forked from CharlieMat/FedFairRec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
98 lines (80 loc) · 3.34 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import os
import time
import argparse
import setproctitle
import numpy as np
import torch
import utils
#################################################################################
# Command Interface #
#################################################################################
from model.baselines import *
from model.fed_rec import *
from reader import *
from task import *
if __name__ == '__main__':
# initial args
init_parser = argparse.ArgumentParser()
init_parser.add_argument('--proctitle', type=str, default='Elizabeth Bennet', help='process title on CLT')
init_parser.add_argument('--model', type=str, default='MF', help='Create a model to run.')
init_parser.add_argument('--task', type=str, default='TopK', help='Task to run')
initial_args, _ = init_parser.parse_known_args()
print(initial_args)
modelClass = eval('{0}.{0}'.format(initial_args.model))
taskClass = eval('{0}.{0}'.format(initial_args.task))
readerClass = eval('{0}.{0}'.format(modelClass.get_reader()))
# setproctitle.setproctitle(initial_args.proctitle+"("+initial_args.model+"-"+initial_args.task+")")
setproctitle.setproctitle(initial_args.proctitle)
# control args
parser = argparse.ArgumentParser()
parser.add_argument('--cuda', type=int, default=-1,
help='-1 if using cpu; 0,1... if using cuda')
parser.add_argument('--seed', type=int, default=9,
help='random seed')
mode_group = parser.add_mutually_exclusive_group(required=True)
mode_group.add_argument("--train", action="store_true", help="Run train")
mode_group.add_argument("--train_and_eval", action="store_true", help="Run train")
mode_group.add_argument("--continuous_train", action="store_true", help="Run continous train")
mode_group.add_argument("--eval", action="store_true", help="Run eval")
# customized args
parser = modelClass.parse_model_args(parser)
parser = readerClass.parse_data_args(parser)
parser = taskClass.parse_task_args(parser)
args, _ = parser.parse_known_args()
print(args)
# reproducibility
utils.set_random_seed(args.seed)
# GPU
if args.cuda >= 0 and torch.cuda.is_available():
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.cuda)
torch.cuda.set_device(args.cuda)
device = "cuda:" + str(args.cuda)
else:
device = "cpu"
# reader
print("Setup reader")
reader = readerClass(args)
print(reader.get_statistics())
# task
print("Setup task")
task = taskClass(args, reader)
# run task
if args.train or args.train_and_eval:
# train model
for i in range(task.n_round):
print(f"#######################\r\n# Round {i+1} #\r\n#######################")
# model
model = modelClass(args, reader, device)
model.log()
task.log()
model.show_params()
model = model.to(device)
task.train(model, continuous = False)
if args.train_and_eval:
task.do_test(model)
else:
model = modelClass(args, reader, device)
model.to(device)
if args.continuous_train:
task.train(model, continuous = True)
task.do_test(model)