Skip to content

raj-gupta1/Tomato-leaves-disease-Predictor

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Tomato-leaves-disease-Predictor

© Raj Gupta 2021


Paper Referenced from:

1. Rethinking the Inception Architecture for Computer Vision Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, Zbigniew Wojna https://arxiv.org/pdf/1512.00567v3

2. Very Deep Convolutional Networks for Large-Scale Image Recognition Karen Simonyan, Andrew Zisserman https://arxiv.org/pdf/1409.1556


Dataset obtained from:

https://www.kaggle.com/adinishad/tomato-leaf-detection-by-transfer-learning/data

Architecture used

  • VGG19
  • InceptionV3
  • No. of classes: 10
  • Classes :- ['Tomato___Late_blight' , 'Tomato___healthy' , 'Tomato___Early_blight' , 'Tomato___Septoria_leaf_spot' , 'Tomato___Tomato_Yellow_Leaf_Curl_Virus' , 'Tomato___Bacterial_spot' , 'Tomato___Target_Spot' , 'Tomato___Tomato_mosaic_virus' , 'Tomato___Leaf_Mold' , 'Tomato___Spider_mites Two-spotted_spider_mite']


Metrics for 10 Epochs (for InceptionV3)

  • loss: 0.3708
  • accuracy: 0.9639
  • val_loss: 4.1287
  • val_accuracy: 0.8198


Metrics for 10 Epochs (for VGG19)

  • loss: 0.0531
  • accuracy: 0.9804
  • val_loss: 0.2975
  • val_accuracy: 0.9210


Deployment

  • Deployed it as a web application using Flask.



Libraries used

  • python==3.7
  • Flask==1.1.2
  • numpy==1.18.4
  • tensorflow==2.2.0
  • Werkzeug==1.0.1


Tools used

  • Pycharm
  • Google Colab
  • git
  • Flask






About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published