A Conditional Generative Adversarial Network for Rendering Point Clouds to be presented at 2019 CVPR Workshop.
pc2pix
code implementation in Keras(2.2.3) and Tensorflow (1.11). Surface reconstruction requires Blender and Meshlab.
Environment tested: Ubunutu Linux 16.04LTS, GPUs tested: 1060, 1080Ti and V100
- Datasets (ShapeNet point cloud and rendered images) can be downloaded here (1G + 28G):
$ cd data
- Download shapenet point cloud dataset from https://bit.ly/2RFzBeG
$ tar xzvf shape_net_core_uniform_samples_2048.tgz
- Download shapenet render dataset from https://bit.ly/2RTa54Z
$ tar xzvf shapenet_release.tgz
$ cd ..
Pre-compiled latent codes (to speed up point cloud encoder prediction) Note: Needed only if pc2pix will be trained
- Download pc codes from https://goo.gl/JBL4sU or https://bit.ly/2AUra4N
$ tar jxvf pc_codes.tar.bz2
- Model weights of pc2pix and pt cloud autoencoder (1G) Download model weights from https://goo.gl/3vMuxY or https://bit.ly/2CzFAae
$ tar jxvf model_weights.tar.bz2
- Evaluation code can be found in evaluation folder. All rendered images will be at evaluation/data
$ cd evaluation
-
For simplicity, assume chair dataset is used:
-
To perform surface surface reconstrucion from point clouds:
$ python3 surface_reconstruction.py
- To render the surface reconstructed objects:
$ python3 render_reconstruction.py
- To render point cloud using pc2pix:
$ python3 render_by_pc2pix.py --ptcloud_ae_weights=../model_weights/ptcloud/chair-pt-cloud-stacked-ae-chamfer-5-ae-weights-32.h5 --generator=../model_weights/pc2pix/chair-gen-color.h5 --discriminator=../model_weights/pc2pix/chair-dis-color.h5 -c --category="chair"
- To calculate FID scores:
$ python3 get_fid.py
- To calculate SSIM components:
$ python3 get_ssim_components.py
- To get class similarity:
$ python3 get_class_confidence.py
$ cd ..
If you find this work useful, please cite:
@InProceedings{Atienza_2019_CVPR_Workshops,
author = {Atienza, Rowel},
title = {A Conditional Generative Adversarial Network for Rendering Point Clouds},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
month = {June},
year = {2019}
}