forked from eyaler/stylegan-encoder
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_resnet.py
266 lines (229 loc) · 13.1 KB
/
train_resnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
"""
Trains a modified Resnet to generate approximate dlatents using examples from a trained StyleGAN.
Props to @SimJeg on GitHub for the original code this is based on, from this thread: https://github.com/Puzer/stylegan-encoder/issues/1#issuecomment-490469454
"""
import os
import math
import numpy as np
import pickle
import cv2
import argparse
import dnnlib
import config
import dnnlib.tflib as tflib
import tensorflow
import keras
import keras.backend as K
from keras.applications.resnet50 import preprocess_input
from keras.layers import Input, LocallyConnected1D, Reshape, Permute, Conv2D, Add
from keras.models import Model, load_model
def generate_dataset_main(n=10000, save_path=None, seed=None, model_res=1024, image_size=256, minibatch_size=16, truncation=0.7):
"""
Generates a dataset of 'n' images of shape ('size', 'size', 3) with random seed 'seed'
along with their dlatent vectors W of shape ('n', 512)
These datasets can serve to train an inverse mapping from X to W as well as explore the latent space
More variation added to latents; also, negative truncation added to balance these examples.
"""
n = n // 2 # this gets doubled because of negative truncation below
model_scale = int(2*(math.log(model_res,2)-1)) # For example, 1024 -> 18
Gs = load_Gs()
if (model_scale % 3 == 0):
mod_l = 3
else:
mod_l = 2
if seed is not None:
b = bool(np.random.RandomState(seed).randint(2))
Z = np.random.RandomState(seed).randn(n*mod_l, Gs.input_shape[1])
else:
b = bool(np.random.randint(2))
Z = np.random.randn(n*mod_l, Gs.input_shape[1])
if b:
mod_l = model_scale // 2
mod_r = model_scale // mod_l
if seed is not None:
Z = np.random.RandomState(seed).randn(n*mod_l, Gs.input_shape[1])
else:
Z = np.random.randn(n*mod_l, Gs.input_shape[1])
W = Gs.components.mapping.run(Z, None, minibatch_size=minibatch_size) # Use mapping network to get unique dlatents for more variation.
dlatent_avg = Gs.get_var('dlatent_avg') # [component]
W = (W[np.newaxis] - dlatent_avg) * np.reshape([truncation, -truncation], [-1, 1, 1, 1]) + dlatent_avg # truncation trick and add negative image pair
W = np.append(W[0], W[1], axis=0)
W = W[:, :mod_r]
W = W.reshape((n*2, model_scale, 512))
X = Gs.components.synthesis.run(W, randomize_noise=False, minibatch_size=minibatch_size, print_progress=True,
output_transform=dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=True))
X = np.array([cv2.resize(x, (image_size, image_size), interpolation = cv2.INTER_AREA) for x in X])
#X = preprocess_input(X, backend = keras.backend, layers = keras.layers, models = keras.models, utils = keras.utils)
X = preprocess_input(X)
return W, X
def generate_dataset(n=10000, save_path=None, seed=None, model_res=1024, image_size=256, minibatch_size=16, truncation=0.7):
"""
Use generate_dataset_main() as a helper function.
Divides requests into batches to save memory.
"""
batch_size = 16
inc = n//batch_size
left = n-((batch_size-1)*inc)
W, X = generate_dataset_main(inc, save_path, seed, model_res, image_size, minibatch_size, truncation)
for i in range(batch_size-2):
aW, aX = generate_dataset_main(inc, save_path, seed, model_res, image_size, minibatch_size, truncation)
W = np.append(W, aW, axis=0)
aW = None
X = np.append(X, aX, axis=0)
aX = None
aW, aX = generate_dataset_main(left, save_path, seed, model_res, image_size, minibatch_size, truncation)
W = np.append(W, aW, axis=0)
aW = None
X = np.append(X, aX, axis=0)
aX = None
if save_path is not None:
prefix = '_{}_{}'.format(seed, n)
np.save(os.path.join(os.path.join(save_path, 'W' + prefix)), W)
np.save(os.path.join(os.path.join(save_path, 'X' + prefix)), X)
return W, X
def is_square(n):
return (n == int(math.sqrt(n) + 0.5)**2)
def get_resnet_model(save_path, model_res=1024, image_size=256, depth=2, size=0, activation='elu', loss='logcosh', optimizer='adam'):
# Build model
if os.path.exists(save_path):
print('Loading model')
return load_model(save_path)
print('Building model')
model_scale = int(2*(math.log(model_res,2)-1)) # For example, 1024 -> 18
if size <= 0:
from keras.applications.resnet50 import ResNet50
resnet = ResNet50(include_top=False, pooling=None, weights='imagenet', input_shape=(image_size, image_size, 3))
else:
from keras_applications.resnet_v2 import ResNet50V2, ResNet101V2, ResNet152V2
if size == 1:
resnet = ResNet50V2(include_top=False, pooling=None, weights='imagenet', input_shape=(image_size, image_size, 3), backend = keras.backend, layers = keras.layers, models = keras.models, utils = keras.utils)
if size == 2:
resnet = ResNet101V2(include_top=False, pooling=None, weights='imagenet', input_shape=(image_size, image_size, 3), backend = keras.backend, layers = keras.layers, models = keras.models, utils = keras.utils)
if size >= 3:
resnet = ResNet152V2(include_top=False, pooling=None, weights='imagenet', input_shape=(image_size, image_size, 3), backend = keras.backend, layers = keras.layers, models = keras.models, utils = keras.utils)
layer_size = model_scale*8*8*8
if is_square(layer_size): # work out layer dimensions
layer_l = int(math.sqrt(layer_size)+0.5)
layer_r = layer_l
else:
layer_m = math.log(math.sqrt(layer_size),2)
layer_l = 2**math.ceil(layer_m)
layer_r = layer_size // layer_l
layer_l = int(layer_l)
layer_r = int(layer_r)
x_init = None
inp = Input(shape=(image_size, image_size, 3))
x = resnet(inp)
if (depth < 0):
depth = 1
if (size <= 1):
if (size <= 0):
x = Conv2D(model_scale*8, 1, activation=activation)(x) # scale down
x = Reshape((layer_r, layer_l))(x)
else:
x = Conv2D(model_scale*8*4, 1, activation=activation)(x) # scale down a little
x = Reshape((layer_r*2, layer_l*2))(x)
else:
if (size == 2):
x = Conv2D(1024, 1, activation=activation)(x) # scale down a bit
x = Reshape((256, 256))(x)
else:
x = Reshape((256, 512))(x) # all weights used
while (depth > 0): # See https://github.com/OliverRichter/TreeConnect/blob/master/cifar.py - TreeConnect inspired layers instead of dense layers.
x = LocallyConnected1D(layer_r, 1, activation=activation)(x)
x = Permute((2, 1))(x)
x = LocallyConnected1D(layer_l, 1, activation=activation)(x)
x = Permute((2, 1))(x)
if x_init is not None:
x = Add()([x, x_init]) # add skip connection
x_init = x
depth-=1
x = Reshape((model_scale, 512))(x) # train against all dlatent values
model = Model(inputs=inp,outputs=x)
model.compile(loss=loss, metrics=[], optimizer=optimizer) # By default: adam optimizer, logcosh used for loss.
return model
def finetune_resnet(model, save_path, model_res=1024, image_size=256, batch_size=10000, test_size=1000, n_epochs=10, max_patience=5, seed=0, minibatch_size=32, truncation=0.7):
"""
Finetunes a resnet to predict W from X
Generate batches (X, W) of size 'batch_size', iterates 'n_epochs', and repeat while 'max_patience' is reached
on the test set. The model is saved every time a new best test loss is reached.
"""
assert image_size >= 224
# Create a test set
print('Creating test set:')
np.random.seed(seed)
W_test, X_test = generate_dataset(n=test_size, model_res=model_res, image_size=image_size, seed=seed, minibatch_size=minibatch_size, truncation=truncation)
# Iterate on batches of size batch_size
print('Generating training set:')
patience = 0
best_loss = np.inf
#loss = model.evaluate(X_test, W_test)
#print('Initial test loss : {:.5f}'.format(loss))
while (patience <= max_patience):
W_train = X_train = None
W_train, X_train = generate_dataset(batch_size, model_res=model_res, image_size=image_size, seed=seed, minibatch_size=minibatch_size, truncation=truncation)
model.fit(X_train, W_train, epochs=n_epochs, verbose=True, batch_size=minibatch_size)
loss = model.evaluate(X_test, W_test, batch_size=minibatch_size)
if loss < best_loss:
print('New best test loss : {:.5f}'.format(loss))
patience = 0
best_loss = loss
else:
print('Test loss : {:.5f}'.format(loss))
patience += 1
if (patience > max_patience): # When done with test set, train with it and discard.
print('Done with current test set.')
model.fit(X_test, W_test, epochs=n_epochs, verbose=True, batch_size=minibatch_size)
print('Saving model.')
model.save(save_path)
parser = argparse.ArgumentParser(description='Train a ResNet to predict latent representations of images in a StyleGAN model from generated examples', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--model_url', default='https://drive.google.com/uc?id=1MEGjdvVpUsu1jB4zrXZN7Y4kBBOzizDQ', help='Fetch a StyleGAN model to train on from this URL')
parser.add_argument('--model_res', default=1024, help='The dimension of images in the StyleGAN model', type=int)
parser.add_argument('--data_dir', default='data', help='Directory for storing the ResNet model')
parser.add_argument('--model_path', default='data/finetuned_resnet.h5', help='Save / load / create the ResNet model with this file path')
parser.add_argument('--model_depth', default=1, help='Number of TreeConnect layers to add after ResNet', type=int)
parser.add_argument('--model_size', default=1, help='Model size - 0 - small, 1 - medium, 2 - large, 3 - full.', type=int)
parser.add_argument('--activation', default='elu', help='Activation function to use after ResNet')
parser.add_argument('--optimizer', default='adam', help='Optimizer to use')
parser.add_argument('--loss', default='logcosh', help='Loss function to use')
parser.add_argument('--use_fp16', default=False, help='Use 16-bit floating point', type=bool)
parser.add_argument('--image_size', default=256, help='Size of images for ResNet model', type=int)
parser.add_argument('--batch_size', default=2048, help='Batch size for training the ResNet model', type=int)
parser.add_argument('--test_size', default=512, help='Batch size for testing the ResNet model', type=int)
parser.add_argument('--truncation', default=0.7, help='Generate images using truncation trick', type=float)
parser.add_argument('--max_patience', default=2, help='Number of iterations to wait while test loss does not improve', type=int)
parser.add_argument('--freeze_first', default=False, help='Start training with the pre-trained network frozen, then unfreeze', type=bool)
parser.add_argument('--epochs', default=2, help='Number of training epochs to run for each batch', type=int)
parser.add_argument('--minibatch_size', default=16, help='Size of minibatches for training and generation', type=int)
parser.add_argument('--seed', default=-1, help='Pick a random seed for reproducibility (-1 for no random seed selected)', type=int)
parser.add_argument('--loop', default=-1, help='Run this many iterations (-1 for infinite, halt with CTRL-C)', type=int)
args, other_args = parser.parse_known_args()
os.makedirs(args.data_dir, exist_ok=True)
if args.seed == -1:
args.seed = None
if args.use_fp16:
K.set_floatx('float16')
K.set_epsilon(1e-4)
tflib.init_tf()
model = get_resnet_model(args.model_path, model_res=args.model_res, depth=args.model_depth, size=args.model_size, activation=args.activation, optimizer=args.optimizer, loss=args.loss)
with dnnlib.util.open_url(args.model_url, cache_dir=config.cache_dir) as f:
generator_network, discriminator_network, Gs_network = pickle.load(f)
def load_Gs():
return Gs_network
if args.freeze_first:
model.layers[1].trainable = False
model.compile(loss=args.loss, metrics=[], optimizer=args.optimizer)
model.summary()
if args.freeze_first: # run a training iteration first while pretrained model is frozen, then unfreeze.
finetune_resnet(model, args.model_path, model_res=args.model_res, image_size=args.image_size, batch_size=args.batch_size, test_size=args.test_size, max_patience=args.max_patience, n_epochs=args.epochs, seed=args.seed, minibatch_size=args.minibatch_size, truncation=args.truncation)
model.layers[1].trainable = True
model.compile(loss=args.loss, metrics=[], optimizer=args.optimizer)
model.summary()
if args.loop < 0:
while True:
finetune_resnet(model, args.model_path, model_res=args.model_res, image_size=args.image_size, batch_size=args.batch_size, test_size=args.test_size, max_patience=args.max_patience, n_epochs=args.epochs, seed=args.seed, minibatch_size=args.minibatch_size, truncation=args.truncation)
else:
count = args.loop
while count > 0:
finetune_resnet(model, args.model_path, model_res=args.model_res, image_size=args.image_size, batch_size=args.batch_size, test_size=args.test_size, max_patience=args.max_patience, n_epochs=args.epochs, seed=args.seed, minibatch_size=args.minibatch_size, truncation=args.truncation)
count -= 1