FFjkptDBgcSVwwCDmGsJc5gB5bgT1pAWFjhrRMYQ/hzpCWaTztV7KusVR5J073CPl8pY6VsVErWedLZLppb2uhq2eAbf1DxR0g1eta7cFA61LYtnHK91xQSmGVHO1tLTy7uY+B4SLTlqWCxmrugQbvO2PzBhgp7rtnLIWV5kDHi5kdB9wEPAS812VJ+uacu8o5t8w5t6ytra2iZcymuZgfxak50GlvsycGPUTjjQGFvJcMi2INJLgHuuxzoKemZUpyDzQUOPqiUBnSMo2l/UpYj2pzxhEe5QigM8+Bjvr7RaTapXo81xfbozYWDKgHGii6F3p9Vy9msNf8phALJeWwpK2ZUQdPdfcVd4CuNVBTBzvtFW7Bkmb+3jA67AXRRejo7KWhroY9dpoZbrlCULUBtJm9FfgR8BhwjHNuW8RFKsj4HOi0IGIgwLBnHAyNfyHEoYdovDEg/Qf+du8+Vxqrge0TNvUNJK93ELL1QG8Pf3gtjF8jjDdYJC8gzHK9hJn2C/xrbOr5StqK0qnPRE/GBQfDHsI9eV2C6L9fRKrdWCqrYud0dq2F2XuE2+CWRKke+CLnQXd09rJgp5nMiHDKnARTciqr7jWw02KorQ+xVAlU4mdmXWcvi+Y3URvhKNlsqjKANrN/Am7HS2t1lHOumJzSkcocROQbwp1hHmwceqCz9SjW1ENdllyJWXJaJy0YhByLYpV7CPdg9CuwF2Psepk8YiHsH3eTrrGkNjg01tVQW2OTpkiEPGc8dawMo0Ki/n4RqXYL53k/QIue09m9Rr3PAPPaASu6B7qjq4fFMRyKKlMtavVGCRS9+F7XWn1mwFtEDIqeBx3XFFYwjQNoM9vNzPY1s6ZJ248B7gD+AbzFObcpivKVKmMPdJBhzzChlygOq+SmGgP6BiYNMc31476h2VtFOC0tU9/gyNhw8CTJmpapLEO4JwaEyUz7lWVIcugBdMukz4rf4JCwUQ5mRlND7aTGtjIN4R7uh5Hx76S+wZHIv19Eql1DXQ177jSzuADaOS8YqPb5zwD1M2HunkX1pjnnWN/ZqwXEEmLWjHp2ntVY3GdmdMRbeK+aU1ilzNwJmlqL+swMjYzydHdfLBcQA0hUtGFmpwCpCQVtQIOZne///ZRz7oa03S8GlgNHAqv85y8D7gQMb8GwYyenPHLO3Viu8odprAd6yrxG84ayZpJxJeYR5syMdohJ1h7oXMNL0xsD6uZ5zx+IvjGgGFN6oEeGvUCkMUsKr2JkSMvUN5jQtF9j134B10sxsvVAJ7CRprmhLktjWxmmCQz1Qu0cwF+kMIHnS2S6aW9rGVvEqiC9nTCwVYshpczfu6jetBe3DdA7OMKSmAYDMlV7W5GprLY8DSMD+syktBa3ev0zm/oYHnWxXXQvab9sTgfeNGnbF/z7+4AbyO0AYIb/729k2ScRAfSMulrMmLj4VKoXriZLj2LGlZiH2X3OjMz7V8hYD/TkNDv5eqDBey9N88aen8ThoulpmWpqbDxXc7nTWCV10bVUD/Tk6QtlHsKd1B5o8BodegtJE1eM9GtshhdA9w6oB1okDtpbm3lgXdd4PRPU2Arc6k0DvGDg4T96PfMFND53aAXu/9/em8dJUtf3/893nzPds+fMwgLLHrO7AiIeEUGNGoxHxDsab2TB6xujEBGPH4lR1KhRgxoxxiMoQSBRFCX6VUEJEI2Jiso3iqCzOwvLzRx7THfP9FWf3x+fqp7umT6qeqq6q3o+z8djHr1b3V31qas/9XqfkWN80wj/938fQCnlzdHgiEUTtaEZ3QW/+57nrzne/7B6oCMVu6mUOkMpJS3+zljy2XPs5TfXLbu8zfdFKRUZV1wsJmSSTR6K24rOZiHc/RedXeW0LhGESimdAx2xfF5o0pYpiPDaJm2ZCpFt+9XKAx1ECPfyvtlRNTosM7ZBoGkCi22/one8DIZBY3zTCAtli/sPz3v7oqnA3cjoLv0MNfeAp6/tC3E/W0NzxseyHJ4vM5svdf5wPY7RyXigNWO7oTAN897KTTne/zC2sIKICWhDI5l0k7BMD6ITCIXoXOwD7SUHuvFhfaFsoRSRfFhfFsIeRHhtk7ZM+txH73jV2jL1pIhYnbGpGGEPdGqpsS3IKAd9zGptvyJo1DIYBg1HuHnO6ZyegHga1h0fwKgiiGNI8JjTOTmVI5OKs3ltfyP+DO7ZWate7/GemZnQUVjZsQBGFUFq7d/2efra5FSe0WyKdZlwVjIPVECLyLCInCwiT7Jfw9fIK8KMLC0+1YWALhSrfRdRiXiMdCK2xKOY65AD3fiw7nx3JIIP6yPpJSHJQYTXwjKPaqFYjVxFaWiV/5/zN2ccWnqgRyJodBhZZmzLQTLjb9uvdKNRqxDhnPFBx8zNq49FAe0xp3Nmr66k6+dvRZRxwnI95kFPTuXZMZaNXM2R1UzX98z0hBaN5lxrumxl5dwzYSWQJxsReRLwfnS+cv02yiJyM/BepdTPgtj2aiKztPhUKQepNiLCERj2A26pYlGqWqHIUcymE8urcKfbCeilD+uOdzB6D+vL+vQG4R101rdEEB7T5/z3bkjFYySWtWUKvo3VYg708musWCwyOzvL3Nwc1Wp12fv95nWPSlGuJrjjjjv0grEz4RlngPN/P6isgz/5GhzJwB13UKlafPGFx7Bx6MjidlcRqVSKsbEx1q1b1++h1AhqbhaRi4A/AB4P7EAX9dzu4fsbgLOB5wEnAWPAAXRtkw8qpe7xOiZDI5tG0qxJJ7x706Yn4OiTgxlUFFlzrDY+TnsrijQ5neOxx28IaFCGVqxkblYK/vlFxzASP8Qdd3i4b066ABJpf+fXKKMU/Mk1oNZ4OiZ//tghhpIx358f/JqbfVcbIvIK4AogCdwN/C9wBFgLPBp4NvB0EXm1Uuobfm9/NZFNNfFAZ0Zbf2FpiGUbQdBrdIipl3D0RgG9mJ/af2OAV2ohyaUAc6ChaVumMJx7r7RsyxTE8arM65YUsTj5YoVkXEglGgN3isUiBw4cYMOGDWzfvp1kMhk6L8O9BwvMLVQ46Zi1esHBu/QxO/ok/zZSXoApCzZsh+ENzJcqqIdzbBvN9r3Sf69RSjE/P8+9995LOp1maKj/hqqA5+YPA7PAL4H1XQzvdOAS4EbgM8A0uujn/wFeLiJPVkr9tov1GmxERFcV9hLCXS3r34qTXxzUsKJHLKY98h6qCi+Uq9x7cJ6XPG5LgAMzLMWPuTnx4BypRIztbj2hVhUeXIA1x8CazV2MekB5CEgO2b3UO1O1LMr3H2HzuiGOWuPf/Onn3Ozr07OIHA18AX2ozlVK3djkM89Et5C6TER+pJR62M8xrCYy6TgH64sblPKwfmvrLySGQGKhFJ26yNFSQeQ+hNvxRkZREC4rilUL4Q6+LVMYzn03ZOtDkp22X0EcL7CrSq9taXCYnZ1lw4YNjI2FN98pJoJlqcUFygLx+dyLbViw9H3sbC4eLltCTxARMpkMY2NjTE1Ncfzx/c0f7cHcvFMpNWmv5zeA15vxTuAEpVRDkpyI/F/gB8AHgD/zuE7DEsY3jfDTyRn3Xzh4F6iqKYa0lNHdcP8vXX/87pkCSpkCYr3Gj7k5nYyxULbcf6FS1K+J/htNQ0UivXhsXFCs6GOeTvj7nOLn3Ox3DvTrgGHgzGYTNIBS6ofAc4EscI7P219VZFOJxbBf6Cw6RRryOp2q12EQnbrNjr0vluU5nztXjG7BouyyHOjehHBH1QMNS4piBdH2q359dfdLs3SHubk51q5d6++2fSYmgqUUStmq1rIWBa9vG7HXp/TEV7W3FQuZN76XrFmzhoWFhX4PAwKemx3x3C1KqbuWiue6Mc2ivdGGFTI+luX+wwuN6S/tqLWwMgK6gbHdutevS0Hg5NDuNC2seoofc3MqEaNUtRbnzk5U7N/7RHpF2x04EkP6fnF5HItlR0AHU6rLj7nZ75H9MfB9pdTt7T6klPo18D3gWT5vf1Whc6DrvbZznUVEKgvFOWCxCFMYRKcOR7cn9XIBUC4FtO2BDpExwCvLPNDFoIqILVaVrrX9CkH+ezdk03XXS2DHq7HtW75UIdOkIFa1WiWZDHeIciwGirq5S1Vb94vvFmkU0I7H21PP2QEjkUhQqbgUK8ESyblZRNYBa9Cec8MKcXoQ73ebB21aWDVndLf+nZt1Zzdy8s7DXBBpEPFjbk4n4iilKFVceqEdo0rcCOgGEmlAQdVdS7BixUJYnjLn23B8mJv9Htkjgf9y+dn/sj9v6JIGEaGUuzzQOi9kmERngzHAjQc2FofEcJ24sY0BIdgXrzhjLiwrIuZ3SPJiDvR8uarbfkW0QnImFW/isQ8qhNu+xorVlgaHsOU8L8XxAjteYR3CHYSAFi3OWQzhXsX6OUzXRVTn5vegc7b/pdmbIvImEblVRG6dmprq7cgiiOdWVtMTkN0Ew+uDG1QUGfPWymrfVI7Na4dMR4I+sNLfYMcDWvQioOMp/w3UUccJaXcZtVGsVEklYoFFsPkxN/t9htfj3lL8EGBKEq4AR3QqZVt1rIonAR0m0ZlNJ7znANcbA5wc6BB4072SWdqWqZTT1su4z17N+nPvhLxH1QOdana9BBvCXShVQmFs6gZnErIaBHQA515iOjy8blurOYQ7RKwnYnOziPwZcCFwPTo3exlKqS8opU5VSp26adOmno4vijgeUPce6L0m/7kZjkfeZSur/dN5k/8cUbwL6AUTvt0M55hU3IVNFytWYOHbfuH36IYBd/55KAPmKlsB2XSCiqUoVS33Xri6HOgwic7mHkUPxoBieIwBXlnWlimIitLQ3OAQweMF2nPek6rldevPF6uhSHfoBqeQl+U8A1hV/z3QoCNDTAh3GInU3CwizwWuAn4BvFy5TkA0tGMoGee49cPu+9pOTyx6Ww2LpNfoKssuWlkppULfz9bQmoT9fFasuGiBpRRUi6aAWDNiCW20d+GBdkLmV5uABp1qZ+gBTu5soVh174Wry4MNk+hs9EC7FdCNxgARGEqG+4ZrxrK2TJ2KwXVLakRb/6qVxXMfUUGYTcUX0xeCLLoGDZXeo2pwcERsgwc6iBAzidWFcCsEwcjn0BCJuVlEngNcC9wOPFspdaTPQxooxjdl3fWCnj8IhWnjgW7F6C5XHujZfInD8+Va/rkheqQScXce6GpZz63GA70cEbsSd2cPdLlqYSlFKuTP80E8DV4mIp/v07ZXFY7wzZcqbHBbiTikYc+ZVJyFskXVUsRde9OzS/JTE2HKOfREQ1umUi44DzRAOV/z3kZVEGZS9R7oANt+QUPKQ1QNDg0h3MoCVHAh3I4HWmmNHtV7cgAJ/dwsIn8CfBPd1uqZSqmD/RrLoDI+luUbv7wPpVT7e9PxrpoK3M0Z2w2/uVZ7HdscR8dYYUK4o0s6EWNuwUXBqappYdWWxFCtiHE7gmph5Td+T5T/SUSs3IOAI3wLpWpdKx/3ecOOFzKT7P9FWiukVaqwpgtvuvYO9n8/uqWhLVOQIdz2+vMlnV8dVUGYtdueKaWQwD3Qi0X3ompwWC6gCSaEuy4Humopk/8cHkIzN4vIMcA64IBSqlC3/NnAt4DfA89QSs32Z4SDzfimEXLFClNzRY5a2+ZBv1aB2wjopozuhoVDUJiBbOs+w7UWVmPGAx1V0skYBwsWVcsi3i5yy/GumgrczUmkYX5Wp5DFWj97LgroVeSBVkqd4ef6DO1xKjrmixWouBWdjWHPQ8kYiXj/L9JaL+RSlTVecqBzui5OvlRlJMIVLkfqK6oHJaDTa2rrLxT1ZB7VqqDZdAKlYKFsMRxk1XKAUg7LUhTK1cgeL2fOtywWE6G7FNBzc3OsWbOm+ZsSB0un2lrKCOiwEPTcLCKvBbbZ/90EpETkPfb/71ZKfaXu4x8B9gBPB262v38qcB0g6IJhZy71jiqlrgxq/KsJxxO6byrfXkBPT+i8xQ3bWn9mNeN45qcnOgjoPKlEjOM2DPdoYAa/cTyhxYpFJtVOQBf1vOp3AViXtJ2bw0CtkFgRUpmWHyuWLeIxIRHy+in9V06Grln02lYX80DTboqI5aDWBzgcgsDxhOaLlbqc1g4/BOk1DX2gwxCK3i2ZVKKxiFogOdCLOb1hqsDeDdn63tlBeaATKd2OopRnoaLbfkW1anm9B/qu/ft56RvfwdpjdrBu3Tpe9KIXsX//frZv384ZZ5zR8D0R4ZxzzuHGG2/kKU95CiMjI7zgBS+ovf+tb32LP/zDP2RkZISRkRH+8Lkv57rv/cDeFji2OWc9S7n88ssREW6++ebasosvvhgR4fbbb+f8889n8+bNDA8Pc/rpp3PjjTf6elwMvvF64IP231Hoqt/O/1/v4vuPAobQxcs+CXylyZ/BB5xc3MnpDoXEZiZgw46+iYHQ47IS976pPNtHM8RDLgYMralV4i53yIOuLGjvc5eG47vuuouXvvSlrF271v+5+Q//kOuuu27ZNns6N9daWbXPgy5WqqQT8dCnf0Xz6dkALBYRyxcrUPUQwq2qUClSKFZDIzozDcYALyHcTn5qdMNrQRsQHjhs/6gEnQNdylMo6S41UQ17r10vTgG9INp+Qe0aq6U7RNQDHbcnoqnpaZ71x8/goYce4s/f8DpOOuWx/OhHP+LpT386+XzzwkK33nor3/jGN3jjG9/Inj17ass/+9nP8pa3vIUTTzyR97znPYgIl3/pi7z4nPP5fDHNM1786hV5oM8++2zi8Tjvfve7mZub4/Of/zzPec5z+N73vsczn/nMrtdr8B8vHm6l1DnAOUuWXQ5c7uOQDC04Zu0QQ8lY517Q03sXRaJhOeu3agNrh17Qk9M5HnFUiL2Cho6kEjEE6VxIrFKEZHfPbjMzMzz1qU/Vc/Of/zknnXSSv3Pz5Zfz4he/mM9//vO86U1v6mqMDl3PzU5oe7V9Je5ixYpERGn4R2hoSX3YM1UPIdxg58GGyAOdWuKBlnjnSoYNBdGqjGZTQQ8zMBqLYvUgB7pWhTsc598rtYgFxwMdxPGCWsqDU+Atqh5oR8de+slLuPfe+7jy0r/lNW88H9JrePOb38y73vUuPv7xjzf97u23384PfvCDhonx4MGDvOtd72Lnzp389Kc/Ze3atQC8+dUv4nFPfRYXXnghN59xJqMbN3Y95kQiwY9+9CNSKX1fv+51r+PEE0/kvPPO44477uh6vQbDaiYWE3aMjbRvZWVVYXYSdhtDVUticdg4rntlt6BctTgwU+A5J2/u4cAMfhMTIZXo0MrKsqBaguHu5ryPfvSj3HvvvVx55ZW85jWvAfB3bn7zm3nc4x7HhRdeyMtf/nLWr1/f1ThhBXNzLKaNTuXWArpqKcpVi1TI85/BhHBHGudhPlf0EMZaH8ZbrIbGA+l49hYF0UjnMJi6tky5YiWy3kGwi2IFnQNdl9NbKFWISfiLNLQiU1d0LrCQd6gVqqt5oENicPKKiBAX4Ybvf5djNm/mVS9+TkMO9Dve8Y6W333MYx6zzKr8gx/8gHw+z/nnn1+boAHWrlvHeee+glwux4//8+YVeaAvuOCC2gQNsGXLFl7zmtdw5513GgFtMKyAjq2sDt+jvUSmgFh7Rne1FdD3zBaoWMq0sBoA0p1aWdUqcHdXQOzb3/42xxxzDK961asalvs2N69dy3nnnUcul+OHP/xhV2N0WNHcnEhDtXUId8k2UkTh2TT8IzS0JJOuExFF25qcbJ2YDyzJg62ExgO56IGuQmnOnYCs25dCsRpZ7yDUeaAtS1dUDzIHupgjV6xEvO2XYzzycL10QyoLxVytR3lUq5aD9jzdc/dd7Nq5g1gs1tDG6qijjmppkX7EIx6xbNn+/fsBOPnkk5duhEedoMM+D9y1f0Wtpk866aRlyx75yEcCMDk52f2KDYZVzs6xLPfMFlp71EwLK3eM7YbZ/VBt3uLICZM3LayiTyoRo1SxUKpFM4PKylpY7d+/n127dum5uQ7f5mbgUY96FLDy+XNFc3NiSB+rFscxKi2swEcBLSJbRcSUGewhw8l60ZnT4rlNaXigIYS7EEIPdMFLSG5DW6aI50Cn7LZMbvO/u6E+BzpE+e/dsJgDHXQIt5MDXWnYbhSpeYOdictlFe5MZrlRruVDRN06laKjB7pSad1bs5lxp+V2DS0xc7NhKeObRrAUHJgpNP+AaWHljtHdYJXh0N1N33YKtZkWVtEnnYhhKR1e3BSnMFaXHuhu8DQ3eySwuTmR1q00rXLTt6PSwgr89UDvB/7U+Y+I/IeIPMPH9RuWEI8Jw8l4l6IzF9Ic6KqHfdGTkirlKJSqkfYOZpy2TAW7yXynaurdkGw0OITl3HeDM/Z8ycP10g21HGgnZzy611hM4Ljjt7J3cj+WZVHvHn744Yc5dOiQ63Xt3LkT0DlYDUic305oC/RxW7fVBPTGjRuZnV3e1redtfq3v/3tsmVOeNj4+LjrsRrM3GxopL6VVVOmJ2BoXdv2TAYaW1k1YXIqz2g2xbqMqWQeddLJxVZWTakUIZbs7MRqwfbt29m7d6+em+vwbW5mcU6tnz97PjfXKnE3z4MuVixS8RixCFSt91NAl4H6X4kzgKN9XL+hCdl03JuIaKjEHB4vZFc5rfa+lApzVC0Vae+gY0CYzx/RC4II4a61ZcqF6tx3gzP23uVAO0XEonuNxUT442efyQMPPsS/fuv7Dd7iv//7v/e0rmc961lks1kuvfRS5ubmasvncnku/dK/MTIywhOfekZNoz/iEY/gv//7vykUFj1eBw8e5Mtf/nLLbXzyk5+kVCrV/n/vvfdy9dVXc8IJJzQNITO0xMzNhgZ2jOm5s2Urq5kJ7V2NaIpPz+jQympyKm/CtweEWiurlgJ6YUXe5xe84AU88MAD/Ou//mvDct/m5rk5Lr30UkZGRnjWs55VW97zudmpxN2ilVWxXI1EATHwtwr3fuCFIvItpdRhe5mJtwsY3T+4Asqb6NRhqYnQCIJUIkYyLrYxIAcjLqpW2vtStL22Uc+BBijWBHTwIcnRNjjYHmgnfSHg4+V4oMOS8tANsZjwhrdewHe/+VXOffvF/GziYU488UR+/OMf81//9V+MjY25zolfv349H/vYx3jLW97C6aefXusjefmXv8Teu+7hs5f+A2vWrqu1z3rrW9/KWWedxR//8R/z2te+lkOHDvHFL36Rbdu28eCDDzbdRqVS4alPfSqvetWrmJub43Of+xzz8/N8+tOf9uNwrCbM3GxoYM1QkqPWpFu3spreC+N/1NtBRZHMRsiMtvZAT+d4xonGVjUIJGK6EGdTAa2U9qgOb+h6/e9+97u5+uqrOffcc/nZz37m/9x8+eXs3buXz3/+86xbt672+Z7PzfGkNt438UArpShWLDZGpKOOn0/QlwKfAV5sn2gFXCkiV7b5jlJKRfcpPgRkUrYHWrkUEbbIri7MUaysCZWIqhkDPHrTi4UjQCLyVbjB2Rd6EpI8NhKNH6lmDCVjiHjMme8G+3gtFhGL7jUWE1i/YZQff+8bXHjRe/nSl76EiPD0pz+dm266iSc84QkMD7tPlf2Lv/gLjjnmGD7+8Y/z/ve/H4DHPPoUvnnZJTzvFWdzx8HFHOjXvOY13H///XzmM5/h7W9/O+Pj47z3ve8lFovx05/+tOn6r7jiCj73uc/xd3/3dxw6dIhHP/rRXH755Q3Wc4MrzNxsWMb4piz7m1XiLuZg7n7TA9oto7ubVuI+PF9mOlcyHugBQURIJ2MUy00K71kVUNUVeaDHxsb48Y9/zIUXXhjM3PyYx/DNb36TF7/4xQ2f7fncLKK90E080BVLYSm1+jzQSqnPishvgWcBxwB7gB8DplxqgGTTCS0iVB6G1nb+gi00ygu21zZEYbzZlNdwdG0MKM/PARtC403vBseQofeF4EOSSxW2pjtUbA8xIkI2lfCWM98NqSyU8xQWypFu+wVazFpKsWPrFq798qfh6MUqnTMzM8zMzLB169aG73QqDPKnf/qn/Omf/unigvI8TN1JyaoC8YYq3O985zt55zvfuWwdjoV8KU4Y2qWXXtpx3wytMXOzoRk7xkb4/m8eWP6GIwZNBW53jO2C39+wbLFjnHDC5Q3RJ5WoazdazworcDvs2LGDa6+9tmGZb3NzG3o+NyfSUF5ewNAxTkTlOctXxaGUuhm4GUBEzgE+r5S62s9tGBrJphMcmS8DeVh7TOcv2G2uKoVc7fthoWYM8JgDXRPQITIGeMU5D6WagA7YA12sMhJhgwNo4898sah/iNNrgtmIfR2WFnJk09Ft+wW66KClFPOFPMPJxgnqox/9KMDKvbt2XrVSFhBfUR9og3+YudmwlJ2bshwslDmYL7GhPmTSEdCmArc7RndD/kpYOKwLr9lMTulnLNMDenBIJ2IcKlhULUW8vsiVTxW45+fnl3mafZubw0RiCBYO6batdVb2KLWwAp8F9BJ2AFMBrt+A9to+eHgeyEPKhYiIxSA1QsX2QIcppzOTTpBfqOicVjdVqGvh6OEzBnjFEf/VwAV0drHtV4QNDqDzoMtF24oZ5PECqvO5SEc4gA7htiw48xXnsm3LMZz6lGdQrVa58cYb+c53vsOTn/zkZeFdnrF7SyurCiSNgA4nZm421EKLJ6dzPD67cfGN6QlAYKOpdO+KWiXuvbDl8bXFk1N54jFh68boRnoZGnE8o6VKleH654FKERBdpHUFnHnmmWzbto1TTz3V/7k5TDiGhmoRYosGg2LFIiZCMh6N54bAngiVUncDiMha4JmA82s8CfxAKTXX6rsG92ScMFbxUEgplaVatEVniERBNhWnUiroHnEecqCrITQGeMU5D9WinZMWWAj3CKowo9t+hejcd0MmHcfqhcceqBZzZILycveImAgKxfOf/XS+cs11fOv7NzE/P8+WLVu48MILed/73kc8vsJ7yLEm2604otCKYrVh5mYDwLjdm3jfVJ7Hb6sT0DMTsH4rJFcWjrpqcDz1MxONAno6x9aNmcjkcxo643hGixWL4Xqt7FTgXqHB+AUveAFXXHEF3/rWt/yfm8NEfSurZKOATidikYn0C/QJWkTeAFwCjADOEVFATkTerpS6LMjtrwayabsPtHjIA01lUbaADpMXMpNKkMt5EJDxJMTTtX2JsiB0xL+zL0F6VFUpr9t+hejcd0MmlcAqOccrwJxx9HnJprqvsBkGHDF74Zv38I7z3hSQh0kAQSmdy9SNIfniiy/m4osv9nVUhkbM3GzYsmGYZFyWV+KenjD5z17YsF1H3iypxD05lWfc5D8PFC1bWVWKvhicLrzwQi688MIVrycofJubE81bWRUrVTLJ6DyXBmYaE5EXAl9Ah4q9HV3A5FnABcDDwBdE5AVBbX+1kEklKBaLOhTCrYhIZVG2pzNMojObjqNKHgVkKotV0vsSZUHohJ+rYg5iiRWHArUkldVVVgnXue+GbCqu8+Uh8BBuVcpFOsIBFitio6yGHtC+IqLXrazGbRpCg5mbDQCJeIxto9lari6g2/HM7DP5z15IpLSIrusFbVmK/dOmB/SgEYsJqXisUUArC6qlFRcQW1XE4hBLNrSyspSiXLFIRST/GYL1QL8LuAM4XSlV9wvNjSLyZeB/gHcD3w5wDANPNhUnUS1AEg+icwRqRcTCc7FmUgnEs4AeqX0nyoIwnYgRE/S+pLIrDgVqiV2FG6Id8g46Z57APfbaKCWlHNk10b2+QOdAAzq8WgI89xIDq2pv0wjoEGLmZgMA42NZJutbWR25H8p5GN3Zv0FFkdFdOgfa5r5D8xQrlikgNoCkEktaWVVKgFpxAbFVR6KxlVWpYqGAdDI6KQ9BjvQxwOVLJmgA7Byrf7E/Y1gBmXSCLLYVx4PXNla2vbYhEp3ZVLw2rm72ZThCoR9LcdoySdllBfJuSY0Qq8wTw4p00TXQ14uUg84Z19dhrFyIvMGhlo+sqsF5oPWGEGXpYG6jn8OImZsNgK4QffdMnkrV9qiZFlbdMbYbZvfVaj84RgkTwj14pJNxLfacNlJVf1pYrToSQ9oDbR/HxQrcRkA7tHt8at/EzOCKbCpORmwrjhfRWSnY3w+PiMqkE8QrTlVl9+HojriJesGiTDqu9z9QAa2vkWGKkReEmVSCeKU3Idyxcj5U90o3xEWcDOWG1hG+I3FQuppmVIqBrELM3GxgfFOWclVx78F5vcAJQzYh3N4Y3aW9aUfuBUwLq0EmnYhRVYqKZf9M+tTCatWRSGtjvqX7ahcr0eoBDcEK6P8H7BGRZU+2IjICnGN/xrACtAfaEdBuRecICVt4DIdIRGVTcTJ4NwbEK4VQedK7JZuyDQhBiUGorTvDQvQ90I7BAQIP4U5UCpHOsQcdwh3D9jQF6YGWGIIVeYPWAGPmZgOge0GDrhgN6DDkZBbWHtvHUUWQWisrbYCYnMqzZijB2EhAtUwMfaNWSKxsz6WVoq5bE4v281TPqa/EjT6eyXiMeJDGfZ8JcqR/D5wE/FJE3iIiT7f/3gr8AjgR+HiA218VZFNxsl14oBOVeVLxWKhaLDQaA9znQCerhVDlcndLJh0nGbiA1oIwKwsD4YEeVh6NR16xz0WiWoi8BzomQsxxLgacAy22B9oQSszcbAAWW1nVKnHPTOj8Z3PveqPWykqHwE9O5xjfNGIicAaQxVZWdh6008LK4I0llbiLFStUesQNQfaB/pY9IX8UuJTFsDAB8sBblVLXBbX91UImlejKa5u0wudR0+HoTj63+xDuZLVAJhNtcQP6XCatAqS2BLcR+xrJUoy8IMym4uS9XvteSaRREmeYBWIhu1+8EotJjzzQcS2gozUXrhrM3Gxw2JBNsSGTZJ8joKcnYMup/R1UFBk5CtJrGzzQTxof7fOgDEGQjAsxkcVK3JUiDK3r76CiSDwFyKIHulJl3XCyv2PySKBP0Eqpz4rI1egWGTvQE/Q+4AdKqcNBbnu1kE3H64qIuRedCVVhXSpcqW6ZVDce6Cxpa163NIo42VScVHW+ZyHcYTOgeCWTTpCVBVQsgQTV9ksElcqSLS8Qi7jBodEDHXARMRPCHWrM3GxwGN80onN2ywtw6AA85lX9HlL0ENF50DMTFEoVHji8YFpYDSgioitxVyydv2tVjAe6G0TsStxFKlWLqqVq3v2oELiPQCl1SCl1jVLqY0qpjyqlvm4maP/IphNdFBHTQnssVQ5oVN0xYu+LQiCZcfclR0BHPJ8X9LlMq4AFdHqN3pYsMBLxYzaSTpChiJUMsO0XYCVHyFCM/DXWkAMdCziEG0V8hefk5ptvRkS4/PLL/RmXoQEzNxugrpXV7CSgTAXubhnbDdN7a+HwpoDY4JJOxHQIt9PHOL66KnD7NjfbrayiWIEbeiCgDcGSrffapt0XEQPYkAyXgM6k42RZoJrIuBdE6TUMUWQQanVknZzeHlThzsoCQxGz9i0lk3Kul2At/dVEhqwsRD7KQURISA880BInhoUbB/Rtt93GxRdfzF133RXceAwGQ0t2bMoyNVdk/oE79YLRXf0dUFQZ3Q1H7uXAg1MA7DAtrAaWdCJOuWJhlQe3AndP5ubEEFRLtb7aUeoBDQGHcBuCJ5Ouq1yddB/2DLAxWQpoVN2RtfO5K4mM+wvT3pf1iWqHD4afTCrGMAs9CeFeHy9FPsTWib6oxDMEaT+pJDJkWCAecQ80QLwnAjqGAHGXAvr9738/Z5xxBtu3b29472lPexrz8/Mkk9HKizIYooRTSOzQvb9lGIyA7pYxfdwO3nMnImIE9ACTTupkKKu8oL2QiQHw4CyhJ3NzIg0oquUFHRofj5aAjtRoReQiEblGRCZFRInIXV2u57ki8hMRyYvIrL3OHT4PtydkknGyUqQSS0Pc5QO+7eFcFw+ZBzql96Ucdxm+DXUCuhjQqHrHukSVGArVgyrc6xPhOvfd4Higy/HhQLdTjg8PhAca6gV0gPtiVw+Li7XC1cQYGhoiHo/+cR90zNwcXZxWVuWHfg9rjnUfyWZoxK7EXX74dxy7bpihpPndGlScUGNVXoB4OliDdAjxbW62W1lZ5QXS8VjkqtZH7ax/GPhjdLGTg92sQEReAnwHGAbeiW7X8TTgv0Qkcs0PE/EYa2JFSjEPIqLmhQyX6MymtQfa2744xoBwedO7YZ1tBKh4MSB4xT7360J27rshm0qQkSKlgAV0KaY90IPQazy+wircc3NzvOc97+H0009nbGyMdDrNrl27+P/+v/+PQkH35Fb2umNYfPGLX+T0009nZGSEkZERTjnlFN773vcCcPHFF3PuuecC8PSnPx0RQUQ455xzgOV5VnfccQciwtvf/vamY3vVq15FKpViamqqtuyBBx7gzW9+M1u3biWVSnHsscfypje9iYcffrir/Te0xMzNEWXraIaYQPLgvpoX1dAFozsBIXlwnykgNuA4AlqqxdCEb7uZmx2UUuGYm89/O1uf8FyO33I8T33sIyI3N0ftiXCnUmoSQER+A3gylYpIEt224x7gqUqpnL38e+j+lxcDb/JzwL1gbbxIMTaMa9lli6g1IROdjkex6EFAl+MZkuhjEHXWxvT5KMaGCSxoNZ6iQpy1ITv33eDkzBfl6EC3U4wNkaFIIuJVy8H2QCvotsfUfffdxz//8z/z0pe+lFe/+tUkEgluueUWPvaxj/GrX/2K66+/HoUO4X7L/3kTX7/ma5x++un89V//NevXr+fOO+/k61//Oh/4wAd4yUtewgMPPMAXvvAF/uqv/oqTTjoJgJ07dzbd9kknncQTnvAErr76aj7+8Y83WL+PHDnCddddx5lnnsmmTZsAOHDgAE960pMolUq8/vWvZ+fOnezdu5d/+qd/4qabbuLWW29l3TrTfsQnzNwcUdKJOMdvGGZd4S4YPb3fw4kuyWHUui2sO3QXO00BsYEmHouRjAkxqwSJcMwhbuZmh9e+9rVcddVVoZibX/fKF3LM8eNM3D/LV770xUjNzZES0M4EvQL+CDgWeK8zQdvrvU1EbgZeISJvUUpFKr51rSywIB6qANpe27WxhYBG1B3pRIwRWWBB3N84xdgQSWCNRF9Ar4nNA7AgQ96ePr0gwoIMh+7cd4MuoDfPvATrgV5gmLUy77mN1fu/fTu/vf9IQKPqjp3rhL992hCxLj3Q4+Pj3HPPPQ25T295y1v4m7/5G/72b/+Wn/3sZzz+lBP42r/fwNev+RpnnXUW//Iv/0KsTrBblvaCP/rRj+ZJT3oSX/jCF3jWs57FGWec0XH7e/bs4a1vfSvXX389z33uc2vLr7nmGubn59mzZ09t2XnnnUe5XOZXv/oVW7Ys9lZ/2ctexhOf+EQ++clPcvHFF3d1HAyNmLk52jxmY5nMvTlTgXuFlNbvZOvBu5k1HuhQ48fcXCxXSKsFSByB2IEVj+mRx67lfS84uevvu5mbTzvtNL72ta9x1VVXhWZuPjadp1CyKK3fyblnvSpSc3OgIdwiEheRs0XkShH5gYg8zl6+wV5+XJDbb8IT7Nf/bvLe/wBrgUf0bjj+MBIrMo97AV21W0SNhEx0ioi9L+4FUcH+7JoBEIRrRHuF5yXAEG5sgR6yc98Nw3b+/7wX41EXzMuQ3cYq+h5oEaXbxHVJKpWqTdCVSoWDBw8yPT3NM5/5TAB++tOfYhHjqm9+D4C///u/b5iggWX/94ITCnbFFVc0LL/iiivYuHEjz3/+8wE4fPgw3/nOd3jhC1/I0NAQ09PTtb/t27eza9cubrjhhq7HEXXM3Gyo5w+yMwBYG00I90qYHdrKuDzA+KgR0IOOLiNGaPKf3czNAFdddRUQnrn5wdk8c7MPM3doNnJzc2AeaBHJADcATwbyQAbYYL99BPg74EvAe4IaQxOcPKr7mrznLDsOuL03w/GHLEUKHgT0vO3hzEr4RGeWBWa87As6/yRD9AWh08+7IMHm1OQZCuW590osJmRZ8HTtd0OBId0qzmOFyJVYk4Mi/9A+rGqBlZgCPvvZz/K5z32O22+/vWaxdjh48CAWwsT+A2zefDRHH+1veP3GjRt53vOex3XXXcfhw4dZt24dd911Fz/60Y/4i7/4C1IpXQ31d7/7HZZlcdlll3HZZZc1Xdf4+LivY4sKZm42LOXE5IMAPJw+ns19HkuUuSd2HKfJArsyOWBTv4djaIEfc3Nu5n5Gig9R2XQyiWQ4qnB3mpsBJiYmOOaYY8zc7ANBhnBfDJwK/CnwE+Ah5w2lVFVErgX+hN5O0o5rr5naWljymRoi8ibs/KutW7cGM7IVkJEFHlDrXX++YKUZgcX2VyEiwwJ53AvInNLiaRAEodPPO28FG5JcUOlQnnvPWBbDUiSvghXQeTVETBRUFyDIAm89IIaiinSdY/+JT3yCCy+8kGc/+9mcf/75HHvssaRSKe677z7OOeccLMuiSgylVGAVNffs2cM3v/lNrrnmGt7whjfwla98BaUUZ599du0zSmnvwFlnndUQOlbP8HCw91mIuRgzNxvqON56gKJKMrGw3gjoFfD7ymZOA44q3QOY4vGDTIoyVRWjaMVCkQvrZm4GQjc3Hz58kHXlGVi3BZL6WS4qc3OQ5/1lwBeUUteJyGiT9/cCrwhw+81wStE1U2hDSz5TQyn1BeALAKeeeqoKZmjdM6wWyHkQnfkKzKtU+ESUUgyzQM7ysC9Kf3ZYhWxfumAInQOdC7SrsTY6bBqA40VlnhiKnArWY19bfykPqWgLaMHCUt2HaX3lK19h+/btfO9732sI9/r+979f+7elhBN2bue662/moYceamvp7mYif+5zn8umTZu44oorapP0iSeeyGmnnVb7zK5duxARSqVSLYTNUMPMzYYGxop3c5c6msmZBZ7a78FEmF8WxjgLiM3uhfGn9Xs4hgBJWCUWSFKsWGRDUIjbzdwMcMIJJ3DdddeFZm6+5+FZjq/cDeu3QWaj5232kyCD948F/l+b9wvAmgC334z77ddm+V3OsmYhZKFmSM0z50FE5IsV8gyRtuYDHFUXVEskqDLnwaN4xNKfHRoAQThs6X04Ug3213jOSg/E8aKUB/T+BElt/aVc+w9GgJiysBAs1Z3WiMfjiEjNigw63+rv/u7vav+vEuM1f3omAO9617uWhZLVf3dkRJfLm52ddT2GZDLJq171Kn784x9z9dVXMzExsczLPDo6ynOf+1yuvfZa/ud//mfZOpRSDS01VhlmbjY0kDo0yQE5lsmp6P/G9ZNfzA5TkjRM7+33UAwBI9UiRZIUK9V+DwVwNzcDvOY1rwHCMzfnKnGdTV5ZqI0hKnNzkB7oGZpPhg4nszhp9oqf269PAn645L0novO/ft/TEflA2prniAcPdKFUpaBCKKJsQXSk6t4Dm68IZRUnbS1zTkSOtNIGjSMBCsJSxWJODTGkpgPbRs+wBW2Qx6th/fb1GWViKCxiWJYiFvduYf6zP/szLrroIs4880xe8pKXcOTIEa6++uqGyp+WEv7s+c/i5X/6X1xxxRVMTEzwwhe+kA0bNvD73/+e66+/nt/85jcAPOEJTyAWi/GhD32IgwcPks1m2bFjB6ef3r6dzp49e/j0pz/Nm9/8ZmKxGGedddayz/zTP/0TT3nKU3ja057G2WefzeMe9zgsy2JycpLrrruOs88+OxKVPgPAzM2GRapl5OB+DmUex+R09H/j+kWxUuWeQwsc2riVo2Ym+j0cQ5BYVcQqU42toVi2On++B7iZm0F3oXjFK14Rmrn5+S99JWecshWJJZh86HCk5uYgBfSNwLki8vdL3xCRHcDrgK8EtXEROQZYBxxQSjnq6hbgAeANIvLJul6TjwHOAL4cuTYZVpWUKnLY8iA6S9oDvbYaMtFpC6LDHjyw+ZJFgXT4vOldkLbmqSphrhxctedCqUJepUlVo3+8HEHr5XrphkOVwRHQgkWVOFaXwa7vfOc7UUpx2WWX8Zd/+Zds3ryZV7ziFZx77rk88pGPBMBSWqRf+c+X8rRnPJvLLruMD3zgA8TjcXbs2MHLXvay2vq2bt3Kl770JT760Y/y5je/mXK5zJ49ezpO0n/wB3/Aox71KH7zm9/wzGc+s6FNlcPxxx/PL37xCz760Y9y3XXXceWVVzI0NMTxxx/PC17wAl7+8pd3dxCij5mbDYscvBusCqX140xORf83rl/cPVPAUlBevxOmf9fv4RiCpKJLNVjxNMVKOAS0m7nZ4eqrr+apT31q3+fmv/3wR/jmt67ju9/8KkPpNMdv3RapuTlIAf1+4Fa0ZflfAQU8R0SeBfw5uljIR7ysUEReC2yz/7sJSImIU+jkbqVU/aT/EWAP8HTgZgClVFlE/hL4KvAjEfkiuj3GBcAU8D6P+9h/7If6Q9U0VUsRj3X2KhWKVfIMkwyb6LT35aAHD3ShVCHHMEcNgCBMVArMMUQ+QItmvlSlwBDJAfDY1679SrclsdxxuGqvfwBCuEVZ2gO9ghDuiy66iIsuumjZe07419TcAhZCQnQfyre85S1t17lnz56mhb7OOOOMhpCypfz617/uON6xsTE+/vGP8/GPf7zjZ1cRZm42LGJ7S5NHncB9++eZL1UZTkW/ZV+vccLfE0edALfdoEVWIgTJsQb/scONJTlEqWAFWpjLLW7mZodYLBaKufl9f/sRXvf2v+GR2RyJ+Wk45jHQ5+PohcAEtFJqr4g8A90O4wP24nfYr78BXquUusfjal8P/NGSZR+0X2/BhdVcKXWNiMyjK4z+Pfph4Ubg3Uqp6OVY2SKiwBCFUoU1Q53FRL5UoaDSJCohE1GOICp78KYXqxTUEPGwedO7QMp55hmiUKwEto2Cnf+eqBRAqUj9WC3DFrQHK8EWXZt11j8IHugVCmg3VBVYxECFwzJvaMTMzYYGprWAXrvlJPjpJPun8zzy2LV9HlT02Gd779duORF+ZcHsfjjqxD6PyhAIVe2BTiSHUGqBUsUinTRGJ68UyxaCEE8NwbyCailSRqdAq68rpX4BPEZEHgWcBAgwoZT6VZfrO8PDZ88Bzmnx3neA73QzhtBhP9Tn1RCFUtWVgF4UUSHzqNmCaLacdG3RK5QqzMsQsQEQN5TyLMgw+VJwRSnyJW1wEBSU56NdVdo+57PlYD3QB531R/0aUwqwi4h1G8PtAstSWAiiwlFcxbAcMzcbasxMQGaM4487FjACulv2T+c5ak2a4c22aJ6ZMAJ6UCkXIZ4ildQSqmgEdFcUK1VSCUEc0RyxqI2etC9TSv0Gbdk2+I0tOgsMkStWcNMa3QnjjZUf6vzhXmILlJwaYqFsuQojyxUrFGU4+uIGtICO6UiCoHCMJ872BkJAl4L1QM846496CLeyELA90MFtxlIKS4wHOgqYudnA9F4Y282OsSyAqcTdJZNTOcY3ZWF0l14wbQqJDSzVBUikSSd0I6Ow5EFHjWLFIp2IQ8J+xqosoDN3okGQbawMvcB+qM8zRKHozuOTL1aYZyh8gqDo7EuavEsRWShVKcaHoTQX5Mh6QzFHMZYh7/I8dkOuqMP3gegfM/t6OVRNUQpoAlNKMVWy7Yxhu1+8YgvalbSxcoNlgSIGxgNtMISfmQkY3UUmleDYdUOmEneXTE7nGd80AkNrYWQzzJhWVgOJUrandIhEPEY8JqFpZRUllFKUKhapRAxiCZB4rThbVAjMAy0iFro4STuUUqonXvCBxcmBVt5EZyk+jITNa+sYA5RtDBjp/JV8sUI5NgylmYAH1wNKOcrxTLAe6FK10QMdZeqNR6UKqYT/nuhS1SJnJVFI+O4Xr9iC1lIxqkGGcCuFkhhYpmhyGDFzs6HG/CHIT8HYbgDGN40YD3QXzOZLHCqUGbe9+IztNh7oQcUqa2O0HWqcTsSNB7oLylULSyntxRfRx9MI6BpXsHySTgA7gdOB/wVuC3D7q4MlIsIN+WKFSjyjCyFUyxAPNofUNXUF0bwYA8rxTPTFIEApTzm+PuAc6AqFgRHQeSxiFEmSL1VZH0A0uo7qEMrxDKmoHy/L8UAHH8KtTBGxMGPmZoPG8ZKOOgI6yzd/eV8oqgpHCcfosHOTbfUf3QW//Vb/BmQIDkfkxR0BHWMuwMKvg4pjdEgn7FTNRLoWVRgVgqzCfU6r90TkycC/A28OavurhpoHesh16G+hVKWSyEDV/v7w+uDG5wV7X+ZJuzcGlCpUE4MjoKuJTMBVuKvklSOgo/VjtQz7eIEEdswcQ46+xiJ+vGxBWw06hNvxQBsBHUrM3Gyo4XhJHQ/0WJa5YoWpXJGj1gz1cWDRwumfPb6pzgM9fxDyM5Ad7ePIDL5jt7Aioe+PdDLGwYJF1bKIx0xWrFtqAjppH7PEkL5nrCrEolGQrS9nWyn1E+DLwMf6sf2BwqnC7cUDXapgJbMN3w8FpRzVxDAWMffGgGKVatIW0FbEH9gdAW080O4o5bCS2u0clNfeORe1ayzK2IJWScBtrCxA7BzoALdj8B8zN68yZiZ07uGG7YAO4YZFQWhwx77pHKl4jC0b7DAo26Pv9Ng2DBCVop7f7MhNx4Nqwri9UaxYxEVIxOxIl/pK3BGhn+aSCeAP+rj9waCuCrcX0Wkl7B/6MImCUh5lC3svxgD9HQWV+QAHFzBKQSmHSmbJBemBLlWpJIb1f8J07ruhlK8ZggLzQNvrVcls9I+XU9RLYsG2sVJKP2CAEdDRxMzNq4WZvVo822LA8aAaAe2Nyak820YzxB0xMLpTv5pCYoNHpajDt+0UB1OJuzuK5SqpZGwxVcT26Ds9tqNAPwX0GUCEFU9IKOVRsSRlEp5EJyk7VydMYal1AtpLOLpKhdCb7pVKEZTelyCLiOWLFUg65z7Cxwv0+J3rJWAP9GAIaHuCl+BzoBcFtHmoiCBnYObm1YHdwsrh2HXDDCVjppCYR2otrBzWb4NY0hQSG0QqCw29ilOJGAIUy2au80LJaWHlEHc80Av9GVAXBFmF++wWb20EngmcCfxzUNtfNZTySCpLqhhzLSIKpSqSDaGIKuWRtEcPdLGCNBgDjgpocAFjn4dYeoRyta68v88USlVIj+jH4zAZT7qhlIf0GsD99eIVxwMt6TVQOhjINnqGk+Ig8YBzoPU2ANvrbYo5hwkzNxsA/Xswuw92Pr22KBYTto9mTSsrD1SqFgdmCzz75M2LC+MJ2DhuPNCDhrKgWoLhjbVFMRGSiZhpZeUBy1KUqhYb6p9xYzGIpyIVwh3kk83l6EqfzUo5VoDLgLcHuP3VgS0iMqW46zDWfLGCpMMooHNaqODOo1ipWhQrVu07odoXr9hitt6AEERbpnyxQiI1DAuxaB8vgFKO2NAY4D5iwSuOB1rSWTh0byDb6BlOCHcsuDZWllIopfRkCMYDHU4ux8zNhsP3aG9PnQcadCXp2+8/3KdBRY97Ds5TrqrFFlYOppXV4OGIuzoPNJhWVl5ZrMC9xEmUSEfKAx1kCPfTgT+2X52/M4BHAxuUUm9SSkX8CT4ElHKQypJNJTx5oGPpcIZwx9IjiLjLaS2U9f7Gw2gM8Io99rgHA0I3FEpVskNJHcIf5eMF+noZ0uc+MA+0vd54egCOly1mZQUh3DfffDMiwuWXX970/VputVNFs88C+owzzmD79u19HUMIMXOzYbHA1WijgB7flOWeg/OUjCBwhRPu7hRgqzG6C2YnoWpaHA0MNQHdWKE+nYhRqljaeNwnOs3NYaJYqfL6lz2fxzzyEY1vJIbsdMZo1E4Jso3VLUGt21BHKQ+pLJlU3JWIUEqRL1VIDIXQa1vKI2uPdW0MKNhex/hwCI0BXnEEtCMIA2zLNJJOQCob7eMFUMoTt6/jwDzQtWtsTfSPl7JA4sRjQiWgh2NHP4sTwm0FH9b2qU99ivXr13POOecEvq1BwMzNBkDnP8MyD/T4pixVS3FgNs+uo9b0YWDRwim4tnNTEw+0VYZDdy8WFTNEm1oLq6UeaN3ZolxVpBKmf7pDq7nZ8UAvO1KJtH5Osco6nDvkmOS0qOMI6HSCnAsRMV+uohQkhtcufj8slPKQGiGTitdyT9vhVKsOpTHAK7Y4Sw6vAVRwHuhilaPXDNkCOsLHC7QHOjXCUDIWuAc6MbRGHy+latU3I4eyQGLEpPs+0E972tOYn58nmUw2fd9Zr/QwhPtTn/oU27dvbyqgb7jhhr56BQyG0DIzAel1kN3UsHh8TBtx900ZAe2GyekcG7Mp1meWPPDXWlntNQJ6UKgUdXG4JX2KF1tZVQOpXeOGTnNzP2g1NxcrFpf927c4YfOS35d4XSur1SSgReS9XXxNKaU+6NcYViXFHKw/nmzKXQ6046lLDTuVq0PkVSvN6XD0tEsPtC1uUsP2TVgM0b54pSag1wKHA/NA54oVMum4FtBRPl5KLV4vqURgrb/yxQrDyTixdBasiv5hTw51/mIYsaq2gO6+ZXosFmNoqPX+OyHcEpIQ7lQq/JNw0Ji52dCU6QkY27XMILjDtLLyxL6pPDuW5j/Domd/egIe8Se9HZQhGJZU4HZIJxdbWfXL5NRpbg4TxUqVkcwQ6fSSY+mExlcWagViw4yfppKLu/wzrAQ7BzrjNuzZFp3DQ8Pa2hMqAV0Xju7FGJAdBA+0Hns6G3QOdIVsKhH9HOjKghZnqSyZdLxW7Mtv8qUq2XS8ru1bhI+ZsiAWIxbr3gO9NM+q/v9f/vKXefzjHs2pO4/mkSedxMc+e/li4TKbG264gVe84hWMj48zPDzM+vXrefazn80ttzSPKt67dy/nnnsuW7ZsIZVKceyxx/KiF72IX/ziFwCICHfffTe33HILIlL7u+uuu4DlOdCveMUrSKVSTE9PL9vW7373O0SEt73tbQ3Lv/rVr/KUpzyFNWvWkMlkOP300/n617/e1fHrExd3+WcYZGb2Lst/Blg7lGRsJG1aWblkciq/vIAYQGajrtY8YwqJDQRKaQN6EwGdiAkxkb4WEus0N5988smk02m2bdvGxz72sWXf79XcvH//fkpli9f86XOXz82ZEaZnDy+rxB3WudnPEO4dPq7L4BZbdGbT7nKgHdGZdbyQYREElZJuD5AasXOgXRQRsz8zlFmnF4TJGOAVe+zpjA6tDy4kubrogc49HMg2eoJz3TrXS0Ae6EKxQiZl54yDPk/Z0UC2FTh2DrQTwq2UQnwKR//c5z7HQw89xGvOPodqcpgbv/0N3v2hT7Nl/ERe/bo31z53+eWXMzs7y9lnn82WLVu47777+Od//mee8YxncNNNN/HUpz619tlbb72VZzzjGZTLZV7/+tfzqEc9itnZWW655RZ+8pOf8PjHP56vfOUrXHDBBYyNjfHXf/3Xte9u2tQYluqwZ88evva1r/Fv//ZvvPWtb21474orrqh9xuE973kPH/rQh3jOc57DBz/4QWKxGN/85jd52ctexmc+8xne8pa3+HL8AsbMzYZGSnk4cp/2QDdhfFOW/aaVVUeOLJSZzhWXFxBzGNu9mGtuiDZWRRuEE8u9vCJCOhGjWA5fKytnbn7961/P+vXrufLKK3n3u9/Nli1bePWrX137XK/m5g2jY8wdqRJb8uhRm5u/fSNvfdPxDe+FdW72TUArpe72a10GDzh5w+WEq0JKjjDLhM0LWXYEkfYozuZLHb/ieGkzmQxIxNsy2WMfGtECOoiiWOWqRali2R7oEBlPusExltQK6AXngc6k4nUC2sMx+97/Bw/+OpBxdUW5AJtOIPbMfwB0vnLcJwF94MABfvvb36JSGe6ZLfCu897MI8a3cunnLmsQ0F/84hfJZhu9NX/+53/OySefzEc+8pHaJK2U4pxzzqFYLPKzn/2MRz/60bXPX3TRRVh2DPpZZ53Fe97zHo4++mjOOuusjuP8kz/5EzZv3swVV1zRIKCVUlx55ZWccsopPO5xjwPgl7/8JR/60Ie46KKL+PCHP1z77Pnnn8+LX/xiLrroIs4++2zWrAl3qJmZmw3LcPoTN/FAgy6Idf3tD/VwQNFkvx3mPr60gJjD6G7Y+4Mejsjgim7mZlXVc2hiGGLLpdPxlapOYUp1Kas2nwJn/l13322DMzevX78egNe97nVs27aNSy+9tEFA92puzi1UgByxJc8etbn5mn/nra97ZW15mOfm/mS7G/zBsrTwTGV1DrQbD3RpqQc6JF7b0qKAdutRdMK8M+kBaMtUygNCJhNcWyZHZNYEYeSPF3U58wF5oEsVsunEYIRwowugOZbfbvOgm3Huueeyfv36Wg70yEiWJ/7Bo5nYN9nwufoJOpfLMTMzQzwe5/TTT+enP/1p7b3bbruN22+/nXPPPbdhgnaIxbqbuuLxOK95zWv4+c9/zp133llbfvPNN3PgwIEGC/dVV12FiLBnzx6mp6cb/l74whcyNzfHf//3f3c1DoOhrzj9iceaC+jxsRFm8yUOFTobslczk9P6+WlZBW6HsV2QewgWjvRwVIZAcOp5SPO5R0d2gSJcRSududkhk8nwxCc+kYmJxtSCXs3NxYp+Dl3qga7Nzb/6X+783e9qxzvMc3PgVbhF5FTgdGADywW7KVSyEsoF/ZrKkqkkKJS0BSy29MqsoyY6w+aFrBNEbj2KNWNAbV9CYgzohlo1dV30KIiiWI4orwnCsJz7bqgL4c6k4jx8pNj+812SL1ZZM7QkhNstAViTV8SDv4GhtcTt34eqUvhVr3N8fBxYbGMVExjduJ6Z2YMNn9u3bx9//dd/zfXXX8+hQ4ca3qsPJ3cmd8fi7Cd79uzhkksu4YorrqhZr6+44oraBO5wxx13oJTixBNPbLmuhx6KrpfOzM2rmJm9gMDG8aZvOx7VfVN5Hr/NFOJrxeRUnnhM2LqxjQcadB70cY/v3cAM7elmbj58H+Sn4JjHNO3EUSiUODBbYPdRaxhOxZusoD84c3M9o6OjzMzMNCzr1dxcrFjE7HzopdTm5mu+w4efdCYkh0M9NwcmoEVkGLgWeDa63Zdise2XqltmJuluqffCVfQNO1+uaoHUguWiMyQiqhaSO6I9ip480IPgUdXF4OIxsdsy+R+S7ISFL3qgc9Fty1QXwu02Z74bCqUKm9cOQcrOe4ryNVbXxgroupBYM+LxeMM69TYar6tcLsfTnvY08vk8b3vb2zjllFNYs2YNsViMj3zkI/zHf/zH4lCddlgBXJunnHIKj33sY7nyyiv50Ic+xPz8PN/4xjd49rOfzebNmxvGICJ873vfq+3fUk4++WTfxxc0Zm42MD0B64+H5HDTt52c3smpHI/ftqGXI4sUk1N5jt8w3Lp1Ua0S914joKOOU0CsxZyUTjiVuKuhEtCt5q56ejk3FytWy/vllFNO4bGPeTRXXvs9PvTRBebLKtRzc5Ae6PeiJ+gPATcCNwF7gIeBi4Bh4OwAtz/41IvOqj6VeSfktAWLXki7snBhpuVne0pDSK72QHcqcpQv6Z57yXhsAAR0vublHHFpQPCKc+5HHA+0qka3LZNzrtMjZNMSXA50sToYIdxK6fNtt7GCRW+xn1hKLVqXl9y7N954I/fffz9f+tKXOPfccxvee8973tPw/xNOOAGAX/3qVx232c1EvmfPHi644AJuuukmHnjgAebm5hpCxAB2797N97//fbZu3cpJJ53keRshxszNq52ZiZb5zwDHbxgmGRcmTSGxtuybyrUuIAawYQdI3FTiHgQqC22flVK1XtD9bd3YDb2cm0uVKkPJ1qJ+z549XPD2C7npP27kgcPFUM/NQeZA/xlwjVLqvcBv7GX3KaWuB54JpIBzAtz+4FNfiTitL8hCh+JTi1W4E5AeCU/Yc50gyqQSVCxFqdr+h0i3ZLJvxNSa6IobaBDQmVQiYA/0AAjC+pD/dDy4KtylypI2ViG5X7zieJslXkvxsAJQ0Jal6oqDNE6ejqVYLfF833DDDQ05VgCPecxjOPnkk/nSl77E7bffvmw79esYGRlhdnbW0zhf/epXk0gkuOKKK7jiiitYt24dL3rRixo+89rXvhaAv/qrv6JaXX4/PvxwZKvYm7l5NaMUzOxrmf8MkIjH2LoxY1pZtcGyFHfNtGhh5ZBIwYZti0XbDNFEKd0lpkkFbod4TEjGY5QiKKB7NTdbSlGqKNKJ1gL61a85S8/NV/9b6OfmID3QxwOfsP/t7GEKQClVEZF/Bd6MtngbuqFeRFiLHuh2FEoVYmKHm4TJa9vQlmjRGNDuRssXq1oMgt2WKbr5iDqEW4u0TCoYQdgYfRDxtkz10RepKsWKRaVqkYj7axPUVbjrc6BDcr94xenHHAsmhNvBUlCrIbLE+PyUpzyFzZs3c+GFF3LXXXexZcsWbrvtNr7yla9wyimn8OtfL1ZFFRG+/OUv84xnPIPTTjut1irj0KFD3HLLLTznOc/hvPPOA+CJT3wil112GX/zN3/DSSedRCwW4wUveMGyiqL1HHXUUZx55pl8/etfZ2Fhgde//vUMDTU+HD3hCU/g/e9/P+973/t47GMfy8te9jKOPfZYHnjgAX7xi1/w3e9+l1IpkkWWzNy8mpl7UP9+jjZvYeUwvmmEyamI/t71gPsPz7NQttp7oEEfZ9PKKtpUi4Bq2gO6nnQiViuSFSV6NTdXLHjEaX/Elo3NU0fAnpuf8TS+ft33WCgWQz03Bymg5+rWPwdYwLF17x8GNi/9ksED9aLTFtCdPJf5YpVsKqFDK0IloOvaEqX1PuRLFTZkWxcwqXkH7e+FZl+6oZSHYZ1rlk0H5IEu1XugIy4IG4rO6WunUK6y1kcBvdj2Kw7JTON2o0ZdBdEgBXS1wQPdeC7Wr1/P9ddfz7ve9S4uvfRSKpUKj3/84/nud7/LZZdd1jBJg54kf/7zn/PBD36Qr33ta3zuc59jbGyM0047jT/8wz+sfe5DH/oQs7Oz/OM//iOHDh1CKcX+/fvbCmjQoWLf/va3ATj77OYRy+9973t5/OMfz6c//Wk+9alPkc/nOeqoo3jUox7FP/zDP3g8OqHBzM2rGSecuKOAznLL76aoWqpWeNCwyGSnFlYOo7th/49024MuuwcY+kzFLlLaxgMNkE7GOZQvdUw/DBu9nJu/+5P/R3r70W3Hs+fVL+Pb1+u86zDPzUEK6H3AIwCUUlURuR0dOvYl0VfWS4B7Atz+4FMvOpUWkp2qN+eLFV10C7THs1wAqwqxPhc9aGhjpauLd+qFnCtWGj3QURU3oMe+bgugPdCBVOEuLsl/d7YbRey2XySGazn/hWKVtUN+1ZWua/uVTugHn2SEK73XBHR8RW2szjjjjIYQraX/d3KgAS7/7CVc/qn3N3z/0Y9+NN///veXrfepT30ql19++bLlJ5xwAldeeWXbMR111FF84xvfaPrezTff3PJ7L33pS5eFrDXjec97Hs973vM6fi5CmLl5NdOhhZXDzrERSlWLew8W2DbaQSSuQpzw9o4CemwXVObhyH26cJshelQW9Gu8swe6qhQVS5GM91ZAd5qb67n88suXzbe9mJsfnlvgwcMLpBOx9nPzS16CeubpcPQpEG8tU/s9NwdpDvsh8FIRcZTZ54HniMg+YAKda3VZgNsffJZUIgYXOdClSu2zofJCFu19SWZrAr9zOHq1zgMdonzubijmdB43ukJ6p/PYDbmlLcwASnO+b6cnFHXVcmIxXVUc/1t/OWH0i3n2ERbQln09SayWA10NKoS75oCOLW7XECZ8n5tFJCYiF4jInSKyICL3iMglIuJKeYnm1SLyExGZFpE5EbldRN4rImu9jMXQgZm9OqJmzbFtP+YIQxPG3ZzJ6Txr0gk2jbQXVQ2trAzRpFKEWKKtmIP6StzRy4PuBcWyTrOLd4rEcELlHcNFSPFVQItI/S/J3wFPx86EU0p9FngHOjzsIPBXwMf83P6qY0kvXHAnOjP1Yc/16+knpZwOj4kn3BsDlnmgc4vFkqKG3cYKdFuuINoy1TyqqXi4zn031B2v2vXi8zFz1pdJD0CUw5IQbhEJKAe6LtxT4ovbNfSVHszNn0TnVf8WOA+4Bjgf+LaIuHnO+FvgKmAeeD/wTuDX9r9vkCjFQ4ad6QkY3dkxnNjJ7d1nCok1ZXIqz/imbOdQ3fpWVoZoUil29D5DnYAuG8NxM4oVq3aM2uKEyjuh8yHF7xDuB+wCJF9SSv0C+F39m0qpT7BYvMSwUuo90LYtpOAmhLsmOkMUxttQhdqDB7reO6gsu9VA6wIFoaVu/7NBVeEuVRrbfjnbjSL114sTseCz175WsT5VH+UQ0ePlCFn7oTkmAbWxqs+Blhigav2nDX0lsLlZRE5Gi+ZrlVIvrVu+H/g08Erg6jbfTwBvA34JPEupmtXlcyJSAV4DPAa4rZvxGZYwMwHH/kHHj23IJFk3nDStrFowOZXjtB0bO39w5GgdXWY80NGlsgDpzoEwybg2UBsPdHNKlSprh12k2cVTgEB1FXmg0RbsNwM/E5HbROQ8EXHxC2PoilJee3kS6TrR2V5ELBOdEI6w1HoBmXbnUSyUKnXewRAZA7xSKYFVbvRAB5IDXW0UgxCOc98NSwwO4L8H2jHgLItyiCJOFW47ajcuEkwbK7VUQNNdsrXBb4Kcm1+F9mZ/asnyLwIF4KwO30+ie08/WCeeHe63XyP4wx5CKkU4dKBj/jPoarvjm7KmlVUTCqUK9x9e6FyBG0BE50FPGwEdSayK/utQQAz0PZNKRLOVVdBUqhYVq30LqxoiOoy7HG4PtK8CWim1A50/dTWwC/gH4D4R+TcRebYJw/KZUl4LIRHSiRjxmHQUEfkG0RkiL2RdGydH5HXyKOaLITUGeKWuJRNoQei0ZfKTfGlJyDuE49x3Q/31knZnPPJKodYzfQAqvdeFcAPEAgrhrja0sYo1btvQNwKem5+AruT9syXbXEB7jZ/QYWzzwH+i87DfLSK7RGS7iJwD/AVwpVLKqA8/mJ3U9+NoZwENMD5mWlk1Y/+0ywrcDqO7TS/oqFKrwN05hBui28oqaByvvKsQbtDHu7qKBDSAUuo/lFKvBY4B/hw9gb4c+B5wl4i8X0R2+L3dVUldHqiI2P2DO3igm3ohQzBBNoTkdvYoVi3FfLk6GIKwrgI54DqawCuFYl3Rtai3ZWoI+Xdy5nvhgY7o8bKWCOiY+B7CbSmFqvdAO5X9lXmYCAMBzs3HAtNKqWZPO/cBYyLSuh+h5jXATej87AlgP/AldG518z4mgIi8SURuFZFbp6amuhj6KqNWgbt9CyuH8U1ZHp4rBtIVIsrUBPSYCw80aI//4XugVAhwVIZAcNnCyiGdiFOqqEAM1FGmKwFdKYa6rlFgiWlKqTml1BeUUk8CTgIuQYdq/Q0wISI3isirg9r+qqBORICTO+vCA71MdIbAa1sviJKdPdDz5aXewRAZA7yyREC7DWH3SsO5r7VliuDxgqYh3L4bHEpNrrEWx8tNO6S+sswDje8h3M4Dw7IQ7lXsgQ7jdRHA3JwBWrkKFuo+044iMAlcAbwaHRb+DeA96KJmTbH341Sl1KmbNm3yMORVisse0A47bQ/rfuOFbsDxyu8Yc+uBto/37L6ARmRoxYp/g51K0IlONkBNOhFDoUwY9xKKlWotxN0ViSFABeaF9mNu7kllF6XU75RS7wK2AC8AfoCuAnpFL7Y/sCwV0Ol4WxGhlKJQqjISyhDufE0Ex2Lam95OQC72NA6hMcArddXUYXGf/C6K1XDuAdIRbv1VytfafjlFxHz3QC+9xlocr3g8Trlc9nXbvqOqWtDa4jYm4nsbK8fJHa+FcDse6NX7IFGpVEgk/K7V6R8+zc0FoFV841DdZ5oiIhngJ8BapdQepdS/KqX+TSn1MuCrwAdE5AQP4zG0YnovrDkG0mtcfdzJ8Z2cjug8ERCTUzmOWz/McMpFPifUVeI2mQi9xJe52anA7bIQZjppWlk1o1i2SMVjnavWOzhVzwOqxO3H3Nzr0qinAS8EnmT/v9Tj7Q8WpXzDRJhNJ9qKiGLFomqpujZWIfLa1uW0gg6bbWcMcN6r9bROh2hfvFJXTR0Wc8B990AXK7Xw8Nr2oni8oCF9IRmPkUrEAvNAOxERrY7XmjVrOHLkiK/b9h1lLQpanBDuHnmgV3ERsbm5OYaG3IX+9ZmVzM33o8O0m4no49Dh3e3W92fAbnTrq6Vcg35OeYqH8RhaMTPh2vsMsG00Q0xgn/FANzA5nXef/wywcad+NXnQPcWXubmy4Dr/Gep7QZvUpXpct7ByCLiVlR9zc+ACWkQ2i8g7ReS3wH8Bb0SHap2Hzp0ydEudiACdO9tORBSWis4wVWJu4k1vZwxwvIOZZUXEIjjRL8uBDs4Dna33QEdaQC9NX2gfsdAN+VKFdCJGwnGpprJQLemq6XVs3LiRgwcPMj09TalUCmXYLlZjKykdwu3zJlqGcK++BwmlFIVCgenpacIaWuzj3Pxz9LPEaUvWPwQ8Fri1w/ePs1+bufMSS14N3aKU9oC6qMDtkE7E2bIhYypx16GU0j2g3YZvA6QysO5444HuMSuem5XSAs5l/jNAPBYjEYtRLK9ew/FSlFKUqlbNO++KeEIb/Sv+trLyc24OZFKy+zq+EDgX+BN7O4eAfwIuU0r9Kojtrjqa5EA/NNf6YlsmOhMpiCXDIaKW7EsnD/RifmoIjQFeWRbCHYwHulBa6oGOaAj3krZfYF8vfhsciksNDvY1Vs435EOl02m2bt3K7Owsd911F9VqCAVjfgqsKsxqcXt4vky+WEEO+9czvViuMpUrYc2mSCfjentHHoaHK5B+yLftRIV0Os3RRx8dKg90QHPzV9F5ym8DflS3/I3o3Oer6rZ/DLAOOKCUcsK6f2u/7gG+tmTde+zXn3cxLkM9hVlYOOS6AreDbmUVgmeEkDBlF1Vz1cKqntFdxgPdY1Y8N1sVOPIQDJch7d6TPT1XZBrIrXHvuR5kKlWLB48UKWaSHEp7kJ25WeAgjPj7++PX3OyrgBaRR6Mn5tcAo/bim4DLgGtbVOk0dMtS0ZlOkJ9uF/a8JKcTwuGFtKpQmW8I4c6m2vdCHiwPtC1i7TD0TEBFsfLLBGEW5g/6uo2esKTtF9gRC4EUXVsS8g76Ghve0PDZdDrNMcccwzHHHOPrGHzj8nfq++x13wPgkz/4Pf9w4wSTH34usZg/3QVvvOMh3vjvt/Lvb/1DTtqyHhaOwN/9ITz7Q/DYt/qyDUN3BDk3K6V+LSL/CLxVRK4FvosuTnY+cAu6dZbDR9Ci+OnAzfay76BbYD1XRP4TXTxMgJcATwWuUUr9stvxGWycAmIePNCgK03/dHIWy1K+/VZEGSec3VMIN+jj/v/+TXs1TUfXnrGiuXnvjXD9y+Gc/wvb23bja+CKa/+X629/iF/+zbO8b3MAuenOh3njv/+cr//5kzhp+0b3X/zWZ2DvD+Advw9ucCvAbw/0bfbrPcDfAl9WSt3l8zYMDsWcR9Fp53SGzQu5JAcYtDHg8Hzr4g/LjAGJYUD0MYkaS3OgAyiKtdj2a4kgPHSPb9voGc2ul1TC91Yr+WJlMd2hfntRvcYyY7X/1q6x8pLCcisgVzNqDUBhv8HjNvs1qLn5bcBdwJuA5wHTwKXAe5VqX0VOKVUVkWcCF6FF88cAhW5n9W7gEz6Oc/XihA+P7vT0tfFNWebLVR48ssCx6/2LWIkqTkG1rjzQxSOQexjWHB3AyAy+40QMeI3aGBthNn8Phwol1mfcVe8eZPZNdXnPjO2C267UxvihtQGMbGX4LaC/jrZo36BCmQg4QCjVJAc6UQttbkahpQe63wK6MQcYtDHggUPzLb9SWGoMiMXC4U3vBmfMdm/mIDzQtXPfIAhbt2UKNc2ul3S87bXfDYVSdbHgHoSr6J5XSnlYv6323/re2X4J6GVtv2Jxbdjq9++LAQKem5VSVXQ7rEs6fO4c4Jwmy+fQYeAtW1YZVsjMBMRTDb8DbnA8rZNTeSOg0cdhKBnjmLUewz+d4m0zE0ZAR4XpCUivhZGjPH3NuWf2TeV5/DYjoCen86zPJNmY9XgsHMPFzAQc93j/B7ZCfC0ippR6uVLqeiOee0B5HlBN2lhVWhZKaO6BDoHoXJIDDJ2NAfmmgjAExoBuKOW0eI7p8+KcHz890LWK0uml5z6Kx6v59dIu+qIbWnqgo3rMloS8g79GmvxSDzSE4/fFYOZmg25htXG8Ns+4ZadpZdXA5FSOHWMj3sPZTSur6OFUrfcYcl9r/2aK7wH6OHgquudQu2fCWTug122sVoSIxETkAhG5U0QWROQeEblERFydGdG8WkR+IiLTIjInIreLyHtFJHzxAe1oISKUgoUW1f+aeyFD8IDbJCTXMQa0orUgjODD+pJc9iDaMtV6Goft3HdDs+slFZAHulUOdNRoEq0C+Gp0qN2TYTPQGQwGzy2sHI5akyabiptCYjaeW1g5rN2iI3JMIbHoML3Xc80AgOM3DJOMC5PT5p4BHbXhOXwbYMMOXYl7JpxGp0gJaOCT6Hyo36JbbVyDLlTybRFXXc7/Fl0RdB54P/BO4Nf2v28Q1x2+Q0AL0Qm0FJ75pqIzDDnQy0NyM6lELUy7GflihURMSMXrTntUH9aXCGjonM/ulZbixiova8sUeppdL+lEIEXEmlbhjto1plTTiv2Ar0aHfKlCKhEj2XBPRjRNwGAYJKoVmN3flRgQEcY3jdTyGFczxUqVe2YL7OzGmxaL6fxz44GOBqU8HLnXc/4zQCIeY+tG0/4NYG6hzMNzxe6MTokUbNgW2nsmMr0VReRktGi+Vin10rrl+4FPA6+ksdrn0u8n0IVOfgk8q66wyedEpIKuTvoYFouthJsWohPs/OAmxp5CWL2QTbzp2VScUtWiVLFINWm+7ngHG2weYTAGdMOS8Fpw2nj5JwhrHuimgjAHCQ+VEftNi+sliDZWzT3QEbvGqiXdjqPB4NDe2NYNhWKVbGpJeGhU0wQMhkHi0N3aWNqFGADYMZblF3dHsGODzxyYKWAp2NGNGAAdAfDg//o7KEMwzOzTrx6L7jnsGBsxURvAftsLPz7WhQca9G9WSKM2ouSBfhW6tcWnliz/IlAAzurw/SQwDDzYpCro/fZrdK72FoW3oLMHejgZshDLFlW4AeZbeMjyxSXeQef7/d6XblgSXgt2USwfBWFLDzRE75i1qMI9X65StfxL8VzugY7q8WpmcKgztvmEbvs1IPekwTBIOB6cLjzQoIsi3X94noVyCHvc95BaC6tuxcDYbjh4d/SivlYjXbZ9c9i5KcvdMwVfn0miiGNE2LkSo9PMPrDaNnPoC1ES0E8ALHS/yBpKqQW017htkzal1Dzwn8BzROTdIrJLRLaLyDnAXwBXKqXCGSfQjKa9cJ2wzOYCulCskE3FG4tfhCHEsokxYKSDh6xQqg6QgG4Swp322QNtr2tkEEKSnfGmF699Z7/mfXrAq1qKhbK1vGp5/fajwpI+49A53aMbCsUmLbHSIfh9MRhWO44Y6CIHGnRRJKUWvUmrlcUWVt2Kgd2gqnBwv4+jMgSCU7hqY3ce6PFNWUpVi3sPFnwcVPSYnMoRE9g6muluBWO7oDIPR+7zd2A+ECUBfSwwrZQqNnnvPmBMRDrVSH8NcBPwd+gek/uBL6Fzq89u9SUReZOI3Coit05NTXU1eN9p5lVyHopbeJXypWrNs1vDecDtp3WniSCqhaO39KZXmoSLronmw3rTHOj2Vci9Umv7NUgCOrn4g5zxuXf2Ysu3umssqm2ZmkarLLax8ot8qdJYXwGim1ZhMAwS0xOQGYVMd6k6TgXd1S6g90/l2bQmzZqhZHcrGLMNGCHN6TTUMTMB646HVHfCb7ES9+q+Z/ZN59myIUM64a36f436VlYhI0oCOgM0E88AC3WfaUcRmASuAF6NDgv/BvAe2vSfVEp9QSl1qlLq1E2bNnkadGC0y4Fu6bVtJjqzgNIWnn7hPGAnmxREa2EM0PmpzTzQEXxYL+Wa5ED7W0Rsse3XAOT0Lmn7BYuC0K/K5Ysh7wMQ5dCsYn8AbawKpWqjxx6iebwMhkFjZm/X+c9Q3ws6YnOFz0xO57trx+MQYjFgWMJ0d1XrHZzrZLUX39MVuFdwz4S4lVWUBHQBSLd4b6juM00RkQzwE2CtUmqPUupflVL/ppR6GfBV4AMicoKvIw6SZiHctdY0rfKGW4hO6O9DbikP8ZSuuGdTa7PTzgO9zNsV0Yf1FiHcvnqgmwnCMJz7bmhyvJzcbr+MDotF1wbgGmuSM56Kx0jExNfK5flipTHH3tlm1I6XwTBoTE8sej+7IJNKcMy6oVXvTZucynXXjsdhaC2MHB1KMWCoQyltdOoy/xlgYzbFuuHkqm5lZVmK/dO57msGgL5fUmtCaXSKkoC+Hx2m3UxEH4cO725XmeHPgN3o1ldLuQZ9LJ6y4lH2iqatfDoUESs2E511lZj7RYsQZmhnDGhRsCiqbZmaeKD9FjfJuDRWNI9yCHcTgwP415aptQc6giHJTX4rRMSOcvDZA72sLsEIVBZ0Gx2DwdB7Fg5D/uEVeaBBe6H3rWIxcDBf4mCh3H0xJIfR3aEUA4Y65h7U8/wK7hnd/i27qqM2HjiywELZWpkHWkQb/0KY9hAlAf1z9HhPq18oIkPAY4FbO3z/OPu1WSB+Yslr+CnlAYHkcG1RJ9FZaFUlt7a+PtFMQDo5rW0qiofSGOCVakULjCX7n00nfBc3rc99hI4XtDQ4gH9FsWoe6EHwqDYJ4QYnysHPXuMtPNAA5YgdM4NhUHBawKzAmwa68vTkVA6lVmdV4RUXEHMY2xXatjwGm9o9033UBuh7ZjXXDdjvVK33xegUvnsmSgL6q4BC93Ku543o3OernAUicoyInGiHbTv81n7d02TdzrKf+zPUHuDkzdb1QR5KxhDxKjrtC7vYRxFVnPPsgS608kBDtARhk/Ba0ILQz7ZMuWKr/Heidbyg+fWSdq4XnwS0fQ8tK7oXxTz74px+bXKN+WmkybVqLQf9/X0xGFYzTriwDx7ouYUK07mIRXj5xIpbWDmM7obCDBRmfRiVIRBqVetXfs88dKRIzsd6NlHCMTrtXEnaA2jj3+F7oBSuiuaREdBKqV8D/wi8RESuFZE3iMglwCeAW4Cr6z7+EeAOGr3V30G3wHquiPyniPyliLxNRP4TOBO4Rin1y57sjB806R0sImRTrT2XzUVnCMJ4m+W0tvFAW5aiUK62EYQRsvg1Ca+FRQOCX22ZCqVKczFYP4ao0CYH2q++xs49NFge6OBapTltv5Z7oEPw+2IwrGZmJkDisGH7ilazWFV4dRrDJqfyJOPClg3DnT/cDicSIIQeNYPN9F7dcWPtcZ0/2wYn3H//Kq0dMDmVJ5uKc9SaVuWrXOIUc5vdt/JB+UhkBLTN24B3ACejxfQrgUuB5yul2vZhUkpVgWeixfVRwMfQ7aw2AO9GV+WODk1EBLTPnc2X2onOcOVAZ5Ktq3AvVKoo1cw7GMGH9Rbixu+2TPlik3Mf5bZMrSIWfBKEhZYe6AjnQCcbmxRkUnHfDA61tl+DEBViMAwS0xOwYVtDkc5ucKoKr9aiSJNTObaNZknEV/jY7IiBEOZ0Gmxm7ArcsZWd65rRaXp1zn/77KJ7Uhcp2xW1Stzhumeik/NLTQRfYv+1+9w5wDlNls+h21W1bFkVGVoIaO1VapMDHUYvZCm/rD9lIh4jnYg1NQa09Q5CtB7Wm1RTh0UhkitWOMqHzTTNf4foelRb5swbD/QymrT9An2NPXhkocWXvFErutYqRSRqx8xgGBRW2MLK4bj1w6QTsdXrgV5pCyuH9dsgljSFxMLM9AQc+9gVr2bbaIaYLIb/rzYmp/Kcun3Dyle0cad+DVnURtQ80AaHJiICHK/SctFZqliUq6qJIAiB17ZJODq0DjGteQfDWBDNK6080Cn/BeGy/Hdnu1E6XtD0enHaMvmVA932Govc8WoRreJjq7TFomsDcE8aDIOCZcHMvhUXEAOIxYQdY9lV2cqqUrW4eya/shZWDvEEbNwROm+awaZShEN3+2J0SifibNmQWZVGp4VylfsPz6+8ZgBAKgPrjg/dPWMEdFRpJTpT3YrOcIVwQ+sQ05p3sGUV7ghN8G3yU8G/olitPdAj0Tpe0PR6cdoy+SYIS9Xlbb8gmm2ZWkWrpOI+Xl9O268BqIxvMAwKR+6Fyvxi2PAKGd+UXZUh3PcenKdcVSuvJuwQ0qrCBmB2PyjLF6MT2PfMKjQ67Z/Oo5QPFbgdRneFLmrDCOio0tKr1FxEOGHdy0RnYggk1v8Q7ibe9EgaA7zSIoTbdw90swrsEL2q0tUyVIvNr5d0wj9B2KzgHkSzLVPLaJUAPNBhTBExGFYrjsfGJzGwYyzLgdkCpUrbkjMDR62FlR8h3KDbI81OguVfFwSDT9QqcO/0ZXU7xrLsn85j+dRRJSpM+tXCymFsty7uFqI2ekZAR5VSHtLuRUSh1QOuCKTW9O8B17K0GGkqiDoZA5bsS3pwPNAjjgfar6JYxcry8FrQxyySx6v5te+nwWFk6fUFEb3Gck2P10g6Tr5U8aWva6HVPRnFqBCDYVBwvJw+hKOCbuFUtRQHZsPVTiZoFsWAD+GooM9HtaRDhQ3hwjE6+XXPbBphvlz1rd5IVHDC1nf4ZXQa3QWlOcg97M/6fMAI6KjS4qE42yKMtSY6WxaS6pMXslxYHMMSOhsDlnhUnSrDUXpYb1mFW58nP6okO22/lhWQc7Y7AMcL7JBkH6twLwtHhmgKwjY50ErBQnnl3qR8rQq3KSJmMISG6QlIr4URP0pRLnqTVltO576pPOszSTZmV1bJvEatqrAJ4w4dM3th5GgYWuvL6nY61etXWRj35HSeY9cNNY/k6wYnDSVEYdxGQEcRpdrkDbcXnc1FQR9FVBtB1CqntaUxIBbXIjpKIcktPKqOEPFDEDptv5aJG2e7kTxeza99P/tAtzQ4QPSOWQuDA/hzjTnHfdkxiychno7W8TIYBgWnHc9K28jYLLblWWViYCrnX/g2LHo3QyQGDDbTE755n2H1trKanMqxw6/wbQhlKysjoKNItQRWpYXXNk6+VF0WlplrFcINfRbQzXOAQQvkXBNjQD6sxoBuKOV0Hnq88bw4Vjs/QpLzrcQNRPN4QcuQfz890M0NDhH0qLbJgQZ/ohxaeqAheteYwTAoTO/1Lf8ZYN1wkrGRFPtXmTdt/7RPFbgdsqMwvCFUYsBgMzOhc9R94ui1abKp+KryQCulmJzK+1OB22HtFkgMh6r4nhHQUaRNHmgmlaBqKYpLiny0rJLrrCeMHuiWOdAhNQZ0QwvvYCoRIxn3py1TYZDETScPtI9tv9oWEYvUMWvVJs5HD3Tt92VAKr0bDFGnlNdVuH30poHOg15N3rS5hTIPzxX9K4bkYCpxh4/8DMwf9PWeERF2bMqybxWlPUzliswVK/7eM7GYLuwWIqOTEdBRpDinX9uEZS4VEp1F55y/Y3RLzaPYoiVX03D0KjGB9NIWQ6Af1osR+qFqIW7AP0GYq3nsW4ibKLVlane9pONNIxa6IV+qtKhabhutin26X7qhxTXmXA9+GGlyxUrztl/Q398Xg2G1MrNPv/roTYPV15Znvx2u7qs3DeyqwuERAwYWQ+p9jNoA2+i0iu4Z34vuOYSslZUR0FGkrde2+UNxLUcxbF7IDt70YsWiUm30pudLuqK0NMvrilpbphbF4MC/Pr2FVi3MIHo5vR2ul4JfAnpQPNCVkk75aBHyDos1BVZCy7ZfEL0oB4NnRCQmIheIyJ0isiAi94jIJSLi2gUhIgkROV9EfikieRE5bP/7/wQ59oGl1o7HZzGwKctMvsThQtnX9YYVRwzs9N0DvQtyD8LCEX/Xa+ieWgVu/41O9x+eZ6G8OtqW1QS0n3UDQBs2Dt6tn2tCgBHQUaRdK58WubP5Vr2TISQ50K1DTAtLfnQKxSqZZmLQWU+UHtZbhHCDNob4kwPd4dw744gCbSMW4hTKVV/6LQ5MDnS5fcg74IvRIV+qNj9ezrajcrwM3fJJ4BPAb4HzgGuA84Fvi0jH5wwRSQHfAT4O3AZcAFwE3AJsC2bIA87MPkB862fr4Hhi962SMO7JqRwxga2jGX9X7Hg5Z/f5u15D98zshVgS1vv7kzO+aQSl4K6Z1TEP7p/OkU7EOG79sL8rHt0NqgoH9/u73i7xqb64oae0ERGZFnmNhVKVoWSMeKyZ1zakOdB1RY7WDiVryx0PdFNSWTjygO/DDIw2Ajqb8ickub0HOmJtmTpEXyilq46vpHWCZSkKpRZVuJMRE9Bt2345vcZ98ECXKs2PF+hrrDCz4m0YwomInIwWzdcqpV5at3w/8GnglcDVHVbzN8AzgWcppW4KaqyriukJWHc8JP19iF1sZZXnD7Zu8HXdYWTfdJ7jN2ZIJ1oYCLvFiQyY3gvHPs7fdRu6Y2YvbBxfVtR1pYzXtbI6cbM/7bHCzORUnh1jWWLN9MZKcNJRpidg0wn+rrsLjAc6irh4KF5aWTdf7CA6SzndHqvXtPOmtzEGtPZAR6xgUYsKyeDkQPvgHXQqsLf1QEfEm9ChDzQsVh3vlvmy0yatyTWWSEE8NRDHy7mH/LnGOnmgI3K8DN3wKkCATy1Z/kWgAJzV7st2mPdfAtcppW4SzZogBrqq8LmasMPxGzMkYrJqekHrasI+h6ICbNwBEgtVTueqZ3rC9/xnWH390yen8/4X3YPQtX8zAjqKtM0D7UZ0ZkFZuphUr2nnTW9jDGifbxmhH6k2RcSy6fiKxSB0qsAeNY9qTvcVjieXvbXY+mtlgrCW7tDSoxqhkOQObeJg5QYHsD3QJgd6tfIEwAJ+Vr9QKbWADsd+QofvPxVYA/xCRP4BOAIcEZEpEfmwiJhIOa8opT2bPudyAiTjMbaOZlZFUSTLUuyfzvlfDAkgkYb1W00hsbBQrcDsZCD3TCaV4Jh1Q6vinilVLA7MFvwvugcwtBZGjta/bSHACOgo0jZvuLmIaO+B7mMYbykPEteTyRKybYwBA5Nv2S4H2i8PdKcK7M44okC7kPe0Px5ox2DT+hqLUJRDGw/0UDJGTHz0QA9KXQKDV44FppVSxSbv3QeM2TnOrXBi8d4GvBR4F/AK4CfoPOjL/BvqKiH3kK5873MBMYfV0srqgSMLLJStYLxpYLeyMgI6FBy6G6xyIB5o0F7ofdODPw8emC1QtdSquGeMgI4ibsKel4iIQqnaXEABpB0B3YcJsZTX229SUbulMaBUab0vqTVQLUI1IhVC2wrChE8VkqvEY9Ki7ZcdKRkVr71zvTSh1fXilbYGB7AFdISOFzQ9ZiJit4rzxwPd+vdlDZQLYK2OCqSrkAzQTDwDLNR9phVOuPZG4JlKqX9SSn1NKfUi4GbgbBF5ZLMvisibRORWEbl1amqqi6EPKI5XM4AQbtAVqe+a0Q/Kg4wTchuINw20WJvZB5bV+bOGYHF6cgdpdJrKofqRKtlDavdMEFEboH/TQhK1YQR0FHEeipPLn0myLcJY86VK8xBe6K8Xsl0bp1bGgGK1fT43RMPjZVW1sGjTxsqfCsn63Lds+wXROF7Q9nrJ+FQUq1Z0bRBCktsY20DnQfsT5dCmcJtzjZULK96OIZQUgOUhRJqhus+0Yt5+/R+l1J1L3rvCfv2jZl9USn1BKXWqUurUTZs2uRrsqiCgFlYO45uylCoW9x2c7/zhCBNYCyuH0V36d3Hu/mDWb3BPzegU3D0zt1BhOheOFkxBMen0TQ/SAz0/C4XZYNbvASOgo0gpp6sBx5afvuFkxERnhxBmaGEMaBcu6qw37DiCoqW4SfjSlim0574bXIRwr9ToUGv7NQghyW3SPUAbCfzqA902rQKic8wMXrkfHabdTEQfhw7vbvfUeK/9+mCT95yWCoNf7tlPpvdCYhjWHhfI6nesklZWk1M5sqk4m9a0sg+tEEeshcSjtqqZmYDhDZDZGMjqd9QqcQ/+PTM2km7onOMrzj3jRAz0ESOgo0gbERGLCZnUcq9Se9HZ5xDuNg/30GgMUErZOdADIAjb5KeC9kA7bZlWwsAYHMDd9RK4B3owcqDB9kCv0OBgWYpCuUXbL4heqzSDV36OfpY4rX6hiAwBjwVu7fB9p/jYlibvOcseXsH4Vh8zE9q72cTI7gf1rawGGV1NeKR59JYfjIZHDKx6pvcGFrEBsNMOaZ4c8DzoEqzYsAAAMfZJREFUyamAKnA7OEXeQmB0MgI6irQREaA9tzmvbayc9faaNm2chmttiRYf8IsVi6qlwmkM8ErH8Fp/qiS3NTjEk7qqdRSOF3Ro++VPW6aaB3oQ2jLV0j1aR3ksLdLnlYVKFaXaFV2LWKs0g1e+Cih0EbB63ojOfb7KWSAix4jIiSJSyz9SSu0H/gs4TUT+oO6zcXsdFeCGwEY/iEwH08LKYTSbYu1QYhV40wIWA2s26/ksBGJg1TMTTAsrh2PXD5NKxAb/npkOqO2bw/ptEEuGopCYEdBRpE0eKOhQ1uUe6A5trACKfbixi3MtjQGpRIxUPNbgUWzb0xii9bBenNOvbTzQsHJBmCu2yX93th+F4wVtrxeniFXOpxDu1kXEIna8EkMQb74v2dTKW6XlaiHvHe7Jfvy+GAJHKfVr4B+Bl4jItSLyBhG5BPgEcAtwdd3HPwLcwRJvNXAeOk/6hyJysYicZ3/3NODDSqkDQe/HwFAp6orCAXrTRITxTSMD7YGeL1W579B8cAXEQBdPHd0VCjGwqlk4oivXB9DCyiEeE3aMZgf6njlUKDGbLwVrdIondA/1EBidjICOIm16B4PtVap7KC5XLUoVy0Ubq3CFcMPyIkdtexpDtEKSO4XX+tSnt22FZIheSHKL45VO2G2ZVni88m6usQE4XqBF70o90K7afjljMQwqbwPeAZyMFtOvBC4Fnq+U6lhiWCn1K+DJwI/tdX0cyALnKqXeF8yQB5TZ/aCsQL1poMO4B7mV1f6giyE5jO0OTV/bVYtjwOjJPTO48+A+2zgQqNEJ7FZW/b9njICOIh0eirOpCInOjvvSaAxw1WLIWW/Y6RDCXatC7oPAGRgPdJvrpdaWaaXHq1Rp3fYL9PmKSlsmN78VKzY4OCHvAxAVYugKpVRVKXWJUuoEpVRaKXWcUurtSqncks+do5QSpdTNTdbxv0qpFyql1iulhpRSj1NKXd6rfRgYahW4g/Omgc7pfOhIsSHFapDomYAe3Q2H74HyYFc0DzWOASPAqA3Q19KB2QKlymC2LVtsYRW00WkXzE72/RnMCOgo4sqrtHhhFTqJzsQwIKHLgQaWFURzxHRnY0AEHtY7VEhe9ECvvK9xy+gDZ/tRMDhYVajMt79e0j4IQtvg0LJwTJTaMnVI9/AjB7pWdG1QCtUZDFFmujcC2slz3D+gHjVHDOwIMp8T7Fx1pftBG/rDzARITIcGB8j42AhVS3FgNgLPDl0wOZ0nEROO37i8xa6vjO6GakmnqvQRI6CjSAfRubR/cEfRGYv1R0Qp1Tkc3asxIEoP652qcDttmVZaVbrYJv/d2f4AHC/ANw90R4ND/XjCTCcPdDpOoVRFqe5bpS0WXRuAqBCDIerM7IORzTC0NtDNjNtVhfcNaFGkyek8x64bav275hemEnf/mdmri1MlAmpXZuN4ZgfV6LR/Ks/W0QzJeMDSstb+rb/3jBHQUcRFDnShmejs6IXs8URYngeUixDTbjzQEfiB6tjGauUeaKWUCw90RHKgXQjojC0IV0LbgnsQLUHoomJ/1VIUVxBS5t4DPZgP2gZDqAi4mrDDttEMIoPbympyKlczEgTK6E79agqJ9Y/pvT25Z5zraVArcU9O54LPf4Y6o1N/7xkjoKOIC69SvlnYc9i8kB1ygMEJMfVgDIhSW6ZaCHentkzdC8JixcJSbs59FI6Xy+tlhSHvhXYt3yBagtBFtAqs7BrrWBk/noJYIhoGB4Mh6kxPBB6+DTCUjLNlw/BAFkVSSgXfwsohlYW1W/ruTVu1WJb2QAec/wywbjjJ2EhqII1OVUtx10yBnb24Z7KjMLyh75W4jYCOGpWSjv1v28Yq0ZAH6ojOkbaVmPshoNvnAAOMLKnCna95u0K2L91Qyut+dolU07edfVxJSLIjbtqe+3RUPNDtDQ6g99MPD3RLbyro4wXROWYdfitgZVEOhU73pEh0ohwMhihTmIX52Z5400DndA6iN20qV2SuWAm2n209Y6aVVd84cp+urRJg3/R6xsdGBrJ6/X0H5ylVrN4YnSAUlbiNgI4aZfshNN3eq1SyW1dBfVuedqJzTe89am48iunGKtyFWo/eDgInCg/rHSIJ0okY8ZisqChWwdW5j5DBATqEJMd7kAMdJQHdKVpF7+eKPNC1Ktwdwt6jcLwMhihTKyDWIwG9Kcv+6fyKaiiEEcdD2JMQbtDna3qvrgtj6C0zvb9nBtEDvW/aqcDdo3tmbLfxQBs84kpE6Ifiefuh2JXo7GsIt/uWXPlSFREYSnR6WI+Aha+Uh/Salm+LyIoFYa3tVydxE4W2TC4MLtlUYsVVuHXRtUEK4W5vcICVRTkUitX2bb8gOmkCBkOUqYmBnT3Z3PimEQqlKg8eWejJ9nrFooDulTdtFxQPQ36qN9szLOKEzvcqamNTlpl8icOFck+21ytq90yvojZGd0HuQVg40pvtNcEI6KjhRnQu6R/szgPdzxDu9jmthVIVy9KW2UKxQiYZJxZr0WIIIuRRbV8MDlYuCBfz310IwrC3ZXIR8p9Jr9wDrYuudTA2QfivMRdtv2oe6JVcY6VK+7ZfEJ170mCIMtMTOi1o/baebG6n/bA8aB61yakc6USMY9cN92aDTvhwnz1qq5KZCR2BOXJ0TzbnFNnaN2Bh3JNTOdYNJ9mYbZ6S6DuOwWO2f+3fjICOGi5FJyzmNS62mQlZiKUHY0ChrB/w86VKezHorC8KD+sdvIOwckFYcOWBjoggdNnGaqVtmQrFagdjU0RCuF2GvMPKPdBtQ96dMYT9eBkMUWdmL2wch3jArZdsdmxyBPSAiYHpPDvGsu0N9X4SkqrCq5LpCR2x0c4A7COL98xgzYdO0b22hnQ/ce6ZPhbfMwI6ahQ7e+EWPdCLojOViLXvzZbKQmnOt2G6wo1HMeV4yBxjQLW9GAQtcIoRmNDdeqB9qJDsShCG/Zi59ECvpC1Tre1Xp3QHgGKP7xevuDhefrRKy5Uq7au8g22gC/nxMhiiznRvWlg5bF47RCYVZ9/AiYFc78K3AdYdD4kh44HuBzO9aWHlsHVjhkRMBtDolGNHr8K3ATbuAIn11ehkBHTU8JAD7YjOgivRaXuIelnEwk1O6xJjQKFUaS8GITr5lh0qJINdFGsF4sYJ4XYlCMN+zFxEX6xUEC6U7bZf7a6xqLRlclWkr/H+6oaObb/AeKANhqCpVmB2sictrBxEhB1j2YFqZVWqWNxzcL43/WwdYjHYuLPvVYVXHaUCHL6nZwXEAJLxGFs3ZgbKA50rVnjoSJGdvSogBpBIw/qtfTU6GQEdNVwWUoJGD7Qr0WlVdIusXuHBA52v90B39HZF5GHdRQh3Np3wJYS7Y/67M54w06HtF6y8d3at6Fq7a0wkGteYBw90YSVGmlK1fXqIM4awHy+DIcocuhusck+9aaALiQ2SN+3AbJ6qpXrrgQadB2080L3FyZ/tUQsrh/FN2YFqZbW/1wXEHEZ3Gw+0wQMuw1hhUTwVXInOPuR1lvKAQLJ1oY7aA75nD3QEHtbd5ECn4iss8OTGAx2hnF4XBgfoPqfXOdadr7EItGVyEa0ynPTBA12qtO/LDtE4XgZDlHG8lz30poF+aL7v0DwL5ZB3cXDJvl63sHIY3Q0H74JKD50Yq50et31zGN80wl0zBarWYLQtm+x1CyuHsd0wsw+s7lL2VooR0FHDZSElWAzfde2Bht6G8Zby+sG6TdGBTJOK4q6MAZX5aLRl6hDCnU2t0ANdrLho+xWVEO7Ox6tWFKtLo4Ortl8QjTQBF9EqsZjYRpqVFRFz7YHu00RnMAw8jhjouQc6i1Jw18xgGMh63sLKYWw3qKoW0YbeUDM69abtm8P4WJZSxeK+g/M93W5Q7JvKIwLbRjO93fDoLt09Zu7+3m7XxgjoqOE8FCc9eKBdic4+hPG6LKIFi57BQtGLMSDEE7plua7CvVIPtKu2XxDu4wXurhenLVO3Hmgn5H0QKr27iFYB7W1fiQdat/1yc08qbdgyGAz+MzMBwxshs7Gnm3XyHvcPSE7n/ukcYyNp1g4le7thU4m790xPwNotHedIv3E8tYPSympyKseWDcMMJTvoDL9xjIV9Sn0wAjpqlHK6WmObNhWZZKMXLu9KdPYphNtFCDMs8UC78XY56w8rlXlAuTIg5EuVrtsyFVy1/RqcEO4Ve6CdomtuKr1H4XiBC6NDvGuDA9ge6DAa6AyG1cR0b6sJOziVdwelkJjTjqfnmF7QvWdmouf5z7AY3TAohcQmp/K9LbrnUDM69af4nhHQUcOFiEjEYwwlYw0e6BE3HjXoQwh3+31xxl2rKO4239JZf1hxLW4SWIqu2zLli27OvXO8Qm4NLeUh3f5HesQnD7S7nN4IHC/oeMyyqUTXBgen7VfHayy9xh5TyI+ZwRBVZvb2PJcT9G/l5rVD7BuQQmKT03l29kNAD62D7FGmEnevUErnz/bhnhnNplg7lGD/AHiglVLsn+6T0WnNZv0sZjzQnRGRmIhcICJ3isiCiNwjIpeIiOszJyIJETlfRH4pInkROWz/+/8EOXbfcJEHCo25s7rwVgcPUbpPHmjnwboF9W12ShWLclV5ENAh/nFy0ZIJ6tp4dZmj6urcJ1K6unWYDQ7gsu1XYwV6ryx6oAcohLtNugeszANdrLho+wXGA20wBMnCEcg92BdvGthVhQfAm3aoUGI2X+qPNw3sokhGQPeE3MNQPNKXqA0RsavXR/+eefDIAvPlau8LiIGunzS6q29pD5ES0MAngU8AvwXOA64Bzge+LSId90VEUsB3gI8DtwEXABcBtwDbghmyz7gQEdCYO6tbP4XQa+sipzUVj5GICYVSpa4l0wCEi7oo8AR1Pb1XIAg7ikGIiCB0U4Xbzv9fgcEBcBeSHIXjFU+1bfsFK8uBdgw7oayxYDCsFvpUgdtBC+hc16lGYWFfvwqIOYyaVlY9wxFdPeybXs+gGJ2cfdjZ6xZWDmO7dfpKH3DxZB0ORORktGi+Vin10rrl+4FPA68Eru6wmr8Bngk8Syl1U1BjDRQXIgIWPdBVSzFfdlklF3ofwr1he9uPiOgqwflidbElUxjzub3iNoR7SQ64VwqlChuy7QWUHkdEcno7HK+hRByRFXigvVxjA3C8QIvf+w91V9zLMey4r7EQ4qgQgyGqOAK6D940gPGxEY4sVJjJlxgbSfdlDH7g9LPuizcN9PkrTMP8QRje0J8xrBb6VLXeYeemEa795X3kiy7SEkNM3++Z0d3w669Deb5tS9wgiJIH+lWAAJ9asvyLQAE4q92X7TDvvwSuU0rdJJr28cNhxOVDsSM6azmdYQyxdP2AnyBfrNS8Xe4LFoX4Yd1lCLdTAKz7tkxePNAhPl7gKn0hFhMyye7bMtXafiU7/DQ6xyvMHheX6R6ZVKL7CAcvbb+cMRkMBn+ZngCJwYYdfdn8oBRFmpzOk4wLx2/o7YN4DSeCoE8etVXFzF5IDOsq3H1g3PbY7o948b19U3myqThHr+2T4WxsF2Dns/eYKAnoJwAW8LP6hUqpBXQ49hM6fP+pwBrgFyLyD8AR4IiITInIh0UkGiYgL6KzVFn0EHUSncnM4vp7hdtw9FScQqm6GC4aRmOAVzx6oLsuilV0kQPtjCPMx8tl2y/QRoeVeKCzqQTSpjc5sNiWqRzitkwuUiRAX2PdRjg4hh1Xbb8g3NeYwRBVZiZg/baO6RpB4bSymox4IbHJqRxbN2ZIxPv0aOyEE5tWVsEzPaH7P8f6c65rrayifs9M59mxKdv5mSko+liJO0oC+lhgWilVbPLefcCYnePcihPs17cBLwXeBbwC+Ak6D/qyVl8UkTeJyK0icuvU1FQ3Y/eP0px70Vn0IDpjcS2ii3N+jLIzSkHR5QP+UmNAGMPRvVJ036MXuvdA59yGB4XdA10u4KbtF9iCsEsPdN6LwQHCfcxc3l8ZO8KjGxZ/X1y0/XLGZDAY/KVPLawcjl0/TCoRi3wrq8mpPDv6VUAMYMM2iCVMHnQvmLEFdJ/YNppBZACiNqZy/Su6B4vnsA9GpygJ6AzQTDwDLNR9phVOuPZG4JlKqX9SSn1NKfUi4GbgbBF5ZLMvKqW+oJQ6VSl16qZNm7oYuo94zIF2LTqht17IShFU1XU4eoMxYCCqcLsrIraSKtxKKQolF/nvzjgicbzcXC+Jrj32+ZKLgnsQnWvMpcGhXFWUumiVtljYL4Rt8gyG1YBl9a2FlUM8JmwfzUTaA121FHfPFPrTwsohntRh+MYDHSyVEhy8u6/3zFAyznHrhyNtdFooV7nv0HytF3xfSGV1GH4f0h6iJKALQKsg+6G6z7TCibX8H6XUnUveu8J+/aMux9Y7XIexLgl7du2F7NHN7FJAQhfGgCi0ZSp580B3IwhLVYuK5aLtlzOOSBwvF9dLOt61x95TyDuE/Ji5z4GG7q6xWtuvTikiiSGdoxnm42UwRJEj90Flvm8trBzGx6LdlufegwVKVat/Fbgd+lhVeNVwcL924PQxagOwW1lF1+h010wepfpYtd5hdKfxQHfgfnSYdjMRfRw6vLvU5vv32q8PNnnvAfs13GUPqxWoLLgXnUWvHugeVhZ2KSBBh5gWStXFgkUDIQjzIHFItC+8kK3rg+0Vp41Z6KIPuqFnHuiK+6Jr9eMKI25zoFdyjbn1QItEo3K5oStEJCYiF4jInSKyICL3iMgldvHObtb3NRFRIvIbv8c6cNTa8fRbDGQ5MFugXPUeyRIGJmstrPoYjgo6D3p2EqzujMAGF0yH5J4Zy7J/Oh/Z9m+1Flb9vmcco1OPj2OUBPTP0eM9rX6hiAwBjwVu7fB9p/hYs5J7zrKHVzC+4Cl7ExHFisWRhTLgRXT2yBrmQRA5Oa3eBGHIH9Yd72CHwgtOW6Zuqkrn3VZgh2gcL3AtCLstIlYoVTsX3IOBCuGueaC7usZceqAh/Hn2hpXwSeATwG/R7SavAc4Hvi0inp4zROT56DolIa7QFyIcb2UIvGkVS3Fgtl0gYHhxijmN9zMcFfR5rBbh0IH+jmOQcYxOfY7a2LkpS6FU5cEjC50/HEIc73lfQ7hBG0KKhyHf2xpVURLQXwUUughYPW9E5z5f5SwQkWNE5EQRqeVEK6X2A/8FnCYif1D32bi9jgpwQ2Cj9wOPIgJgak6njYfOC+khhNtps5N36+2C8D+su/QOOm2ZuvMOuqzADovn3gqp98Dr9bKColiD44F2F8K9sigHu+1XImS/L4aeISIno0XztUqplyilvqiUejvwduDpwCs9rGsE+Czwj4TdoB0WZiYgtQZGju7rMKLeympyOs+64SQbs/2pZF6jj1WFVw3TeyF7FAyt6+swxmvV6yN6z0zl2bx2qP99rB1DSI+L70VGQCulfo2eVF8iIteKyBtE5BK01fsW4Oq6j38EuIMl3mr0JF8AfigiF4vIefZ3TwM+rJQKt8nPo4gAmMppAe2+F3D4Qri1R1H3gR5KxojHXJTLD/vDukvvIDgh7N3kp3rxQNttmSohdfp4uV5SK/RAD0IOtGXpiJUeeKAzyTixQbgnDd3yKkCATy1Z/kX0fHuWh3V9CEgA7/FlZKuB6Qn9ANmvNjI2O8ei3cpqcirHeD/b8Tg4kQSmEndwzEz0PWID6o1O0bxn9k3n+5//DHVGJyOg2/E24B3AyWgx/UrgUuD5SqmOrjOl1K+AJwM/ttf1cSALnKuUel8wQ/YRR0Sk3XuVHA+0uxDuNaH0QGfTCZSCmXyJEbeWrnQEQpJdCuiRdKKroliFWniti2PmXFNhPWYer5euc6Ddtv1Kr2kcV9go22GULo6Xc091mwPt2vrcy98XQy95AmCxmCYFgFJqAbjNfr8jInIa8FbgbUqpIz6PcXDpcwVuh3WZJKPZFPsjWlV4/3S+v+14HDKjMLTeVOIOkumJxZ7bfWTz2iEyqTj7IuiBVkrVjE59Z93xulBpj41Offa7e0MpVQUusf/afe4c4JwW7/0v8EK/x9YTPOUN2x7ouSLJuJBKuLCVhDgHGvS+uArfBi0cDt/T7eiCp5RfFGEdyKTiK/JAu84ZB/v8H+V5W4HjUUA7bZlcXfc2Ttsv1/m8EN40AU9F1/T+dluF272AzkLuIc/bMISeY9FFPJu1mbwPeLKIpNoV+RSRBNpjfYNS6mtuNywibwLeBLB161Zvox4EyvN6nhs7u98jAbRHLYrhqLlihYeOFMMhBkS0d9SEcAdDYRbmZ0PhgRYRdtiFxKLGTL7E3EIlHEanWAw27uz5PRM1D/TqxstDcbob0dmPEG4P4ehzRXdiEMIfLuoyBxqciuoBe6DDHpLspWp7l4LQafvl6n4Je1smT22/bA90V9eYy7ZfEP570tAtGaCZeAZYqPtMO94J7Abe4mXDSqkvKKVOVUqdumnTJi9fHQxm9unXEHjTwG5lNR1So2Ib9teqCYdAQIOOKDCtrILBEVkhiNoAu5VVBO+Zxar1IblnxnaZHGhDG7w8FNeJzqzrB9wRXf2xWu52hO7psiCaJ29XmB/WPeVAd+mBrlXhHoCcXpdtv2Dx2vcakuxUeXd1vMLelqmXHugwGugMvaQAtLoxh+o+0xQR2QW8F/iQUmrS57ENNrVqwmERA1mmcyUOz/fgGcJHHAHT9xZWDmO7YO5+KEZPWIWe6ZDdM2NZ7j04z0I5Wm3LnLztvrewchjdDQfvgkq7bsb+YgR0lOhCdM7kS2S8iM767QSJs41kJ8fEogd6Jl/y4O0KsbgBTwI6m0qsrA+0Kw90yNsyuWz7BYvRF16LYtWqvHsy0oT4eIGnImJde6DdhLxD+O9JQ7fcD4yJSDMRfRw6vLvdU80lwCzwTRHZ5fyhU8xS9v+P8X/YA4Djpdy4s7/jsFmsKhzS38UW7JvKExPYNtr5eaQnmErcwTEzAbEkrN/W75EA2uikFNw9E632b5PTeVKJGMeuH+73UDRju0FVtYjuEUZAR4milzDWRRHg3gPdw7zOUg6SWZ270IH6nFRv3q5ciNsy5VxFEoCdA91FheSc/Z3hpAcPdFgt3qU5TwYHWNx/t+RrHmgP11hoj5f7aJV4TBhKxmoGBC/k3Lb9AvuenAOlPG/HEGp+jn6WaOh6ISJDwGOBWzt8fxs6j/p2YKLu7zh0WPcEOj/asJSZCV1AJxUO4RfVVlaTUzm2bMiQdtOOrxeMGQEdGNMTsHEHxMNRAmpnRI1Ok1M5doxm3XXF6QV9qMQdjivI4I6a19Z9ETFw2TcZeuyBdp8DXD9+994ue93lgquq5T1FKW850OmEZzEI2js4nIy7b/sF4fUQegl5r4Uke/OoLnqgByCn10POODh59t1cYy7bfjljURZUFiAZEqu1wQ++CvwVurPFj+qWvxGd+3yVs8D2JK8DDiilHJfLO4D1Tdb7WXQO9duBB/we9EAQkmrCDls3ZkjEJHI5nZNTIWnH47BxHBDTyioIQlK13mHHmG10ilghscmpPCdsdlcItyc4vaB7aHQyAjpKlHIQT0Ei1fGjw3UPta6qCkNvw3g9hjA3+3db6gVh2AR0ZUELCQ+CsFCqopTy1KMy77aiNNSd+5D+iHu5XmpFsbwJwoJnD3SIQ5I9hHCDk2fvPYTbddsvaLzGjIAeGJRSvxaRfwTeKiLXAt8FTgLOB24Brq77+EeAPcDTgZvt7/+w2XpF5O+BnFLq68GNPsIopR8WH/2Kfo+kRjIeY+vGTKQ80Jal2D+d54njo/0eyiKJNKzfalpZ+Y1VhdlJeMSf9HskNbLpBJvXDrEvQh7octXiwGyBM0/Z3O+hLDK0DrJH9dToZEK4o4QHEZFKxEjF9ekNpwc67z6EuU4Eesq3hHDmqHpoyQT6B7ZiKUpVb+HohWKli3MfwuMF3q6XlXqgPVWVDvHxAvfXWBceaKftl6fjBeE9ZoaV8Da0J/lk4B+BVwKXAs9XSoU0jybi5B6G4pHQFENy2DEWrVZWDx5ZYL5cZUeYPNCgz6vxQPvLobuhWgpV1AZE7545MFugYil2hKGFVT09bv9mBHSU8CAiYFFsuvdChjOEe8Ue6LDhMby2Jgg9FnnKexE3UWjL5NUD7TGn16lCPRCV3ru4xrwaHJy2X56OF4T3mBm6RilVVUpdopQ6QSmVVkodp5R6u1Iqt+Rz5yilRCl1s4t1bldKPSqwQUcdxzsZMjEwvinL/pk8VSsatQ4c4bJzLGQCenS3blNmakb4h1N0L0Qh3OD0T8+hInKuQ9fCymF0p/FAG1rgQUTAoth074XsYRivB2/6UDJWK77s3dsVwod1j+G1i22ZvAtC1+ImCm2ZgjY4eGljBSEX0O7bfoE2Gni+vpwq714q4ztjMxgMKyNk7XgcxjeNUKpY3H9ovt9DcUXoWlg5jO2Cch6O3N/vkQwOIWv75jC+aYQjCxVm8r1rwbQSai2swuaBHt0NhWmYP9iTzRkBHSU8iAhYfLANZxVu9/siIjUR2VW+ZdjoIj8VughJLnrwQDvjCWt4rScBvTIPtPs2VmE3OLhr+wVOpffuQt69R4WE9BozGKLEzF5IDMPaLf0eSQPjtic3Kjmdk1N5sqk4R691Z2zsGX2oKjzwTE/A0HrIhCjfnehVr5+cyjOaTbEuk+z3UBpxDCPTvQnjNgI6SngM4XbEpmvRme6xBzrtvoJfthaO7lVAh3ASr4XXutv/rotilSqMuD1eEH5B6PJ6iceE4aT3kGTHA51x0/YL7OOVC2eIXSnnqXheVx5o+/iG8vfFYBh0pid0yKKLVpC9ZLEXdDTu831TOXZsynoq0NkTamLACGjfmNmrj2vIzrXjyY1KK6vJ6Vz4wreh50ancP3yGtrjWUBrIeDao5bsYdhzl+Ho3r3pIZzEuwzh7s4D7UVAhzQk2WPbL9DXfjcGh0wqTsxtX8NUFlQVKkVP2+kJHqNVsqlEF9dXF22/nLEZDIaVMROuFlYOYyMp1gwlItPKanIqz3jYQlEB1hyjn/dML2j/mJ4IXf4zwHEbhkklYpFpZRXae2bDNoglemZ0MgI6SngUERmvojOe0MWkQhbCDYsP6aHM5/aK1xBu+/x1IwhdF5CD8HqgPbb9An2deK/C7dXgEPJrzOP95f366qLtF4QzKsRgiBKVEhy8O3S5nKBTrsY3jUTCA71QrnL/4flwetNEel4UaaBZOAK5Bxf7BYeIeEzYPpqJhAf6cKHMTL4UznsmnoQNO4wH2tAEz14lj6ITeuOFrJR0K4FujAGevV0h/EGqhXC7b2MF3bRl6sYDHcbj5a0lE2ijg/c+0F4NDmG+xjxGq6QSFCsWFQ+t0moe6EGICjEYosTB/Tr6JYTeNNAVrfdHwJt210wepUJYQMxhdLfJgfYLx5Mf0ntmfCwaRqd9YS265zC22+RAG5rg2avkUXRCbwR02bsg8mwMSKR1FeIwPqx7DuG2PdAeclTLVYtSxXIffeCMJ5THy1tLJtBGh54YHCC8x6yLgoOFsvtj5jkHOjEMSDiPl8EQJRwxEEJvGuiiSA8cXqgVZgwrtXY8YWth5TC2Gw7dA+WFfo8k+szs068hjNoAfc8cmC1Q9mDE7gf7w9rCymF0F8xOguXt+a8bjICOCpalhWeQohP0+otzXkfnjaJ3QeTZGFBryxRC72AxBwgkh119PNNFEbFaiyFPRcRC6oHu5npJxcl59EDnixWPBocQhyQXveaMe7/GnOPr+pjFYnpMxRAeL4MhSjhhvWH1pkWkkJgTMhtqMYDSgsCwMmYmQGKwcbzfI2nK+KYRKpbintlCv4fSlsnpHImYsHVjpt9Dac7YbqgW4dCBwDdlBHRUKHvzWkIXYc/O+oP2EHn0wMJKwtFD+LDuscXQcNLJgXZvUVtsMTQAOdBdXS8Jz96PfKnq3eAAIb7GvHugvVxjntt+QXjvSYMhSsxMwMjRMLS23yNpSq0tT8jDuCen8hyzbsjbc0UvcbylJox75UxPwPqtOjoxhESlldXkVJ6tGzMk4yGVj7VK3MGHcYf0V2MVcNvVuqiBW0q2V9hjJWLwUOTHWf/sJPzP59x/xyuH77G35SWnNWG/ejQGPPjrYPelG+671dN5dNoy/fyuWb78X/tdfWcmVwK6FDdhO17Ow4OX6yUd5+G5ouvjBfDAoXmOXTfkflzOObz9mzD1e/ff6wULhzznQAN87dZ7OMblMfjJvhlg0cDjilQWHvh/4bvGumXzo2D7U/o9CoOf/Oqq4KOwVsqB/wmt9xlg+2gWEfj32+5jJhfCLgU2vzhwMLzeZ1issv6/X4MjD/R3LFHnvlth7IR+j6IlTiurb/zyXu45GF4v9P+75xCPPDachjugsf3b7mcFuikjoPvFf368i7Ac8RR+svvoNYyNpBkdSbnfxOhumLwZvv9uj2PzSCwB67e5/vgjjl7Dzk1Zb1avsd3wu+/qB/awsc3bQ/f4piw/2TdTEy1uiAnewmxGd+lq10Gf+26Ip2DdFtcf37lphGt/eR/v//ZvPW1mh5dcuLXHQTIDv7zC0zZ6xuhO1x/dOpohERO+8J/efpO2j2aIu237Bfr3ZeJ6eOA2T9sJLaf9HyOgB41b/q4n4X8r5qQX9nsELRlKxjnluHX88I6H+eEdD/d7OG150WOO7fcQWpPKwuZT4M7v6D/Dynjc2f0eQUvWZZLsOmqE7/3mQb73mwf7PZy2nPUk98/uPSczCkPrYXZf4JsSpVTgGxkkTj31VHXrrbeufEXzh7RY8UI8Cek1K992O5SC+YPBbgN0GI0HL2xXWFVYOBzsNrolvVa3DXNJuWp5riqdjMfcF3hyWDjck+ILnkkMQcq9MUApxZH5Cgpvv2/rhpOIy9B6AMrz+i9sSAyG13v6SqFUoVTx9puUSSVIJTwYtcJ8T3aDT79jIvILpdSpPoxo1dLXubkfDG9wnQbUD7qZs3qNIKwdTnj7ze811XL4IyKigIgWViE+11G5Z9Zlkv0eRnvmHoTsUbruygppNzcbD3S/8Phw2zNEILOx36Pwh1h8YPYlGY+xPuMhkqBbhtYFv40eINKjH/nksOticGEnk0oQ+CU2QPekYUAJ69wcMXo2Zw068aT5zVwlmHvGJ9Zs7slmQpoFbjAYDAaDwWAwGAwGQ7gwAtpgMBgMBoPBYDAYDAYXGAFtMBgMBoPBYDAYDAaDC4yANhgMBoPBYDAYDAaDwQVGQBsMBoPBYDAYDAaDweACI6ANBoPBYDAYDAaDwWBwgRHQBoPBYDAYDAaDwWAwuMAIaIPBYDAYDAaDwWAwGFxgBLTBYDAYDAaDwWAwGAwuMALaYDAYDAaDwWAwGAwGFxgBbTAYDAaDwWAwGAwGgwtEKdXvMUQKEZkC7m7y1hgw3ePhhInVvP+red/B7P9q3v/VvO/g3/5vU0pt8mE9q5Y2c/OgstrvPb8wx9EfzHH0B3Mc/SHwudkIaJ8QkVuVUqf2exz9YjXv/2redzD7v5r3fzXvO5j9N/QPc+35gzmO/mCOoz+Y4+gPvTiOJoTbYDAYDAaDwWAwGAwGFxgBbTAYDAaDwWAwGAwGgwuMgPaPL/R7AH1mNe//at53MPu/mvd/Ne87mP039A9z7fmDOY7+YI6jP5jj6A+BH0eTA20wGAwGg8FgMBgMBoMLjAfaYDAYDAaDwWAwGAwGFxgBbTAYDAaDwWAwGAwGgwuMgDYYDAaDwWAwGAwGg8EFRkCvABGJicgFInKniCyIyD0icomIZPs9tqAREdXiL9fvsfmJiFwkIteIyKS9f3d1+PwJIvItETkoInkR+ZGI/HGPhusrXvZdRC5uc028o4fD9gUReYSIfEBE/kdEpkRkTkRuE5G/bnZ/D9J5B2/7P2jnHmrn8yoRuUNEDotIwf6d/4SIHNPi8wNz/g3hwuvvkcE9IpIRkf3279Vn+j2eKCEiG0Xk70Vkr/0MPCUiN4nIU/s9tqggIiMi8lci8mv7vp4WkZ+IyDkiIv0eX9gI0zN5wo+VrGI+CZwPfBO4BDjJ/v/jROSZSimrn4PrAT9ieaW7cj8GEiAfBmaBXwLr231QRHYCPwEqwMeAw8AbgetF5Eyl1A+DHarvuN73Oi4Appcs+4WPY+oVrwPeAvw7cBX6un468LfAy0XkiUqpeRjI8w4e9r+OQTn3AFuAY9C/7feiz+0pwJuAV4rIY5VSD8PAnn9DuOjmfjS44wPAWL8HETVEZBtwMzACXAb8HlgHPBo4rn8jiw4iEgO+BzwZ+BfgUiADvAr4MlpTvLtvAwwn4XkmV0qZvy7+gJMBC/jGkuXnAQp4db/HGPD+K+Dyfo+jB/s5Xvfv3wB3tfns14Aq8Ni6ZSPA3cDvsKveR+XP475fbF8T2/s9bp/2/VRgXZPlf2vv51sH9bx3sf8Dde47HJeX2fv6rkE+/+YvXH9e7kfz5+m4/gH64frt9nH8TL/HFJU/tAPlHuCYfo8lqn/Ak+zr7pNLlqeASeBQv8cYtr8wPZObEO7ueRUgwKeWLP8iUADO6vWA+oGIpERkpN/jCAql1KSbz9lhdC8EblZK3Vb3/Rzwz8AjgCcEMcagcLvvSxGRtSIS6egWpdStSqnDTd76qv36KBjM8w7u938pg3DuO3C3/boBBvf8G8JFt/ejoTUiEkc/r30fuLbPw4kUIvI04CnAx5RSD4hIUkQy/R5XBFlrv95fv1ApVUJHc+V7PqKQE6ZnciOgu+cJaA/0z+oXKqUWgNtYHQ9Nf4Y2FsyJyMMicqmIrOv3oPrEo4E08N9N3vsf+3U1XBP/iw6TWbDzeM7s94B8Zov9+pD9utrO+9L9r2fgzr2IDInImIhsEZFnA5+33/qu/brazr8hXLS7Hw3tuQA4EXhrvwcSQZ5rvx4QkW8D80BeRH4vIqvCeeQTPwMOAe8SkZeJyFY7Z/cjwOPR0V2G7gh8bh5kT0HQHAtMK6WKTd67D3iyiKRsS9Ig8jPgGmAv2or2XPRE9Eci8mTbyrOaONZ+va/Je86yQc4LOoTOh/8JcBA4AXgb8H9F5HVKqcv7NjKfsD0W70WH/F1tL141573F/sNgn/s3oPPSHO4CzlJK/cj+/6o5/4Zw0eZ+NHRARHYA7wc+oJS6S0S293lIUeME+/WLwASwBy1W3g58RUSSSqkv92twUUEpdVBEXoj2iH6t7q054KVKqW/1ZWCDQeBzsxHQ3ZMBmolngIW6zwykgFZKnb5k0RUi8r/Ah4C/tF9XE074UrNrYmHJZwYOpdSnli4TkS+hc1Q+KSJfHwCjyqeAJwJ/pZT6nb1sNZ33T7F8/wf93H8LuBOdN/U4dEjYprr3V9P5N4SLT9HkfjS44p+A/cAn+j2QiLLGfp0Dnu44ikTkm+jc3Q+LyL+owS+k6wc59Fz572gj9EZ0wcCrReRFSqkf9HNwESbwudmEcHdPAW1xa8ZQ3WdWEx9HGwye1++B9AHnXDe7Jlbl9aCUmgE+h66U+OT+jmZliMgH0REWX1BKfaTurVVx3tvsf1MG5dwrpe5VSv1QKfUtpdT70J6Wj4rIRfZHVsX5N4QLr/ejYRE7xPjZwJ8rpQata0ivcCq+/2t9lKVS6iBaCG5m0UttaIGInIIWzT9QSr1TKfVNpdRl6PzyB4Ev2pEmBu8EPjcbAd099wNjItLs5ByHDu8eSO9zK+zJ6H5WZ0sIpwhEs5AQZ1mzUJJB5y77NbLXhIhcDLwH3Vbiz5e8PfDnvcP+t+Mu+zWy534pSqn/BX4F/IW9aODPvyFcrOB+XPXYz2ufQNcweFBEdonILmCb/ZF19rL1/RpjRLjXfn2wyXsP2K8bejSWKHMBWsxdU79QKVUA/i/6utze+2ENBIHPzUZAd8/P0cfvtPqFIjIEPBa4tQ9j6iv2vm9hdRY0+TU6VORJTd57ov266q4JYLf9GslrQkTeB7wPuAJ4g7L7INQx0Ofdxf63I9Lnvg3D6DA7GPDzbwgXK7wfDfre3YSOkpuo+7vZfv8s+/9v6MfgIoRTPHdLk/ecZQ/3aCxRxhFyzbzMiSWvBm8EPjcbAd09X0X3b3vbkuVvRMfVX9XrAfUKERlt8dYH0Tf7t3s4nFBg53h+GzhDRB7jLLdbfL0BPSn/rMXXI42IJJpVXxeR44E3AzPoMKVIISLvRVfB/ApwbrN8rkE+7272f4DP/eYWy5+Obhn0PzDY598QLtzcj4aO5NG93Jf+OREl37f//+99GV10+BY6//ms+jamInIM8GJgQim1tz9DixS/tV/PqV9oR0C8CF2Uc19vhzQY9GJuFmPA7B4RuRSdh/RNdEjQScD5wH8BfzyoE5yIfBJtwbkJOIAusPNc4OnAT9FFJeZbryE6iMhrWQzvOg/d4P4S+/93K6W+UvfZXegbsgx8EjiCNqicAjxPKXV9r8btB2733f6x34+eVO9gsRLzG9DXxquUUg0hSmFHRN4CfAZ9ff8NumVdPQ85xT0G7byD+/0fxHMPtWI4xwD/ge79PIRuK/JKdN7UGU5vyUE8/4Zw4eX3yOAduwr3fuAflVKmrZULRORN6LZ+twNfQj8fvBn9u/l8pdQNfRxeJBCRbcAv0eHuV6G1w0b0/LEdeItS6rN9G2AICdUzuVLK/HX5hw67uBD4HTpU4D50fs1Iv8cW8H6/CLje3t8FtFX3NuCvgKF+j8/nfb0ZHWnQ7O/mJp8/CbgO3dqnAPwYeGa/9yPIfUcXafhndMjMQfvH6gHg68Bp/d6PLvf98jb7vuzcD9J597L/g3ju7f16OToH7R77N24eXY37UmBrk88P1Pk3f+H68/p7ZP48H9/t9nH8TL/HEqU/4CXoaJw82iN9A/CH/R5XlP6AncC/oPPKy2iR95/AS/o9tjD+hemZ3HigDQaDwWAwGAwGg8FgcIHJgTYYDAaDwWAwGAwGg8EFRkAbDAaDwWAwGAwGg8HgAiOgDQaDwWAwGAwGg8FgcIER0AaDwWAwGAwGg8FgMLjACGiDwWAwGAwGg8FgMBhcYAS0wWAwGAwGg8FgMBgMLjAC2mAwGAwGg8FgMBgMBhcYAW0wGAwGg8FgMBgMBoMLjIA2GAwGg8FgMBgMBoPBBf8/HxjiVd8Zf7sAAAAASUVORK5CYII=\n", "text/plain": [ - "
" + "
" ] }, "metadata": {