Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

rebase dev #96

Merged
merged 58 commits into from
Jan 4, 2025
Merged
Changes from 1 commit
Commits
Show all changes
58 commits
Select commit Hold shift + click to select a range
56813a7
Merge pull request #79 from roaldarbol/dev
roaldarbol Dec 7, 2024
57d6b36
Lots of new functions! Still rough
Dec 12, 2024
72cd715
Mostly docstrings and a few modifications.
Dec 12, 2024
db721a8
A few name changes
Dec 12, 2024
33f4790
Log y-axis on check_poses
Dec 12, 2024
b95b92a
Fix. Also silence ggplot
Dec 12, 2024
e39fc92
Add reference_keypoint to check_pose
Dec 12, 2024
622b533
Add doc and export to replace_na
Dec 12, 2024
143d137
Allow na_interpolation to return an unfiltered data frame with a warning
Dec 12, 2024
d817a39
Pathc to last commit
Dec 12, 2024
d692715
Another small patch
Dec 12, 2024
efcbe5b
Allow plotting of all NAs in check_na_timing
Dec 12, 2024
0118c58
Add min_obs parameter to smooth_movement
Dec 12, 2024
4d752ea
Hopefully improve speed of translate_coords_keypoint
Dec 13, 2024
9e47f16
lots of new functions and test data moved
Dec 14, 2024
d40e5e0
Just filename changes
Dec 14, 2024
906c0f1
Just docs and patches to ensure successful building
Dec 14, 2024
530e868
Add better read_trex docstring
Dec 14, 2024
eb9cb2b
Merge pull request #87 from roaldarbol/main
roaldarbol Dec 14, 2024
4b835ab
Expose and add documentation to set_individual and set_framerate
Dec 15, 2024
6a304fd
Add imports
Dec 15, 2024
91afc51
Expport set_ functions and update get_example_data
Dec 15, 2024
0177652
Add to NAMESPACE
Dec 15, 2024
c58f8ca
Fix time series plots when all values are NA
Dec 15, 2024
4904fdd
Tiny patch
Dec 15, 2024
be0c861
Add peak/trough detection
Dec 16, 2024
7111681
Great improvements the extrema detection functions. Also lots of test…
Dec 16, 2024
004aa31
Add movement classification
Dec 16, 2024
5a12cce
Export classification
Dec 16, 2024
2d5e44d
And add it to NAMESPACE
Dec 16, 2024
add149a
Merge branch 'everything_everywhere_all_at_once' of https://github.co…
Dec 16, 2024
6b71fbc
Fix bug in filter_by_speed
Dec 17, 2024
4f1e22e
Add NA tests
Dec 17, 2024
b547bfd
Bug fix for calculate_kinematics - added group_by keypoint and indivi…
Dec 17, 2024
679d30c
Fix set_framerate so it detects whether a frame rate has previously b…
Dec 17, 2024
a497269
Add bandwidth filters
Dec 19, 2024
d5b0ec6
Updates to the classification functions
Dec 19, 2024
414e90b
Changed method names in smooth_movement function
Dec 19, 2024
eb39902
Added NA testing for filter_by_speed
Dec 19, 2024
fe972ff
Add return_type parameter
Dec 19, 2024
1d35cfc
Add return_type parameter
Dec 19, 2024
4685c92
Merge branch 'everything_everywhere_all_at_once' of https://github.co…
Dec 19, 2024
d746502
Clean-up
Dec 19, 2024
ca26260
Patch
Dec 19, 2024
b05dca9
Another patch
Dec 19, 2024
6a1a08c
Patch again
Dec 19, 2024
65c696d
Improved bandwidth filters
Dec 20, 2024
18e7661
Adds Kalman filters
Dec 20, 2024
d9d1ca5
Add rotation of coordinates and egocentric transformation
Dec 21, 2024
ff8ebdc
Alignment of timeseries and classification w peak+trough
Dec 25, 2024
383aa8d
Improve detection of active periods
Dec 25, 2024
e0589f2
Adds replace_na functions and classify_low_periods
Dec 26, 2024
f8e440e
Filtering functions
Jan 3, 2025
d4b790d
Calculations
Jan 3, 2025
0492954
Filter NA functions
Jan 3, 2025
e64e9fa
The rest
Jan 3, 2025
0c2bba8
Update version
Jan 3, 2025
635e699
Merge pull request #94 from roaldarbol/everything_everywhere_all_at_once
roaldarbol Jan 3, 2025
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Prev Previous commit
Next Next commit
Add NA tests
  • Loading branch information
Mikkel Roald-Arbøl committed Dec 17, 2024
commit 4f1e22e4ecebe630387840aa14f2b77ecc44fb61
137 changes: 137 additions & 0 deletions tests/testthat/test-classify_movement_plateau.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,137 @@
library(testthat)

test_that("classify_movement_plateau handles basic movement patterns", {
# Simple case: clear movement and non-movement
speed <- c(rep(0.1, 100), rep(5, 100), rep(0.1, 100))
result <- classify_movement_plateau(speed, refine_transitions = FALSE)
expect_equal(sum(result[90:110] == 1), 10) # Movement detected around transition
expect_equal(sum(result[1:50] == 0), 50) # Start is clearly non-movement

# Case with some noise but clear movement
speed <- c(rnorm(100, 0.1, 0.05), rnorm(100, 5, 0.5), rnorm(100, 0.1, 0.05))
result <- classify_movement_plateau(speed, refine_transitions = FALSE)
expect_equal(sum(result == 1), 100) # Should still detect movement transition
})

test_that("classify_movement_plateau works with velocity (negative values)", {
# Velocity with direction changes
velocity <- c(rep(0.1, 50), rep(5, 100), rep(0.1, 50))
result <- classify_movement_plateau(velocity, refine_transitions = FALSE)
expect_equal(sum(result == 1), 102) # Should detect movement despite negative values

# Mixed positive and negative movements
velocity <- c(rep(0.1, 50), rep(-5, 50), rep(5, 50), rep(0.1, 50))
result <- classify_movement_plateau(velocity, refine_transitions = FALSE)
expect_true(all(result[60:140] == 1)) # Should detect both movement directions
})

test_that("classify_movement_plateau handles edge cases", {
# All NA input
expect_true(all(is.na(classify_movement_plateau(rep(NA, 100)))))

# Very short input
expect_error(classify_movement_plateau(1:5, refine_transitions = FALSE), NA) # Should not error

# Single value
expect_error(classify_movement_plateau(1, refine_transitions = FALSE), NA) # Should not error

# Zero-length input
expect_error(classify_movement_plateau(numeric(0), refine_transitions = FALSE), NA) # Should not error

# All zeros
expect_true(all(is.na(classify_movement_plateau(rep(0, 100)), refine_transitions = FALSE) == TRUE))

# Constant non-zero value
expect_true(all(is.na(classify_movement_plateau(rep(1, 100)), refine_transitions = FALSE) == TRUE))
})

test_that("classify_movement_plateau handles NA patterns correctly", {
# NAs at start
speed <- c(rep(NA, 50), rep(0.1, 100), rep(5, 100))
result <- classify_movement_plateau(speed, refine_transitions = FALSE)
expect_true(all(is.na(result[1:50])))
expect_false(all(is.na(result[51:250])))

# NAs in middle
speed <- c(rep(0.1, 100), rep(NA, 50), rep(5, 100))
result <- classify_movement_plateau(speed, refine_transitions = FALSE)
expect_true(all(is.na(result[101:150])))
expect_false(all(is.na(result[1:100])))
expect_false(all(is.na(result[151:250])))

# Scattered NAs
speed <- rep(0.1, 300)
speed[sample(300, 30)] <- NA # 10% NAs randomly placed
result <- classify_movement_plateau(speed, refine_transitions = FALSE)
expect_equal(sum(is.na(result)), 30)
})

test_that("classify_movement_plateau merges nearby movements correctly", {
# Create pattern with brief stillness between movements
speed <- c(rep(0.1, 100), # stillness
rep(5, 100), # movement
rep(0.1, 30), # brief stillness (should be merged)
rep(5, 100), # movement
rep(0.1, 100)) # stillness

result <- classify_movement_plateau(speed, refine_transitions = FALSE)
# Check if brief stillness was merged
expect_true(all(result[201:230] == 0))

# Test with longer gap (should not merge)
speed <- c(rep(0.1, 100), # stillness
rep(5, 100), # movement
rep(0.1, 200), # long stillness (should not merge)
rep(5, 100), # movement
rep(0.1, 100)) # stillness

result <- classify_movement_plateau(speed, refine_transitions = FALSE)
# Check if long stillness was preserved
expect_true(any(result[250:350] == 0))
})

test_that("classify_movement_plateau parameters affect output as expected", {
speed <- c(rep(0.1, 100), rep(5, 100), rep(0.1, 100))

# Test threshold_multiplier effect
strict <- classify_movement_plateau(speed, threshold_multiplier = 5, refine_transitions = FALSE)
lenient <- classify_movement_plateau(speed, threshold_multiplier = 1, refine_transitions = FALSE)
expect_true(sum(strict == 1) < sum(lenient == 1))

# Test min_still_gap effect
small_gap <- classify_movement_plateau(speed, min_still_gap = 10)
large_gap <- classify_movement_plateau(speed, min_still_gap = 200)
expect_true(sum(small_gap == 1) >= sum(large_gap == 1))
})

test_that("classify_movement_plateau handles gradual transitions", {
# Create gradual acceleration
x <- seq(0, 2*pi, length.out = 300)
speed <- c(rep(0.1, 100),
0.1 + (5-0.1) * (1 - cos(x[1:100]))/2, # Gradual increase
rep(5, 100))

result <- classify_movement_plateau(speed)

# Should detect movement during transition
transition_point <- which(result == 1)[1]
expect_true(transition_point < 150) # Movement should be detected during acceleration
})

test_that("classify_movement_plateau is robust to different scales", {
# Test with very small values
small_speed <- c(rep(0.001, 100), rep(0.05, 100), rep(0.001, 100))
small_result <- classify_movement_plateau(small_speed)
expect_true(any(small_result == 1))

# Test with very large values
large_speed <- c(rep(10, 100), rep(500, 100), rep(10, 100))
large_result <- classify_movement_plateau(large_speed)
expect_true(any(large_result == 1))

# Results should be similar regardless of scale
expect_equal(
sum(small_result == 1),
sum(large_result == 1)
)
})