-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMTGNN.py
152 lines (127 loc) · 6.98 KB
/
MTGNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
from layer import *
class gtnet(nn.Module):
def __init__(self, gcn_true, buildA_true, gcn_depth, num_nodes, device, predefined_A=None, static_feat=None, dropout=0.3, subgraph_size=20, node_dim=40, dilation_exponential=1, conv_channels=32, residual_channels=32, skip_channels=64, end_channels=128, seq_length=12, in_dim=2, out_dim=12, layers=3, propalpha=0.05, tanhalpha=3, layer_norm_affline=True):
super(gtnet, self).__init__()
self.gcn_true = gcn_true
self.buildA_true = buildA_true
self.num_nodes = num_nodes
self.dropout = dropout
self.predefined_A = predefined_A
self.filter_convs = nn.ModuleList()
self.gate_convs = nn.ModuleList()
self.residual_convs = nn.ModuleList()
self.skip_convs = nn.ModuleList()
self.gconv1 = nn.ModuleList()
self.gconv2 = nn.ModuleList()
self.norm = nn.ModuleList()
self.start_conv = nn.Conv2d(in_channels=in_dim,
out_channels=residual_channels,
kernel_size=(1, 1))
self.gc = graph_constructor(num_nodes, subgraph_size, node_dim, device, alpha=tanhalpha, static_feat=static_feat)
self.seq_length = seq_length
kernel_size = 7
if dilation_exponential>1:
self.receptive_field = int(1+(kernel_size-1)*(dilation_exponential**layers-1)/(dilation_exponential-1))
else:
self.receptive_field = layers*(kernel_size-1) + 1
for i in range(1):
if dilation_exponential>1:
rf_size_i = int(1 + i*(kernel_size-1)*(dilation_exponential**layers-1)/(dilation_exponential-1))
else:
rf_size_i = i*layers*(kernel_size-1)+1
new_dilation = 1
for j in range(1,layers+1):
if dilation_exponential > 1:
rf_size_j = int(rf_size_i + (kernel_size-1)*(dilation_exponential**j-1)/(dilation_exponential-1))
else:
rf_size_j = rf_size_i+j*(kernel_size-1)
self.filter_convs.append(dilated_inception(residual_channels, conv_channels, dilation_factor=new_dilation))
self.gate_convs.append(dilated_inception(residual_channels, conv_channels, dilation_factor=new_dilation))
self.residual_convs.append(nn.Conv2d(in_channels=conv_channels,
out_channels=residual_channels,
kernel_size=(1, 1)))
if self.seq_length>self.receptive_field:
self.skip_convs.append(nn.Conv2d(in_channels=conv_channels,
out_channels=skip_channels,
kernel_size=(1, self.seq_length-rf_size_j+1)))
else:
self.skip_convs.append(nn.Conv2d(in_channels=conv_channels,
out_channels=skip_channels,
kernel_size=(1, self.receptive_field-rf_size_j+1)))
if self.gcn_true:
self.gconv1.append(mixprop(conv_channels, residual_channels, gcn_depth, dropout, propalpha))
self.gconv2.append(mixprop(conv_channels, residual_channels, gcn_depth, dropout, propalpha))
if self.seq_length>self.receptive_field:
self.norm.append(LayerNorm((residual_channels, num_nodes, self.seq_length - rf_size_j + 1),elementwise_affine=layer_norm_affline))
else:
self.norm.append(LayerNorm((residual_channels, num_nodes, self.receptive_field - rf_size_j + 1),elementwise_affine=layer_norm_affline))
new_dilation *= dilation_exponential
self.layers = layers
self.end_conv_1 = nn.Conv2d(in_channels=skip_channels,
out_channels=end_channels,
kernel_size=(1,1),
bias=True)
self.end_conv_2 = nn.Conv2d(in_channels=end_channels,
out_channels=out_dim,
kernel_size=(1,1),
bias=True)
if self.seq_length > self.receptive_field:
self.skip0 = nn.Conv2d(in_channels=in_dim, out_channels=skip_channels, kernel_size=(1, self.seq_length), bias=True)
self.skipE = nn.Conv2d(in_channels=residual_channels, out_channels=skip_channels, kernel_size=(1, self.seq_length-self.receptive_field+1), bias=True)
else:
self.skip0 = nn.Conv2d(in_channels=in_dim, out_channels=skip_channels, kernel_size=(1, self.receptive_field), bias=True)
self.skipE = nn.Conv2d(in_channels=residual_channels, out_channels=skip_channels, kernel_size=(1, 1), bias=True)
self.idx = torch.arange(self.num_nodes).to(device)
# projection head
self.project = nn.Sequential(
nn.Linear(skip_channels, residual_channels),
nn.BatchNorm1d(residual_channels),
nn.ReLU(),
nn.Linear(residual_channels, residual_channels)
)
def forward(self, input, idx=None):
input = input.transpose(1, 3)
seq_len = input.size(3)
assert seq_len==self.seq_length, 'input sequence length not equal to preset sequence length'
if self.seq_length<self.receptive_field:
input = nn.functional.pad(input,(self.receptive_field-self.seq_length,0,0,0))
if self.gcn_true:
if self.buildA_true:
if idx is None:
adp = self.gc(self.idx)
else:
adp = self.gc(idx)
else:
adp = self.predefined_A
x = self.start_conv(input)
skip = self.skip0(F.dropout(input, self.dropout, training=self.training))
for i in range(self.layers):
residual = x
filter = self.filter_convs[i](x)
filter = torch.tanh(filter)
gate = self.gate_convs[i](x)
gate = torch.sigmoid(gate)
x = filter * gate
x = F.dropout(x, self.dropout, training=self.training)
s = x
s = self.skip_convs[i](s)
skip = s + skip
if self.gcn_true:
x = self.gconv1[i](x, adp)+self.gconv2[i](x, adp.transpose(1,0))
else:
x = self.residual_convs[i](x)
x = x + residual[:, :, :, -x.size(3):]
if idx is None:
x = self.norm[i](x,self.idx)
else:
x = self.norm[i](x,idx)
skip = self.skipE(x) + skip
# regression
x = F.relu(skip)
x = F.relu(self.end_conv_1(x))
x = self.end_conv_2(x)
# # projection
rep = torch.squeeze(skip)
rep = torch.sum(rep, dim=2)
rep = self.project(rep)
return x, rep