> pip install funcchain
funcchain
is the most pythonic way of writing cognitive systems. Leveraging pydantic models as output schemas combined with langchain in the backend allows for a seamless integration of llms into your apps.
It works perfect with OpenAI Functions and soon with other models using JSONFormer.
from typing import Union, List
from langchain.pydantic_v1 import BaseModel, Field
from funcchain import chain
class Item(BaseModel):
name: str = Field(..., description="Name of the item")
description: str = Field(..., description="Description of the item")
keywords: List[str] = Field(..., description="Keywords for the item")
class ShoppingList(BaseModel):
""" List of items to buy """
items: List[Item]
store: str = Field(..., description="The store to buy the items from")
class TodoList(BaseModel):
todos: List[Item]
urgency: int = Field(..., description="The urgency of all tasks (1-10)")
def extract_list(user_input: str) -> Union[TodoList, ShoppingList]:
"""
USER_INPUT:
{user_input}
The user input is either a shopping List or a todo list.
"""
return chain()
user_input = input("Enter your list: ")
lst = extract_list(user_input)
if isinstance(lst, ShoppingList):
print("Here is your Shopping List: ")
for item in lst.items:
print(f"{item.name}: {item.description}")
print(f"You need to go to: {lst.store}")
if isinstance(lst, TodoList):
print("Here is your Todo List: ")
for item in lst.todos:
print(f"{item.name}: {item.description}")
print(f"Urgency: {lst.urgency}")
- increased productivity
- prompts as Python functions
- pydantic models as output schemas
- langchain schemas in the backend
- async support
- fstrings or jinja2 templates for prompts
- fully utilises OpenAI Functions
- minimalistic and easy to use
Coming soon and feel free to contribute
You want to contribute? That's great! Please run the dev setup to get started:
> git clone https://github.com/shroominic/funcchain.git && cd funcchain
> ./dev_setup.sh