forked from yenchenlin/nerf-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
load_llff.py
456 lines (339 loc) · 14.8 KB
/
load_llff.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
import numpy as np
import os, imageio
import sys
import cv2
from pdb import set_trace
########## Slightly modified version of LLFF data loading code
########## see https://github.com/Fyusion/LLFF for original
def _load_data(basedir, start_frame, end_frame,
factor=None, width=None, height=None,
load_imgs=True, evaluation=False):
print('factor ', factor)
poses_arr = np.load(os.path.join(basedir, 'poses_bounds.npy'))
poses_arr = poses_arr[start_frame:end_frame, ...]
poses = poses_arr[:, :-2].reshape([-1, 3, 5]).transpose([1, 2, 0])
bds = poses_arr[:, -2:].transpose([1, 0])
img0 = [os.path.join(basedir, 'images', f) for f in sorted(os.listdir(os.path.join(basedir, 'images'))) \
if f.endswith('JPG') or f.endswith('jpg') or f.endswith('png')][0]
sh = imageio.imread(img0).shape
sfx = ''
if factor is not None:
sfx = '_{}'.format(factor)
# _minify(basedir, factors=[factor])
factor = factor
elif height is not None:
factor = sh[0] / float(height)
width = int(round(sh[1] / factor))
# width = int((sh[1] / factor))
# _minify(basedir, resolutions=[[height, width]])
sfx = '_{}x{}'.format(width, height)
elif width is not None:
factor = sh[1] / float(width)
width = int(round(sh[0] / factor))
# _minify(basedir, resolutions=[[height, width]])
sfx = '_{}x{}'.format(width, height)
else:
factor = 1
imgdir = os.path.join(basedir, 'images' + sfx)
if not os.path.exists(imgdir):
print(imgdir, 'does not exist, returning')
return
imgfiles = [os.path.join(imgdir, f) for f in sorted(os.listdir(imgdir)) \
if f.endswith('JPG') or f.endswith('jpg') or f.endswith('png')]
imgfiles = imgfiles[start_frame:end_frame]
if poses.shape[-1] != len(imgfiles):
print('Mismatch between imgs {} and poses {} !!!!'.format(len(imgfiles),
poses.shape[-1]))
return
sh = imageio.imread(imgfiles[0]).shape
poses[:2, 4, :] = np.array(sh[:2]).reshape([2, 1])
poses[2, 4, :] = poses[2, 4, :] * 1. / factor
if not load_imgs:
return poses, bds
def imread(f):
if f.endswith('png'):
return imageio.imread(f, ignoregamma=True)
else:
return imageio.imread(f)
imgs = imgs = [imread(f)[..., :3] / 255. for f in imgfiles]
imgs = np.stack(imgs, -1)
if evaluation:
return poses, bds, imgs,
disp_dir = os.path.join(basedir, 'disp')
dispfiles = [os.path.join(disp_dir, f) \
for f in sorted(os.listdir(disp_dir)) if f.endswith('npy')]
dispfiles = dispfiles[start_frame:end_frame]
disp = [cv2.resize(read_MiDaS_disp(f, 3.0),
(imgs.shape[1], imgs.shape[0]),
interpolation=cv2.INTER_NEAREST) for f in dispfiles]
disp = np.stack(disp, -1)
mask_dir = os.path.join(basedir, 'motion_masks')
maskfiles = [os.path.join(mask_dir, f) \
for f in sorted(os.listdir(mask_dir)) if f.endswith('png')]
maskfiles = maskfiles[start_frame:end_frame]
masks = [cv2.resize(imread(f) / 255., (imgs.shape[1], imgs.shape[0]),
interpolation=cv2.INTER_NEAREST) for f in maskfiles]
masks = np.stack(masks, -1)
masks = np.float32(masks > 1e-3)
# print(masks.shape)
# sys.exit()
motion_coords = []
for i in range(masks.shape[-1]):
mask = masks[:, :, i]
coord_y, coord_x = np.where(mask > 0.1)
coord = np.stack((coord_y, coord_x), -1)
motion_coords.append(coord)
print(imgs.shape)
print(disp.shape)
assert (imgs.shape[0] == disp.shape[0])
assert (imgs.shape[0] == masks.shape[0])
assert (imgs.shape[1] == disp.shape[1])
assert (imgs.shape[1] == masks.shape[1])
return poses, bds, imgs, disp, masks, motion_coords
def normalize(x):
return x / np.linalg.norm(x)
def viewmatrix(z, up, pos):
vec2 = normalize(z)
vec1_avg = up
vec0 = normalize(np.cross(vec1_avg, vec2))
vec1 = normalize(np.cross(vec2, vec0))
m = np.stack([vec0, vec1, vec2, pos], 1)
return m
def poses_avg(poses):
hwf = poses[0, :3, -1:]
center = poses[:, :3, 3].mean(0)
vec2 = normalize(poses[:, :3, 2].sum(0))
up = poses[:, :3, 1].sum(0)
c2w = np.concatenate([viewmatrix(vec2, up, center), hwf], 1)
return c2w
def render_path_spiral(c2w, up, rads, focal, zdelta, zrate, rots, N):
render_poses = []
rads = np.array(list(rads) + [1.])
hwf = c2w[:, 4:5]
for theta in np.linspace(0., 2. * np.pi * rots, N + 1)[:-1]:
c = np.dot(c2w[:3, :4],
np.array([np.cos(theta),
-np.sin(theta),
-np.sin(theta * zrate),
1.]) * rads)
z = normalize(c - np.dot(c2w[:3, :4], np.array([0, 0, -focal, 1.])))
render_poses.append(np.concatenate([viewmatrix(z, up, c), hwf], 1))
return render_poses
def recenter_poses(poses):
poses_ = poses + 0
bottom = np.reshape([0, 0, 0, 1.], [1, 4])
c2w = poses_avg(poses)
c2w = np.concatenate([c2w[:3, :4], bottom], -2)
bottom = np.tile(np.reshape(bottom, [1, 1, 4]), [poses.shape[0], 1, 1])
poses = np.concatenate([poses[:, :3, :4], bottom], -2)
poses = np.linalg.inv(c2w) @ poses
poses_[:, :3, :4] = poses[:, :3, :4]
poses = poses_
return poses
#####################
# def spherify_poses(poses, bds):
# p34_to_44 = lambda p : np.concatenate([p, np.tile(np.reshape(np.eye(4)[-1,:], [1,1,4]), [p.shape[0], 1,1])], 1)
# rays_d = poses[:,:3,2:3]
# rays_o = poses[:,:3,3:4]
# def min_line_dist(rays_o, rays_d):
# A_i = np.eye(3) - rays_d * np.transpose(rays_d, [0,2,1])
# b_i = -A_i @ rays_o
# pt_mindist = np.squeeze(-np.linalg.inv((np.transpose(A_i, [0,2,1]) @ A_i).mean(0)) @ (b_i).mean(0))
# return pt_mindist
# pt_mindist = min_line_dist(rays_o, rays_d)
# center = pt_mindist
# up = (poses[:,:3,3] - center).mean(0)
# vec0 = normalize(up)
# vec1 = normalize(np.cross([.1,.2,.3], vec0))
# vec2 = normalize(np.cross(vec0, vec1))
# pos = center
# c2w = np.stack([vec1, vec2, vec0, pos], 1)
# poses_reset = np.linalg.inv(p34_to_44(c2w[None])) @ p34_to_44(poses[:,:3,:4])
# rad = np.sqrt(np.mean(np.sum(np.square(poses_reset[:,:3,3]), -1)))
# sc = 1./rad
# poses_reset[:,:3,3] *= sc
# bds *= sc
# rad *= sc
# centroid = np.mean(poses_reset[:,:3,3], 0)
# zh = centroid[2]
# radcircle = np.sqrt(rad**2-zh**2)
# new_poses = []
# for th in np.linspace(0.,2.*np.pi, 120):
# camorigin = np.array([radcircle * np.cos(th), radcircle * np.sin(th), zh])
# up = np.array([0,0,-1.])
# vec2 = normalize(camorigin)
# vec0 = normalize(np.cross(vec2, up))
# vec1 = normalize(np.cross(vec2, vec0))
# pos = camorigin
# p = np.stack([vec0, vec1, vec2, pos], 1)
# new_poses.append(p)
# new_poses = np.stack(new_poses, 0)
# new_poses = np.concatenate([new_poses, np.broadcast_to(poses[0,:3,-1:], new_poses[:,:3,-1:].shape)], -1)
# poses_reset = np.concatenate([poses_reset[:,:3,:4], np.broadcast_to(poses[0,:3,-1:], poses_reset[:,:3,-1:].shape)], -1)
# return poses_reset, new_poses, bds
def read_MiDaS_disp(disp_fi, disp_rescale=10., h=None, w=None):
disp = np.load(disp_fi)
return disp
def load_nvidia_data(basedir, start_frame, end_frame,
factor=8, target_idx=10,
recenter=True, bd_factor=.75,
spherify=False, path_zflat=False,
final_height=288):
poses, bds, imgs = _load_data(basedir, start_frame, end_frame,
height=final_height,
evaluation=True)
print('Loaded', basedir, bds.min(), bds.max())
# Correct rotation matrix ordering and move variable dim to axis 0
poses = np.concatenate([poses[:, 1:2, :],
-poses[:, 0:1, :],
poses[:, 2:, :]], 1)
poses = np.moveaxis(poses, -1, 0).astype(np.float32)
images = np.moveaxis(imgs, -1, 0).astype(np.float32)
bds = np.moveaxis(bds, -1, 0).astype(np.float32)
# Rescale if bd_factor is provided
sc = 1. if bd_factor is None else 1. / (np.percentile(bds[:, 0], 5) * bd_factor)
# sc = 1. if bd_factor is None else 1./(bds.min() * bd_factor)
poses[:, :3, 3] *= sc
bds *= sc
if recenter:
poses = recenter_poses(poses)
c2w = poses[target_idx, :, :]
# c2w = poses_avg(poses)
## Get spiral
# Get average pose
up = normalize(poses[:, :3, 1].sum(0))
# up = normalize(poses[target_idx, :3, 1])
# Find a reasonable "focus disp" for this dataset
close_disp, inf_disp = bds.min() * .9, bds.max() * 5.
dt = .75
mean_dz = 1. / (((1. - dt) / close_disp + dt / inf_disp))
focal = mean_dz
# Get radii for spiral path
shrink_factor = .8
zdelta = close_disp * .1
tt = poses[:, :3, 3] # ptstocam(poses[:3,3,:].T, c2w).T
rads = np.percentile(np.abs(tt), 90, 0)
c2w_path = c2w
N_views = 120
N_rots = 2
if path_zflat:
zloc = -close_disp * .1
c2w_path[:3, 3] = c2w_path[:3, 3] + zloc * c2w_path[:3, 2]
rads[2] = 0.
N_rots = 1
N_views /= 2
# Generate poses for spiral path
# render_poses = render_path_spiral(c2w_path, up, rads, focal, zdelta, zrate=.5, rots=N_rots, N=N_views)
render_poses = render_wander_path(c2w)
render_poses = np.array(render_poses).astype(np.float32)
images = images.astype(np.float32)
poses = poses.astype(np.float32)
return images, poses, bds, render_poses
def load_llff_data(basedir, start_frame, end_frame,
factor=8, target_idx=10,
recenter=True, bd_factor=.75,
spherify=False, path_zflat=False,
final_height=288):
poses, bds, imgs, disp, masks, motion_coords = _load_data(basedir,
start_frame, end_frame,
height=final_height,
evaluation=False)
print('Loaded', basedir, bds.min(), bds.max())
# Correct rotation matrix ordering and move variable dim to axis 0
poses = np.concatenate([poses[:, 1:2, :],
-poses[:, 0:1, :],
poses[:, 2:, :]], 1)
poses = np.moveaxis(poses, -1, 0).astype(np.float32)
images = np.moveaxis(imgs, -1, 0).astype(np.float32)
bds = np.moveaxis(bds, -1, 0).astype(np.float32)
disp = np.moveaxis(disp, -1, 0).astype(np.float32)
masks = np.moveaxis(masks, -1, 0).astype(np.float32)
# Rescale if bd_factor is provided
sc = 1. if bd_factor is None else 1. / (np.percentile(bds[:, 0], 5) * bd_factor)
# sc = 1. if bd_factor is None else 1./(bds.min() * bd_factor)
poses[:, :3, 3] *= sc
bds *= sc
if recenter:
poses = recenter_poses(poses)
c2w = poses[target_idx, :, :]
# c2w = poses_avg(poses)
## Get spiral
# Get average pose
up = normalize(poses[:, :3, 1].sum(0))
# up = normalize(poses[target_idx, :3, 1])
# Find a reasonable "focus disp" for this dataset
close_disp, inf_disp = bds.min() * .9, bds.max() * 5.
dt = .75
mean_dz = 1. / (((1. - dt) / close_disp + dt / inf_disp))
focal = mean_dz
# Get radii for spiral path
shrink_factor = .8
zdelta = close_disp * .1
tt = poses[:, :3, 3] # ptstocam(poses[:3,3,:].T, c2w).T
rads = np.percentile(np.abs(tt), 90, 0)
c2w_path = c2w
N_views = 120
N_rots = 2
if path_zflat:
zloc = -close_disp * .1
c2w_path[:3, 3] = c2w_path[:3, 3] + zloc * c2w_path[:3, 2]
rads[2] = 0.
N_rots = 1
N_views /= 2
# Generate poses for spiral path
# render_poses = render_path_spiral(c2w_path, up, rads, focal, zdelta, zrate=.5, rots=N_rots, N=N_views)
render_poses = render_wander_path(c2w)
render_poses = np.array(render_poses).astype(np.float32)
images = images.astype(np.float32)
poses = poses.astype(np.float32)
disp = disp.astype(np.float32)
masks = masks.astype(np.float32)
return images, disp, masks, poses, bds, \
render_poses, c2w, motion_coords
import torch
def create_bt_poses(hwf):
num_frames = 40
max_disp = 32.0 # 64 , 48
max_trans = max_disp / hwf[
2] # self.targets['K_src'][0, 0, 0] # Maximum camera translation to satisfy max_disp parameter
z_shift = -max_trans / 6. # -12.0
print(z_shift)
init_pos = np.arcsin(-z_shift / max_trans) * float(num_frames) / (2.0 * np.pi)
max_trans = max_disp / hwf[
2] # self.targets['K_src'][0, 0, 0] # Maximum camera translation to satisfy max_disp parameter
output_poses = []
for i in range(num_frames):
x_trans = max_trans * np.sin(2.0 * np.pi * float(i) / float(num_frames))
y_trans = max_trans * np.cos(2.0 * np.pi * float(i) / float(num_frames)) / 2.0 # * 3.0 / 4.0
z_trans = 0. # z_shift + max_trans * np.sin(2.0 * np.pi * float(init_pos + i) / float(num_frames))
i_pose = np.concatenate([
np.concatenate(
[np.eye(3), np.array([x_trans, y_trans, z_trans])[:, np.newaxis]], axis=1),
np.array([0.0, 0.0, 0.0, 1.0])[np.newaxis, :]
], axis=0) # [np.newaxis, :, :]
i_pose = np.linalg.inv(i_pose) # torch.tensor(np.linalg.inv(i_pose)).float()
output_poses.append(i_pose)
return output_poses
def render_wander_path(c2w):
hwf = c2w[:, 4:5]
num_frames = 60
max_disp = 48.0 # 64 , 48
max_trans = max_disp / hwf[2][
0] # self.targets['K_src'][0, 0, 0] # Maximum camera translation to satisfy max_disp parameter
output_poses = []
for i in range(num_frames):
x_trans = max_trans * np.sin(2.0 * np.pi * float(i) / float(num_frames))
y_trans = max_trans * np.cos(2.0 * np.pi * float(i) / float(num_frames)) / 3.0 # * 3.0 / 4.0
z_trans = max_trans * np.cos(2.0 * np.pi * float(i) / float(num_frames)) / 3.0
i_pose = np.concatenate([
np.concatenate(
[np.eye(3), np.array([x_trans, y_trans, z_trans])[:, np.newaxis]], axis=1),
np.array([0.0, 0.0, 0.0, 1.0])[np.newaxis, :]
], axis=0) # [np.newaxis, :, :]
i_pose = np.linalg.inv(i_pose) # torch.tensor(np.linalg.inv(i_pose)).float()
ref_pose = np.concatenate([c2w[:3, :4], np.array([0.0, 0.0, 0.0, 1.0])[np.newaxis, :]], axis=0)
render_pose = np.dot(ref_pose, i_pose)
# print('render_pose ', render_pose.shape)
# sys.exit()
output_poses.append(np.concatenate([render_pose[:3, :], hwf], 1))
return output_poses