-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
0 parents
commit 80e15f3
Showing
11 changed files
with
1,249 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
[submodule "sefa"] | ||
path = sefa | ||
url = https://github.com/genforce/sefa.git |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,44 @@ | ||
import os | ||
import sys | ||
import bz2 | ||
from tensorflow.keras.utils import get_file | ||
from face_alignment import image_align | ||
from landmarks_detector import LandmarksDetector | ||
|
||
LANDMARKS_MODEL_URL = 'http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2' | ||
|
||
|
||
def unpack_bz2(src_path): | ||
data = bz2.BZ2File(src_path).read() | ||
dst_path = src_path[:-4] | ||
with open(dst_path, 'wb') as fp: | ||
fp.write(data) | ||
return dst_path | ||
|
||
|
||
def align_image(input_path, output_path): | ||
landmarks_model_path = unpack_bz2(get_file('shape_predictor_68_face_landmarks.dat.bz2', | ||
LANDMARKS_MODEL_URL, cache_subdir='temp')) | ||
landmarks_detector = LandmarksDetector(landmarks_model_path) | ||
for i, face_landmarks in enumerate(landmarks_detector.get_landmarks(input_path), start=1): | ||
image_align(input_path, output_path, face_landmarks) | ||
|
||
if __name__ == "__main__": | ||
""" | ||
Extracts and aligns all faces from images using DLib and a function from original FFHQ dataset preparation step | ||
python align_images.py /raw_images /aligned_images | ||
""" | ||
|
||
landmarks_model_path = unpack_bz2(get_file('shape_predictor_68_face_landmarks.dat.bz2', | ||
LANDMARKS_MODEL_URL, cache_subdir='temp')) | ||
RAW_IMAGES_DIR = sys.argv[1] | ||
ALIGNED_IMAGES_DIR = sys.argv[2] | ||
|
||
landmarks_detector = LandmarksDetector(landmarks_model_path) | ||
for img_name in os.listdir(RAW_IMAGES_DIR): | ||
raw_img_path = os.path.join(RAW_IMAGES_DIR, img_name) | ||
for i, face_landmarks in enumerate(landmarks_detector.get_landmarks(raw_img_path), start=1): | ||
face_img_name = '%s_%02d.png' % (os.path.splitext(img_name)[0], i) | ||
aligned_face_path = os.path.join(ALIGNED_IMAGES_DIR, face_img_name) | ||
|
||
image_align(raw_img_path, aligned_face_path, face_landmarks) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,148 @@ | ||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
from read_image import image_reader | ||
import argparse | ||
import torch | ||
import torch.nn as nn | ||
from collections import OrderedDict | ||
import torch.nn.functional as F | ||
from torchvision.utils import save_image | ||
from perceptual_model import VGG16_for_Perceptual | ||
import torch.optim as optim | ||
|
||
from sefa.models import parse_gan_type | ||
from utils import load_generator, to_tensor, parse_gan_type, postprocess | ||
|
||
device = "cuda:0" if torch.cuda.is_available() else "cpu" | ||
|
||
|
||
def parse_resolution(model_name): | ||
return int(''.join(filter(str.isdigit, model_name))) | ||
|
||
|
||
def forward(model, gan_type, code): | ||
if gan_type == 'pggan': | ||
image = model(code)['image'] | ||
elif gan_type in ['stylegan', 'stylegan2']: | ||
image = model.synthesis(code)['image'] | ||
return image | ||
|
||
|
||
def optimize_style(source_image, model, model_name, gan_type, dlatent, iteration, pb): | ||
resolution = parse_resolution(model_name) | ||
|
||
img = image_reader(source_image, resize=resolution) # (1,3,1024,1024) -1~1 | ||
img = img.to(device) | ||
|
||
MSE_Loss = nn.MSELoss(reduction="mean") | ||
|
||
img_p = img.clone() # Perceptual loss 用画像 | ||
upsample2d = torch.nn.Upsample( | ||
scale_factor=256 / resolution, mode="bilinear" | ||
) # VGG入力のため(256,256)にリサイズ | ||
img_p = upsample2d(img_p) | ||
|
||
perceptual_net = VGG16_for_Perceptual(n_layers=[2, 4, 14, 21]).to(device) | ||
w = to_tensor(dlatent).requires_grad_() | ||
optimizer = optim.Adam({w}, lr=0.01, betas=(0.9, 0.999), eps=1e-8) | ||
|
||
for i in range(iteration): | ||
pb.progress(i / iteration) | ||
optimizer.zero_grad() | ||
synth_img = forward(model, gan_type, w) | ||
synth_img = (synth_img + 1.0) / 2.0 | ||
mse_loss, perceptual_loss = caluclate_loss( | ||
synth_img, img, perceptual_net, img_p, MSE_Loss, upsample2d | ||
) | ||
loss = mse_loss + perceptual_loss | ||
loss.backward() | ||
optimizer.step() | ||
|
||
return w.detach().cpu().numpy() | ||
|
||
|
||
def main(): | ||
parser = argparse.ArgumentParser( | ||
description="Find latent representation of reference images using perceptual loss" | ||
) | ||
|
||
parser.add_argument("--src_im", default="sample.png") | ||
parser.add_argument("--src_dir", default="source_image/") | ||
|
||
iteration = 1000 | ||
args = parser.parse_args() | ||
|
||
model_name = 'stylegan_ffhq1024' | ||
model = load_generator(model_name) | ||
resolution = parse_resolution(model_name) | ||
gan_type = parse_gan_type(model) | ||
|
||
name = args.src_im.split(".")[0] | ||
img = image_reader(args.src_dir + args.src_im, resize=resolution) # (1,3,1024,1024) -1~1 | ||
img = img.to(device) | ||
|
||
MSE_Loss = nn.MSELoss(reduction="mean") | ||
|
||
img_p = img.clone() # Perceptual loss 用画像 | ||
upsample2d = torch.nn.Upsample( | ||
scale_factor=256 / resolution, mode="bilinear" | ||
) # VGG入力のため(256,256)にリサイズ | ||
img_p = upsample2d(img_p) | ||
|
||
perceptual_net = VGG16_for_Perceptual(n_layers=[2, 4, 14, 21]).to(device) | ||
# dlatent = torch.randn(1, model.z_space_dim, requires_grad=True, device=device) | ||
w = to_tensor(sample(model, gan_type)).requires_grad_() | ||
optimizer = optim.Adam({w}, lr=0.01, betas=(0.9, 0.999), eps=1e-8) | ||
# optimizer = optim.SGD({dlatent}, lr=1.) #, momentum=0.9, nesterov=True) | ||
|
||
print("Start") | ||
loss_list = [] | ||
for i in range(iteration): | ||
optimizer.zero_grad() | ||
|
||
synth_img = forward(model, gan_type, w) | ||
synth_img = (synth_img + 1.0) / 2.0 | ||
mse_loss, perceptual_loss = caluclate_loss( | ||
synth_img, img, perceptual_net, img_p, MSE_Loss, upsample2d | ||
) | ||
loss = mse_loss + perceptual_loss | ||
loss.backward() | ||
|
||
optimizer.step() | ||
|
||
loss_np = loss.detach().cpu().numpy() | ||
loss_p = perceptual_loss.detach().cpu().numpy() | ||
loss_m = mse_loss.detach().cpu().numpy() | ||
|
||
loss_list.append(loss_np) | ||
if i % 10 == 0: | ||
print( | ||
"iter{}: loss -- {}, mse_loss --{}, percep_loss --{}".format( | ||
i, loss_np, loss_m, loss_p | ||
) | ||
) | ||
save_image(synth_img.clamp(0, 1), "save_image/encode1/{}.png".format(i)) | ||
# np.save("loss_list.npy",loss_list) | ||
np.save("latent_W/{}.npy".format(name), w.detach().cpu().numpy()) | ||
|
||
|
||
def caluclate_loss(synth_img, img, perceptual_net, img_p, MSE_Loss, upsample2d): | ||
# calculate MSE Loss | ||
mse_loss = MSE_Loss(synth_img, img) # (lamda_mse/N)*||G(w)-I||^2 | ||
|
||
# calculate Perceptual Loss | ||
real_0, real_1, real_2, real_3 = perceptual_net(img_p) | ||
synth_p = upsample2d(synth_img) # (1,3,256,256) | ||
synth_0, synth_1, synth_2, synth_3 = perceptual_net(synth_p) | ||
|
||
perceptual_loss = 0 | ||
perceptual_loss += MSE_Loss(synth_0, real_0) | ||
perceptual_loss += MSE_Loss(synth_1, real_1) | ||
perceptual_loss += MSE_Loss(synth_2, real_2) | ||
perceptual_loss += MSE_Loss(synth_3, real_3) | ||
|
||
return mse_loss, perceptual_loss | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,84 @@ | ||
import numpy as np | ||
import scipy.ndimage | ||
import os | ||
import PIL.Image | ||
|
||
|
||
def image_align(src_file, dst_file, face_landmarks, output_size=1024, transform_size=4096, enable_padding=True): | ||
# Align function from FFHQ dataset pre-processing step | ||
# https://github.com/NVlabs/ffhq-dataset/blob/master/download_ffhq.py | ||
|
||
lm = np.array(face_landmarks) | ||
lm_chin = lm[0 : 17] # left-right | ||
lm_eyebrow_left = lm[17 : 22] # left-right | ||
lm_eyebrow_right = lm[22 : 27] # left-right | ||
lm_nose = lm[27 : 31] # top-down | ||
lm_nostrils = lm[31 : 36] # top-down | ||
lm_eye_left = lm[36 : 42] # left-clockwise | ||
lm_eye_right = lm[42 : 48] # left-clockwise | ||
lm_mouth_outer = lm[48 : 60] # left-clockwise | ||
lm_mouth_inner = lm[60 : 68] # left-clockwise | ||
|
||
# Calculate auxiliary vectors. | ||
eye_left = np.mean(lm_eye_left, axis=0) | ||
eye_right = np.mean(lm_eye_right, axis=0) | ||
eye_avg = (eye_left + eye_right) * 0.5 | ||
eye_to_eye = eye_right - eye_left | ||
mouth_left = lm_mouth_outer[0] | ||
mouth_right = lm_mouth_outer[6] | ||
mouth_avg = (mouth_left + mouth_right) * 0.5 | ||
eye_to_mouth = mouth_avg - eye_avg | ||
|
||
# Choose oriented crop rectangle. | ||
x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1] | ||
x /= np.hypot(*x) | ||
x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8) | ||
y = np.flipud(x) * [-1, 1] | ||
c = eye_avg + eye_to_mouth * 0.1 | ||
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y]) | ||
qsize = np.hypot(*x) * 2 | ||
|
||
# Load in-the-wild image. | ||
if not os.path.isfile(src_file): | ||
print('\nCannot find source image. Please run "--wilds" before "--align".') | ||
return | ||
img = PIL.Image.open(src_file) | ||
|
||
# Shrink. | ||
shrink = int(np.floor(qsize / output_size * 0.5)) | ||
if shrink > 1: | ||
rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink))) | ||
img = img.resize(rsize, PIL.Image.ANTIALIAS) | ||
quad /= shrink | ||
qsize /= shrink | ||
|
||
# Crop. | ||
border = max(int(np.rint(qsize * 0.1)), 3) | ||
crop = (int(np.floor(min(quad[:,0]))), int(np.floor(min(quad[:,1]))), int(np.ceil(max(quad[:,0]))), int(np.ceil(max(quad[:,1])))) | ||
crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]), min(crop[3] + border, img.size[1])) | ||
if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]: | ||
img = img.crop(crop) | ||
quad -= crop[0:2] | ||
|
||
# Pad. | ||
pad = (int(np.floor(min(quad[:,0]))), int(np.floor(min(quad[:,1]))), int(np.ceil(max(quad[:,0]))), int(np.ceil(max(quad[:,1])))) | ||
pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0), max(pad[3] - img.size[1] + border, 0)) | ||
if enable_padding and max(pad) > border - 4: | ||
pad = np.maximum(pad, int(np.rint(qsize * 0.3))) | ||
img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect') | ||
h, w, _ = img.shape | ||
y, x, _ = np.ogrid[:h, :w, :1] | ||
mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w-1-x) / pad[2]), 1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h-1-y) / pad[3])) | ||
blur = qsize * 0.02 | ||
img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0) | ||
img += (np.median(img, axis=(0,1)) - img) * np.clip(mask, 0.0, 1.0) | ||
img = PIL.Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB') | ||
quad += pad[:2] | ||
|
||
# Transform. | ||
img = img.transform((transform_size, transform_size), PIL.Image.QUAD, (quad + 0.5).flatten(), PIL.Image.BILINEAR) | ||
if output_size < transform_size: | ||
img = img.resize((output_size, output_size), PIL.Image.ANTIALIAS) | ||
|
||
# Save aligned image. | ||
img.save(dst_file, 'PNG') |
Oops, something went wrong.