forked from jimmysong/programmingbitcoin
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathecc.py
519 lines (433 loc) · 16.7 KB
/
ecc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
from random import randint
from unittest import TestCase
import hashlib
import hmac
import logging
logging.basicConfig(filename='ecc.log',level = logging.DEBUG )
class FieldElement:
def __init__(self, num, prime):
if num >= prime or num < 0:
error = 'Num {} not in field range 0 to {}'.format(
num, prime - 1)
raise ValueError(error)
self.num = num
self.prime = prime
def __repr__(self):
return 'FieldElement_{}({})'.format(self.prime, self.num)
def __eq__(self, other):
if other is None:
return False
return self.num == other.num and self.prime == other.prime
def __ne__(self, other):
# this should be the inverse of the == operator
return not (self == other)
def __add__(self, other):
if self.prime != other.prime:
raise TypeError('Cannot add two numbers in different Fields')
# self.num and other.num are the actual values
# self.prime is what we need to mod against
num = (self.num + other.num) % self.prime
# We return an element of the same class
return self.__class__(num, self.prime)
def __sub__(self, other):
if self.prime != other.prime:
raise TypeError('Cannot subtract two numbers in different Fields')
# self.num and other.num are the actual values
# self.prime is what we need to mod against
num = (self.num - other.num) % self.prime
# We return an element of the same class
return self.__class__(num, self.prime)
def __mul__(self, other):
if self.prime != other.prime:
raise TypeError('Cannot multiply two numbers in different Fields')
# self.num and other.num are the actual values
# self.prime is what we need to mod against
num = (self.num * other.num) % self.prime
# We return an element of the same class
return self.__class__(num, self.prime)
def __pow__(self, exponent):
n = exponent % (self.prime - 1)
num = pow(self.num, n, self.prime)
return self.__class__(num, self.prime)
def __truediv__(self, other):
if self.prime != other.prime:
raise TypeError('Cannot divide two numbers in different Fields')
# self.num and other.num are the actual values
# self.prime is what we need to mod against
# use fermat's little theorem:
# self.num**(p-1) % p == 1
# this means:
# 1/n == pow(n, p-2, p)
num = (self.num * pow(other.num, self.prime - 2, self.prime)) % self.prime
# We return an element of the same class
return self.__class__(num, self.prime)
def __rmul__(self, coefficient):
num = (self.num * coefficient) % self.prime
return self.__class__(num=num, prime=self.prime)
class FieldElementTest(TestCase):
def test_ne(self):
a = FieldElement(2, 31)
b = FieldElement(2, 31)
c = FieldElement(15, 31)
self.assertEqual(a, b)
self.assertTrue(a != c)
self.assertFalse(a != b)
def test_add(self):
a = FieldElement(2, 31)
b = FieldElement(15, 31)
self.assertEqual(a + b, FieldElement(17, 31))
a = FieldElement(17, 31)
b = FieldElement(21, 31)
self.assertEqual(a + b, FieldElement(7, 31))
def test_sub(self):
a = FieldElement(29, 31)
b = FieldElement(4, 31)
self.assertEqual(a - b, FieldElement(25, 31))
a = FieldElement(15, 31)
b = FieldElement(30, 31)
self.assertEqual(a - b, FieldElement(16, 31))
def test_mul(self):
a = FieldElement(24, 31)
b = FieldElement(19, 31)
self.assertEqual(a * b, FieldElement(22, 31))
def test_rmul(self):
a = FieldElement(24, 31)
b = 2
self.assertEqual(b * a, a + a)
def test_pow(self):
a = FieldElement(17, 31)
self.assertEqual(a**3, FieldElement(15, 31))
a = FieldElement(5, 31)
b = FieldElement(18, 31)
self.assertEqual(a**5 * b, FieldElement(16, 31))
def test_div(self):
a = FieldElement(3, 31)
b = FieldElement(24, 31)
self.assertEqual(a / b, FieldElement(4, 31))
a = FieldElement(17, 31)
self.assertEqual(a**-3, FieldElement(29, 31))
a = FieldElement(4, 31)
b = FieldElement(11, 31)
self.assertEqual(a**-4 * b, FieldElement(13, 31))
# tag::source1[]
class Point:
def __init__(self, x, y, a, b):
self.a = a
self.b = b
self.x = x
self.y = y
if self.x is None and self.y is None:
return
if self.y**2 != self.x**3 + a * x + b:
raise ValueError('({}, {}) is not on the curve'.format(x, y))
# end::source1[]
def __eq__(self, other):
return self.x == other.x and self.y == other.y \
and self.a == other.a and self.b == other.b
def __ne__(self, other):
# this should be the inverse of the == operator
return not (self == other)
def __repr__(self):
if self.x is None:
return 'Point(infinity)'
elif isinstance(self.x, FieldElement):
return 'Point({},{})_{}_{} FieldElement({})'.format(
self.x.num, self.y.num, self.a.num, self.b.num, self.x.prime)
else:
return 'Point({},{})_{}_{}'.format(self.x, self.y, self.a, self.b)
def __add__(self, other):
if self.a != other.a or self.b != other.b:
raise TypeError('Points {}, {} are not on the same curve'.format(self, other))
# Case 0.0: self is the point at infinity, return other
if self.x is None:
print('case None')
return other
# Case 0.1: other is the point at infinity, return self
if other.x is None:
return self
# Case 1: self.x == other.x, self.y != other.y
# Result is point at infinity
if self.x == other.x and self.y != other.y:
print('case self.x == other.x')
return self.__class__(None, None, self.a, self.b)
# Case 2: self.x ≠ other.x
# Formula (x3,y3)==(x1,y1)+(x2,y2)
# s=(y2-y1)/(x2-x1)
# x3=s**2-x1-x2
# y3=s*(x1-x3)-y1
if self.x != other.x:
print('self.x ≠ other.x')
s = (other.y - self.y) / (other.x - self.x)
x = s**2 - self.x - other.x
y = s * (self.x - x) - self.y
return self.__class__(x, y, self.a, self.b)
# Case 4: if we are tangent to the vertical line,
# we return the point at infinity
# note instead of figuring out what 0 is for each type
# we just use 0 * self.x
if self == other and self.y == 0 * self.x:
print('Case point at infinity')
return self.__class__(None, None, self.a, self.b)
# Case 3: self == other
# Formula (x3,y3)=(x1,y1)+(x1,y1)
# s=(3*x1**2+a)/(2*y1)
# x3=s**2-2*x1
# y3=s*(x1-x3)-y1
if self == other:
print('Case self == other')
s = (3 * self.x**2 + self.a) / (2 * self.y)
x = s**2 - 2 * self.x
y = s * (self.x - x) - self.y
return self.__class__(x, y, self.a, self.b)
# tag::source3[]
def __rmul__(self, coefficient):
coef = coefficient
current = self # <1>
logging.debug("coeficient {0}".format( coefficient ))
logging.debug("self {0}".format( self ))
result = self.__class__(None, None, self.a, self.b) # <2>
while coef:
if coef & 1: # <3>
result += current
current += current # <4>
coef >>= 1 # <5>
logging.debug("coef {0}".format( coef ))
return result
# end::source3[]
class PointTest(TestCase):
def test_ne(self):
a = Point(x=3, y=-7, a=5, b=7)
b = Point(x=18, y=77, a=5, b=7)
self.assertTrue(a != b)
self.assertFalse(a != a)
def test_on_curve(self):
with self.assertRaises(ValueError):
Point(x=-2, y=4, a=5, b=7)
# these should not raise an error
Point(x=3, y=-7, a=5, b=7)
Point(x=18, y=77, a=5, b=7)
def test_add0(self):
a = Point(x=None, y=None, a=5, b=7)
b = Point(x=2, y=5, a=5, b=7)
c = Point(x=2, y=-5, a=5, b=7)
self.assertEqual(a + b, b)
self.assertEqual(b + a, b)
self.assertEqual(b + c, a)
def test_add1(self):
a = Point(x=3, y=7, a=5, b=7)
b = Point(x=-1, y=-1, a=5, b=7)
self.assertEqual(a + b, Point(x=2, y=-5, a=5, b=7))
def test_add2(self):
a = Point(x=-1, y=1, a=5, b=7)
self.assertEqual(a + a, Point(x=18, y=-77, a=5, b=7))
# tag::source2[]
class ECCTest(TestCase):
def test_on_curve(self):
prime = 223
a = FieldElement(0, prime)
b = FieldElement(7, prime)
valid_points = ((192, 105), (17, 56), (1, 193))
invalid_points = ((200, 119), (42, 99))
for x_raw, y_raw in valid_points:
x = FieldElement(x_raw, prime)
y = FieldElement(y_raw, prime)
Point(x, y, a, b) # <1>
for x_raw, y_raw in invalid_points:
x = FieldElement(x_raw, prime)
y = FieldElement(y_raw, prime)
with self.assertRaises(ValueError):
Point(x, y, a, b) # <1>
# end::source2[]
def test_add(self):
# tests the following additions on curve y^2=x^3-7 over F_223:
# (192,105) + (17,56)
# (47,71) + (117,141)
# (143,98) + (76,66)
prime = 223
a = FieldElement(0, prime)
b = FieldElement(7, prime)
# (x1, y1, x2, y2, x3, y3)
additions = (
(170,142, 60,139,220,181),
( 47, 71, 17, 56,215, 68)
)
# loop over additions
# initialize x's and y's as FieldElements
# create p1, p2 and p3 as Points
# check p1+p2==p3
for x1_raw, y1_raw, x2_raw, y2_raw, x3_raw, y3_raw in additions:
x1 = FieldElement(x1_raw, prime)
y1 = FieldElement(y1_raw, prime)
p1 = Point( x1, y1, a, b)
x2 = FieldElement(x2_raw, prime)
y2 = FieldElement(y2_raw, prime)
p2 = Point( x2, y2, a, b)
x3 = FieldElement(x3_raw, prime)
y3 = FieldElement(y3_raw, prime)
p3 = Point( x3, y3, a, b)
self.assertEqual( p1 + p2, p3)
def test_rmul(self):
# tests the following scalar multiplications
# 2*(192,105)
# 2*(143,98)
# 2*(47,71)
# 4*(47,71)
# 8*(47,71)
# 21*(47,71)
prime = 223
a = FieldElement(0, prime)
b = FieldElement(7, prime)
multiplications = (
# (coefficient, x1, y1, x2, y2)
(2, 192, 105, 49, 71),
(2, 143, 98, 64, 168),
(2, 47, 71, 36, 111),
(4, 47, 71, 194, 51),
(8, 47, 71, 116, 55),
(21, 47, 71, None, None),
)
# iterate over the multiplications
for s, x1_raw, y1_raw, x2_raw, y2_raw in multiplications:
x1 = FieldElement(x1_raw, prime)
y1 = FieldElement(y1_raw, prime)
p1 = Point(x1, y1, a, b)
# initialize the second point based on whether it's the point at infinity
if x2_raw is None:
p2 = Point(None, None, a, b)
else:
x2 = FieldElement(x2_raw, prime)
y2 = FieldElement(y2_raw, prime)
p2 = Point(x2, y2, a, b)
# check that the product is equal to the expected point
self.assertEqual(s * p1, p2)
# tag::source6[]
A = 0
B = 7
# end::source6[]
# tag::source4[]
P = 2**256 - 2**32 - 977
# end::source4[]
# tag::source9[]
N = 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141
# end::source9[]
# tag::source5[]
class S256Field(FieldElement):
def __init__(self, num, prime=None):
super().__init__(num=num, prime=P)
def __repr__(self):
return '{:x}'.format(self.num).zfill(64)
# end::source5[]
# tag::source7[]
class S256Point(Point):
def __init__(self, x, y, a=None, b=None):
a, b = S256Field(A), S256Field(B)
if type(x) == int:
super().__init__(x=S256Field(x), y=S256Field(y), a=a, b=b)
else:
super().__init__(x=x, y=y, a=a, b=b) # <1>
# end::source7[]
def __repr__(self):
if self.x is None:
return 'S256Point(infinity)'
else:
return 'S256Point({}, {})'.format(self.x, self.y)
# tag::source8[]
def __rmul__(self, coefficient):
coef = coefficient % N # <1>
return super().__rmul__(coef)
# end::source8[]
# tag::source12[]
def verify(self, z, sig):
s_inv = pow(sig.s, N - 2, N) # <1>
u = z * s_inv % N # <2>
v = sig.r * s_inv % N # <3>
total = u * G + v * self # <4>
return total.x.num == sig.r # <5>
# end::source12[]
# tag::source10[]
G = S256Point(
0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798,
0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8)
# end::source10[]
class S256Test(TestCase):
def test_order(self):
point = N * G
self.assertIsNone(point.x)
def test_pubpoint(self):
# write a test that tests the public point for the following
points = (
# secret, x, y
(7, 0x5cbdf0646e5db4eaa398f365f2ea7a0e3d419b7e0330e39ce92bddedcac4f9bc, 0x6aebca40ba255960a3178d6d861a54dba813d0b813fde7b5a5082628087264da),
(1485, 0xc982196a7466fbbbb0e27a940b6af926c1a74d5ad07128c82824a11b5398afda, 0x7a91f9eae64438afb9ce6448a1c133db2d8fb9254e4546b6f001637d50901f55),
(2**128, 0x8f68b9d2f63b5f339239c1ad981f162ee88c5678723ea3351b7b444c9ec4c0da, 0x662a9f2dba063986de1d90c2b6be215dbbea2cfe95510bfdf23cbf79501fff82),
(2**240 + 2**31, 0x9577ff57c8234558f293df502ca4f09cbc65a6572c842b39b366f21717945116, 0x10b49c67fa9365ad7b90dab070be339a1daf9052373ec30ffae4f72d5e66d053),
)
# iterate over points
for secret, x, y in points:
# initialize the secp256k1 point (S256Point)
point = S256Point(x, y)
# check that the secret*G is the same as the point
self.assertEqual(secret * G, point)
def test_verify(self):
point = S256Point(
0x887387e452b8eacc4acfde10d9aaf7f6d9a0f975aabb10d006e4da568744d06c,
0x61de6d95231cd89026e286df3b6ae4a894a3378e393e93a0f45b666329a0ae34)
z = 0xec208baa0fc1c19f708a9ca96fdeff3ac3f230bb4a7ba4aede4942ad003c0f60
r = 0xac8d1c87e51d0d441be8b3dd5b05c8795b48875dffe00b7ffcfac23010d3a395
s = 0x68342ceff8935ededd102dd876ffd6ba72d6a427a3edb13d26eb0781cb423c4
self.assertTrue(point.verify(z, Signature(r, s)))
z = 0x7c076ff316692a3d7eb3c3bb0f8b1488cf72e1afcd929e29307032997a838a3d
r = 0xeff69ef2b1bd93a66ed5219add4fb51e11a840f404876325a1e8ffe0529a2c
s = 0xc7207fee197d27c618aea621406f6bf5ef6fca38681d82b2f06fddbdce6feab6
self.assertTrue(point.verify(z, Signature(r, s)))
# tag::source11[]
class Signature:
def __init__(self, r, s):
self.r = r
self.s = s
def __repr__(self):
return 'Signature({:x},{:x})'.format(self.r, self.s)
# end::source11[]
# tag::source13[]
class PrivateKey:
def __init__(self, secret):
self.secret = secret
self.point = secret * G # <1>
def hex(self):
return '{:x}'.format(self.secret).zfill(64)
# end::source13[]
# tag::source14[]
def sign(self, z):
k = self.deterministic_k(z) # <1>
r = (k * G).x.num
k_inv = pow(k, N - 2, N)
s = (z + r * self.secret) * k_inv % N
if s > N / 2:
s = N - s
return Signature(r, s)
def deterministic_k(self, z):
k = b'\x00' * 32
v = b'\x01' * 32
if z > N:
z -= N
z_bytes = z.to_bytes(32, 'big')
secret_bytes = self.secret.to_bytes(32, 'big')
s256 = hashlib.sha256
k = hmac.new(k, v + b'\x00' + secret_bytes + z_bytes, s256).digest()
v = hmac.new(k, v, s256).digest()
k = hmac.new(k, v + b'\x01' + secret_bytes + z_bytes, s256).digest()
v = hmac.new(k, v, s256).digest()
while True:
v = hmac.new(k, v, s256).digest()
candidate = int.from_bytes(v, 'big')
if candidate >= 1 and candidate < N:
return candidate # <2>
k = hmac.new(k, v + b'\x00', s256).digest()
v = hmac.new(k, v, s256).digest()
# end::source14[]
class PrivateKeyTest(TestCase):
def test_sign(self):
pk = PrivateKey(randint(0, N))
z = randint(0, 2**256)
sig = pk.sign(z)
self.assertTrue(pk.point.verify(z, sig))