-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathtrain_explorer.py
211 lines (173 loc) · 8.08 KB
/
train_explorer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import torch
import numpy as np
from torch_geometric.data import Data
from config import config, set_random_seed
from tqdm import tqdm as tqdm
from tensorboardX import SummaryWriter
import pickle
from time import time
from algorithm.dijkstra import dijkstra
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
class DotDict(dict):
"""dot.notation access to dictionary attributes"""
__getattr__ = dict.get
__setattr__ = dict.__setitem__
__delattr__ = dict.__delitem__
def obs_data(env, free, collided):
# free = []
# collided = []
# for i in range(128):
# new_sample = env.uniform_sample()
# if env._state_fp(new_sample):
# free.append(new_sample)
# else:
# collided.append(new_sample)
if not len(free):
free = torch.FloatTensor([[0. for _ in range(env.config_dim)]])
if not len(collided):
collided = torch.FloatTensor([[0. for _ in range(env.config_dim)]])
data = DotDict({
'free': free.to(device),
'collided': collided.to(device),
'obstacles': torch.FloatTensor(env.obstacles).to(device),
})
return data
def explore(edge_cost, policy, start, end, step):
explored = [start]
policy = policy.cpu()
policy[torch.arange(len(policy)), torch.arange(len(policy))] = 0
policy[end, end] = 1
for step_i in range(step):
agent = policy[np.array(explored)[torch.where(policy[explored, :] != 0)[0]], torch.where(policy[explored, :] != 0)[1]].argmax()
end_a, end_b = torch.where(policy[explored, :] != 0)[0][agent], torch.where(policy[explored, :] != 0)[1][agent]
end_a, end_b = int(end_a), int(end_b)
end_a = explored[end_a]
if edge_cost[end_a, end_b] != float('inf'):
explored.append(end_b)
policy[:, end_b] = 0
if end_b == end:
return step_i
else:
policy[end_a, end_b] = 0
policy[end_b, end_a] = 0
return step_i
def policy_data(edge_cost, dist, prev, policy, start, end, step):
explored = [start]
policy = policy.cpu()
policy[torch.arange(len(policy)), torch.arange(len(policy))] = 0
policy[end, end] = 1
for step_i in range(step):
agent = policy[np.array(explored)[torch.where(policy[explored, :] != 0)[0]], torch.where(policy[explored, :] != 0)[1]].argmax()
end_a, end_b = torch.where(policy[explored, :] != 0)[0][agent], torch.where(policy[explored, :] != 0)[1][agent]
end_a, end_b = int(end_a), int(end_b)
end_a = explored[end_a]
if edge_cost[end_a, end_b] != float('inf'):
explored.append(end_b)
policy[:, end_b] = 0
if end_b == end:
break
else:
policy[end_a, end_b] = 0
policy[end_b, end_a] = 0
next_node_idx_in_explored = np.argmin([dist[explore] for explore in explored])
next_node_idx = explored[next_node_idx_in_explored]
policy[end, end] = 1
frontier = (np.array(explored)[torch.where(policy[explored, :] != 0)[0]], torch.where(policy[explored, :] != 0)[1])
next_edge = (next_node_idx, prev[next_node_idx])
next_edge_idx = (torch.FloatTensor(frontier).view(2, -1) - torch.FloatTensor(next_edge).unsqueeze(-1)).norm(dim=0).argmin()
return next_edge, next_edge_idx, frontier
def train_explorer(epoch, data_path, model, model_path, env,
use_obstacle=True, use_heuristic=True, iter=20, loop=10):
model.use_obstacle = use_obstacle
model.use_heuristic = use_heuristic
writer = SummaryWriter()
INFINITY = float('inf')
set_random_seed(1234)
model = model.to(device)
# try:
# model.load_state_dict(torch.load(model_path, map_location=device))
# except:
# pass
with open(data_path, 'rb') as f:
graphs = pickle.load(f)
T = 0
losses = []
model.train()
optimizer = torch.optim.Adam(model.parameters(), lr=config.lr)
# optimizer = torch.optim.SGD(model.parameters(), lr=1e-3, momentum=0.9, weight_decay=1e-4)
optimizer.zero_grad()
for iter_i in range(iter):
indexes = np.random.permutation(epoch)
pbar = tqdm(indexes)
for index in pbar:
pb = env.init_new_problem(index)
time0 = time()
points, neighbors, edge_cost, edge_index, edge_free = graphs[index]
goal_index = np.random.choice(len(points))
dist, prev = dijkstra(list(range(len(points))), neighbors, edge_cost, goal_index)
prev[goal_index] = goal_index
valid_node = (np.array(list(dist.values())) != INFINITY)
if sum(valid_node) == 1:
continue
data = Data(goal=torch.FloatTensor(points[goal_index]),
v=torch.FloatTensor(points),
dist=torch.FloatTensor(list(dist.values())),
prev=torch.FloatTensor(list(prev.values())))
data.edge_index = torch.LongTensor(edge_index.T)
data.node_free = data.v.new_zeros(len(data.v), len(data.v))
data.node_free[data.edge_index[0, :], data.edge_index[1, :]] = torch.FloatTensor(edge_free).squeeze()
data.node_free = torch.diag(data.node_free, 0)
time_data = time() - time0
time0 = time()
current_loop = np.random.randint(1, loop)
# create labels
labels = torch.zeros(len(data.v), 3)
labels[data.node_free.bool(), 0] = 1
labels[~data.node_free.bool(), 1] = 1
labels[goal_index, 2] = 1
policy = model(**data.to(device).to_dict(),
labels=labels.to(device),
**obs_data(env, data.v[data.node_free.bool()], data.v[~data.node_free.bool()]),
loop=current_loop)
edge_cost_array = np.zeros((len(points), len(points)))
for x in neighbors:
for y, cost in zip(neighbors[x], edge_cost[x]):
edge_cost_array[x, y] = cost
start_index = np.random.choice(np.arange(len(valid_node))[valid_node])
try:
step = explore(edge_cost_array, policy.detach().clone(), start_index, goal_index, 1000)
except Exception:
continue
next_edge, next_edge_idx, frontier = policy_data(edge_cost_array, dist, prev, policy.detach().clone(),
start_index, goal_index, np.random.randint(0, step+1))
policy_loss = -policy[frontier].log_softmax(dim=0)[next_edge_idx] # a variant of the cross entropy
# if use_obstacle:
# loss = value_loss + policy_loss + node_loss + edge_loss
# else:
loss = policy_loss
# loss = policy_loss
loss.backward()
losses.append((loss, 0, policy_loss, 0, 0))
time_train = time() - time0
time0 = time()
if T % 8 == 0:
optimizer.step()
optimizer.zero_grad()
total_loss, value_loss, policy_loss, node_loss, edge_loss = \
[sum([loss[i] for loss in losses]) / len(losses) for i in range(5)]
writer.add_scalar('train/total_loss', total_loss, T)
writer.add_scalar('train/value_loss', value_loss, T)
writer.add_scalar('train/policy_loss', policy_loss, T)
writer.add_scalar('train/node_loss', node_loss, T)
writer.add_scalar('train/edge_loss', edge_loss, T)
pbar.set_description("total %.2f, value %.2f, policy %.2f, node %.2f, edge %.2f" \
% (total_loss, value_loss, policy_loss, node_loss, edge_loss))
losses = []
torch.save(model.state_dict(), model_path)
T += 1
# time_bp = time() - time0
#
# pbar.set_description("data %.2fs, train %.2fs, bp %.2fs, value std: %.2f" \
# % (time_data, time_train, time_bp, value.std()))
torch.save(model.state_dict(), model_path)
writer.close()