Skip to content

🔖 write langchain prompts as python functions

License

Notifications You must be signed in to change notification settings

ricklamers/funcchain

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

funcchain

> pip install funcchain

Introduction

funcchain is the most pythonic way of writing cognitive systems. Leveraging pydantic models as output schemas combined with langchain in the backend allows for a seamless integration of llms into your apps. It works perfect with OpenAI Functions and soon with other models using JSONFormer.

Demo

Open in GitHub Codespaces

from typing import Union, List
from langchain.pydantic_v1 import BaseModel, Field
from funcchain import chain

class Item(BaseModel):
    name: str = Field(..., description="Name of the item")
    description: str = Field(..., description="Description of the item")
    keywords: List[str] = Field(..., description="Keywords for the item")

class ShoppingList(BaseModel):
    """ List of items to buy """
    items: List[Item]
    store: str = Field(..., description="The store to buy the items from")

class TodoList(BaseModel):
    todos: List[Item]
    urgency: int = Field(..., description="The urgency of all tasks (1-10)")

def extract_list(user_input: str) -> Union[TodoList, ShoppingList]:
    """
    USER_INPUT:
    {user_input}

    The user input is either a shopping List or a todo list.
    """
    return chain()


user_input = input("Enter your list: ")
lst = extract_list(user_input)

if isinstance(lst, ShoppingList):
    print("Here is your Shopping List: ")
    for item in lst.items:
        print(f"{item.name}: {item.description}")
    print(f"You need to go to: {lst.store}")

if isinstance(lst, TodoList):
    print("Here is your Todo List: ")
    for item in lst.todos:
        print(f"{item.name}: {item.description}")
    print(f"Urgency: {lst.urgency}")

Features

  • increased productivity
  • prompts as Python functions
  • pydantic models as output schemas
  • langchain schemas in the backend
  • async support
  • fstrings or jinja2 templates for prompts
  • fully utilises OpenAI Functions
  • minimalistic and easy to use

Documentation

Coming soon and feel free to contribute

Contribution

You want to contribute? That's great! Please run the dev setup to get started:

> git clone https://github.com/shroominic/funcchain.git && cd funcchain

> ./dev_setup.sh

About

🔖 write langchain prompts as python functions

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.1%
  • Shell 0.9%