forked from NVlabs/stylegan2-ada-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
11 changed files
with
439 additions
and
203 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,50 +1,50 @@ | ||
Usage: dataset_tool.py [OPTIONS] | ||
Convert an image dataset into a dataset archive usable with StyleGAN2 ADA | ||
PyTorch. | ||
The input dataset format is guessed from the --source argument: | ||
--source *_lmdb/ - Load LSUN dataset | ||
--source cifar-10-python.tar.gz - Load CIFAR-10 dataset | ||
--source path/ - Recursively load all images from path/ | ||
--source dataset.zip - Recursively load all images from dataset.zip | ||
The output dataset format can be either an image folder or a zip archive. | ||
Specifying the output format and path: | ||
--dest /path/to/dir - Save output files under /path/to/dir | ||
--dest /path/to/dataset.zip - Save output files into /path/to/dataset.zip archive | ||
Images within the dataset archive will be stored as uncompressed PNG. | ||
Image scale/crop and resolution requirements: | ||
Output images must be square-shaped and they must all have the same power- | ||
of-two dimensions. | ||
To scale arbitrary input image size to a specific width and height, use | ||
the --width and --height options. Output resolution will be either the | ||
original input resolution (if --width/--height was not specified) or the | ||
one specified with --width/height. | ||
Use the --transform=center-crop or --transform=center-crop-wide options to | ||
apply a center crop transform on the input image. These options should be | ||
used with the --width and --height options. For example: | ||
python dataset_tool.py --source LSUN/raw/cat_lmdb --dest /tmp/lsun_cat \ | ||
--transform=center-crop-wide --width 512 --height=384 | ||
Options: | ||
--source PATH Directory or archive name for input dataset | ||
[required] | ||
--dest PATH Output directory or archive name for output | ||
dataset [required] | ||
--max-images INTEGER Output only up to `max-images` images | ||
--resize-filter [box|lanczos] Filter to use when resizing images for | ||
output resolution [default: lanczos] | ||
--transform [center-crop|center-crop-wide] | ||
Input crop/resize mode | ||
--width INTEGER Output width | ||
--height INTEGER Output height | ||
--help Show this message and exit. | ||
Usage: dataset_tool.py [OPTIONS] | ||
|
||
Convert an image dataset into a dataset archive usable with StyleGAN2 ADA | ||
PyTorch. | ||
|
||
The input dataset format is guessed from the --source argument: | ||
|
||
--source *_lmdb/ - Load LSUN dataset | ||
--source cifar-10-python.tar.gz - Load CIFAR-10 dataset | ||
--source path/ - Recursively load all images from path/ | ||
--source dataset.zip - Recursively load all images from dataset.zip | ||
|
||
The output dataset format can be either an image folder or a zip archive. | ||
Specifying the output format and path: | ||
|
||
--dest /path/to/dir - Save output files under /path/to/dir | ||
--dest /path/to/dataset.zip - Save output files into /path/to/dataset.zip archive | ||
|
||
Images within the dataset archive will be stored as uncompressed PNG. | ||
|
||
Image scale/crop and resolution requirements: | ||
|
||
Output images must be square-shaped and they must all have the same power- | ||
of-two dimensions. | ||
|
||
To scale arbitrary input image size to a specific width and height, use | ||
the --width and --height options. Output resolution will be either the | ||
original input resolution (if --width/--height was not specified) or the | ||
one specified with --width/height. | ||
|
||
Use the --transform=center-crop or --transform=center-crop-wide options to | ||
apply a center crop transform on the input image. These options should be | ||
used with the --width and --height options. For example: | ||
|
||
python dataset_tool.py --source LSUN/raw/cat_lmdb --dest /tmp/lsun_cat \ | ||
--transform=center-crop-wide --width 512 --height=384 | ||
|
||
Options: | ||
--source PATH Directory or archive name for input dataset | ||
[required] | ||
--dest PATH Output directory or archive name for output | ||
dataset [required] | ||
--max-images INTEGER Output only up to `max-images` images | ||
--resize-filter [box|lanczos] Filter to use when resizing images for | ||
output resolution [default: lanczos] | ||
--transform [center-crop|center-crop-wide] | ||
Input crop/resize mode | ||
--width INTEGER Output width | ||
--height INTEGER Output height | ||
--help Show this message and exit. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,69 +1,69 @@ | ||
Usage: train.py [OPTIONS] | ||
Train a GAN using the techniques described in the paper "Training | ||
Generative Adversarial Networks with Limited Data". | ||
Examples: | ||
# Train with custom images using 1 GPU. | ||
python train.py --outdir=~/training-runs --data=~/my-image-folder | ||
# Train class-conditional CIFAR-10 using 2 GPUs. | ||
python train.py --outdir=~/training-runs --data=~/datasets/cifar10.zip \ | ||
--gpus=2 --cfg=cifar --cond=1 | ||
# Transfer learn MetFaces from FFHQ using 4 GPUs. | ||
python train.py --outdir=~/training-runs --data=~/datasets/metfaces.zip \ | ||
--gpus=4 --cfg=paper1024 --mirror=1 --resume=ffhq1024 --snap=10 | ||
# Reproduce original StyleGAN2 config F. | ||
python train.py --outdir=~/training-runs --data=~/datasets/ffhq.zip \ | ||
--gpus=8 --cfg=stylegan2 --mirror=1 --aug=noaug | ||
Base configs (--cfg): | ||
auto Automatically select reasonable defaults based on resolution | ||
and GPU count. Good starting point for new datasets. | ||
stylegan2 Reproduce results for StyleGAN2 config F at 1024x1024. | ||
paper256 Reproduce results for FFHQ and LSUN Cat at 256x256. | ||
paper512 Reproduce results for BreCaHAD and AFHQ at 512x512. | ||
paper1024 Reproduce results for MetFaces at 1024x1024. | ||
cifar Reproduce results for CIFAR-10 at 32x32. | ||
Transfer learning source networks (--resume): | ||
ffhq256 FFHQ trained at 256x256 resolution. | ||
ffhq512 FFHQ trained at 512x512 resolution. | ||
ffhq1024 FFHQ trained at 1024x1024 resolution. | ||
celebahq256 CelebA-HQ trained at 256x256 resolution. | ||
lsundog256 LSUN Dog trained at 256x256 resolution. | ||
<PATH or URL> Custom network pickle. | ||
Options: | ||
--outdir DIR Where to save the results [required] | ||
--gpus INT Number of GPUs to use [default: 1] | ||
--snap INT Snapshot interval [default: 50 ticks] | ||
--metrics LIST Comma-separated list or "none" [default: | ||
fid50k_full] | ||
--seed INT Random seed [default: 0] | ||
-n, --dry-run Print training options and exit | ||
--data PATH Training data (directory or zip) [required] | ||
--cond BOOL Train conditional model based on dataset | ||
labels [default: false] | ||
--subset INT Train with only N images [default: all] | ||
--mirror BOOL Enable dataset x-flips [default: false] | ||
--cfg [auto|stylegan2|paper256|paper512|paper1024|cifar] | ||
Base config [default: auto] | ||
--gamma FLOAT Override R1 gamma | ||
--kimg INT Override training duration | ||
--batch INT Override batch size | ||
--aug [noaug|ada|fixed] Augmentation mode [default: ada] | ||
--p FLOAT Augmentation probability for --aug=fixed | ||
--target FLOAT ADA target value for --aug=ada | ||
--augpipe [blit|geom|color|filter|noise|cutout|bg|bgc|bgcf|bgcfn|bgcfnc] | ||
Augmentation pipeline [default: bgc] | ||
--resume PKL Resume training [default: noresume] | ||
--freezed INT Freeze-D [default: 0 layers] | ||
--fp32 BOOL Disable mixed-precision training | ||
--nhwc BOOL Use NHWC memory format with FP16 | ||
--nobench BOOL Disable cuDNN benchmarking | ||
--workers INT Override number of DataLoader workers | ||
--help Show this message and exit. | ||
Usage: train.py [OPTIONS] | ||
|
||
Train a GAN using the techniques described in the paper "Training | ||
Generative Adversarial Networks with Limited Data". | ||
|
||
Examples: | ||
|
||
# Train with custom images using 1 GPU. | ||
python train.py --outdir=~/training-runs --data=~/my-image-folder | ||
|
||
# Train class-conditional CIFAR-10 using 2 GPUs. | ||
python train.py --outdir=~/training-runs --data=~/datasets/cifar10.zip \ | ||
--gpus=2 --cfg=cifar --cond=1 | ||
|
||
# Transfer learn MetFaces from FFHQ using 4 GPUs. | ||
python train.py --outdir=~/training-runs --data=~/datasets/metfaces.zip \ | ||
--gpus=4 --cfg=paper1024 --mirror=1 --resume=ffhq1024 --snap=10 | ||
|
||
# Reproduce original StyleGAN2 config F. | ||
python train.py --outdir=~/training-runs --data=~/datasets/ffhq.zip \ | ||
--gpus=8 --cfg=stylegan2 --mirror=1 --aug=noaug | ||
|
||
Base configs (--cfg): | ||
auto Automatically select reasonable defaults based on resolution | ||
and GPU count. Good starting point for new datasets. | ||
stylegan2 Reproduce results for StyleGAN2 config F at 1024x1024. | ||
paper256 Reproduce results for FFHQ and LSUN Cat at 256x256. | ||
paper512 Reproduce results for BreCaHAD and AFHQ at 512x512. | ||
paper1024 Reproduce results for MetFaces at 1024x1024. | ||
cifar Reproduce results for CIFAR-10 at 32x32. | ||
|
||
Transfer learning source networks (--resume): | ||
ffhq256 FFHQ trained at 256x256 resolution. | ||
ffhq512 FFHQ trained at 512x512 resolution. | ||
ffhq1024 FFHQ trained at 1024x1024 resolution. | ||
celebahq256 CelebA-HQ trained at 256x256 resolution. | ||
lsundog256 LSUN Dog trained at 256x256 resolution. | ||
<PATH or URL> Custom network pickle. | ||
|
||
Options: | ||
--outdir DIR Where to save the results [required] | ||
--gpus INT Number of GPUs to use [default: 1] | ||
--snap INT Snapshot interval [default: 50 ticks] | ||
--metrics LIST Comma-separated list or "none" [default: | ||
fid50k_full] | ||
--seed INT Random seed [default: 0] | ||
-n, --dry-run Print training options and exit | ||
--data PATH Training data (directory or zip) [required] | ||
--cond BOOL Train conditional model based on dataset | ||
labels [default: false] | ||
--subset INT Train with only N images [default: all] | ||
--mirror BOOL Enable dataset x-flips [default: false] | ||
--cfg [auto|stylegan2|paper256|paper512|paper1024|cifar] | ||
Base config [default: auto] | ||
--gamma FLOAT Override R1 gamma | ||
--kimg INT Override training duration | ||
--batch INT Override batch size | ||
--aug [noaug|ada|fixed] Augmentation mode [default: ada] | ||
--p FLOAT Augmentation probability for --aug=fixed | ||
--target FLOAT ADA target value for --aug=ada | ||
--augpipe [blit|geom|color|filter|noise|cutout|bg|bgc|bgcf|bgcfn|bgcfnc] | ||
Augmentation pipeline [default: bgc] | ||
--resume PKL Resume training [default: noresume] | ||
--freezed INT Freeze-D [default: 0 layers] | ||
--fp32 BOOL Disable mixed-precision training | ||
--nhwc BOOL Use NHWC memory format with FP16 | ||
--nobench BOOL Disable cuDNN benchmarking | ||
--workers INT Override number of DataLoader workers | ||
--help Show this message and exit. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.